Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-8hm5d Total loading time: 0.256 Render date: 2022-05-22T19:58:39.192Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Recent Weed Control, Weed Management, and Integrated Weed Management

Published online by Cambridge University Press:  20 January 2017

K. Neil Harker*
Affiliation:
Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
John T. O'Donovan
Affiliation:
Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
*
Corresponding author's E-Mail: neil.harker@agr.gc.ca
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Integrated weed management (IWM) can be defined as a holistic approach to weed management that integrates different methods of weed control to provide the crop with an advantage over weeds. It is practiced globally at varying levels of adoption from farm to farm. IWM has the potential to restrict weed populations to manageable levels, reduce the environmental impact of individual weed management practices, increase cropping system sustainability, and reduce selection pressure for weed resistance to herbicides. There is some debate as to whether simple herbicidal weed control programs have now shifted to more diverse IWM cropping systems. Given the rapid evolution and spread of herbicide-resistant weeds and their negative consequences, one might predict that IWM research would currently be a prominent activity among weed scientists. Here we examine the level of research activity dedicated to weed control techniques and the assemblage of IWM techniques in cropping systems as evidenced by scientific paper publications from 1995 to June 1, 2012. Authors from the United States have published more weed and IWM-related articles than authors from any other country. When IWM articles were weighted as a proportion of country population, arable land, or crop production, authors from Switzerland, the Netherlands, New Zealand, Australia, and Canada were most prominent. Considerable evidence exists that research on nonherbicidal weed management strategies as well as strategies that integrate other weed management systems with herbicide use has increased. However, articles published on chemical control still eclipse any other weed management method. The latter emphasis continues to retard the development of weed science as a balanced discipline.

El manejo integrado de malezas (IWM) puede ser definido como un enfoque holístico del manejo de malezas que integra diferentes métodos de control para brindar al cultivo una ventaja sobre las malezas. Esto es practicado globalmente con niveles de adopción que varían de finca a finca. El IWM tiene el potencial de restringir las poblaciones de malezas a niveles manejables, reducir el impacto ambiental de prácticas individuales de manejo de malezas, incrementar la sostenibilidad de los sistemas de cultivos y reducir la presión de selección sobre la resistencia a herbicidas de las malezas. Existe cierto debate acerca de si programas de control de malezas basados simplemente en herbicidas, ahora se han convertido a sistemas de cultivos con IWM más diversos. Dada la rápida evolución y dispersión de malezas resistentes a herbicidas y sus consecuencias negativas, uno podría predecir que la investigación en IWM sería actualmente una actividad prominente entre científicos de malezas. Aquí examinamos el nivel de actividad investigativa dedicada a técnicas de control de malezas y al ensamblaje de técnicas de IWM en sistemas de cultivos, usando como evidencia la publicación de artículos científicos desde 1995 al 1 de Junio, 2012. Autores de los Estados Unidos han publicado más artículos relacionados a malezas y a IWM que autores de cualquier otro país. Cuando se ajustó el peso de los artículos de IWM como proporción de la población del país, tierras arables o producción de cultivos, autores de Suiza, Holanda, Nueva Zelanda, Australia y Canadá fueron los más prominentes. Existe considerable evidencia de que ha incrementado la investigación sobre estrategias no-herbicidas de manejo de malezas y también sobre las estrategias que integran otros sistemas de manejo de malezas con el uso de herbicidas. Sin embargo, los artículos publicados sobre control químico todavía eclipsan cualquier otro método de manejo de malezas. Este último énfasis continúa retrasando el desarrollo de la ciencia de malezas como una disciplina balanceada.

Type
Editorial
Copyright
Copyright © Weed Science Society of America 

References

Altieri, M. A. and Liebman, M. 1988. Weed management in agroecosystems: Ecological approaches. Boca Raton, FL : CRC Press. 354 p.Google Scholar
Anderson, R. L. 2000. A cultural system approach can eliminate herbicide need in semiarid proso milet (Panicum miliaceum). Weed Technol. 14 :602607.CrossRefGoogle Scholar
Anderson, R. L. 2003. An ecological approach to strengthen weed management in the semiarid Great Plains. Adv. Agron. 80 :3362.CrossRefGoogle Scholar
Anderson, R. L. 2005. A multi-tactic approach to manage weed population dynamics in crop rotations. Agron. J. 97 :15791583.Google Scholar
Barton, D. L., Thill, D. C., and Shafi, B. 1992. Integrated wild oat (Avena fatua) management affects spring barley (Hordeum vulgare) yield and economics. Weed Technol. 6 :129135.CrossRefGoogle Scholar
Barrett, S.C.H. 1983. Crop mimicry in weeds. Econ. Bot. 37 :255282.CrossRefGoogle Scholar
Beckie, H. J. 2006. Herbicide-resistant weeds: management tactics and practices. Weed Technol. 20 :793814.CrossRefGoogle Scholar
Beckie, H. J. 2007. Beneficial management practices to combat herbicide-resistant grass weeds in the Northern Great Plains. Weed Technol. 21 :290299.CrossRefGoogle Scholar
Beres, B. L., Harker, K. N., Clayton, G. W., Bremer, E., Blackshaw, R. E., and Graf, R. J. 2010. Weed competitive ability of spring and winter cereals in the Northern Great Plains. Weed Technol. 24 :108116.Google Scholar
Blackshaw, R. E., Harker, K. N., O'Donovan, J. T., Beckie, H. J., and Smith, E. G. 2008. Ongoing development of integrated weed management systems on the Canadian Prairies. Weed Sci. 56 :146–50.CrossRefGoogle Scholar
Blackshaw, R. E., Moyer, J. R., Harker, K. N., and Clayton, G. W. 2005. Integration of agronomic practices and herbicides for sustainable weed management in a zero-till barley field pea rotation. Weed Technol. 19 :190196.CrossRefGoogle Scholar
Blackshaw, R. E., Semach, G., Li, X., O'Donovan, J. T., and Harker, K. N. 1999. An integrated weed management approach to managing foxtail barley (Hordeum jubatum) in conservation tillage systems. Weed Technol. 13 :347353.CrossRefGoogle Scholar
Blasco, L., Aleixos, N., Roger, J. M., Rabatel, G., and Molto, E. 2002. Robotic weed control using machine vision. Biosyst. Eng. 83 :149157.Google Scholar
Bridges, D. C. and Walker, R. H. 1987. Economics of sicklepod (Cassia obtusifolia) management. Weed Sci. 35 :594598.CrossRefGoogle Scholar
Buhler, D. D. 1996. Development of alternative weed management strategies. J. Prod. Agric. 9 :501505.CrossRefGoogle Scholar
Buhler, D. D. 1999. Expanding the context of weed management. J. Crop Prod. 2 :17.Google Scholar
Cardina, J., Mixon, A. C., and Wehtje, G. R. 1987. Low cost weed control systems for close-row peanuts (Arachis hypogaea). Weed Sci. 35 :700703.CrossRefGoogle Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54 :620626.CrossRefGoogle Scholar
Drew, S., Neuhoff, D., and Köpke, U. 2009. Weed suppression ability of three winter wheat varieties at different row spacing under organic farming conditions. Weed Res. 49 :526–33.Google Scholar
Duke, S. O. 2005. Taking stock of herbicide-resistant crops ten years after introduction. Pest Manag. Sci. 61 :211218.Google Scholar
Duke, S. O. 2011. Comparing conventional and biotechnology-based pest management. J. Agric. Food Chem. 59 :57935798.CrossRefGoogle ScholarPubMed
Egan, J. F., Maxwell, B. D., Mortensen, D. A., Ryan, M. R., and Smith, R. G. 2011. 2, 4-dichlorophenoxyacetic acid (2, 4-D)–resistant Q:1 crops and the potential for evolution of 2, 4-D–resistant weeds. Proc. Natl. Acad. Sci. USA 108 E37; published ahead of print March 3, 2011, DOI: .Google Scholar
Ehler, L. E. 2006. Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Manag. Sci. 62 :787789.Google Scholar
Forcella, F. 2012. Air-propelled abrasive grit for postemergence in-row weed control in field corn. Weed Technol. 26 :161164.CrossRefGoogle Scholar
Godel, G. L. 1935. Relations between rate of seeding and yield of cereal crops in competition with weeds. Sci. Agr. 16 :165168.Google Scholar
Hamill, A. S., Holt, J. S., and Mallory-Smith, C. A. 2004. Contributions of weed science to weed control and management. Weed Technol. 18 :15631565.CrossRefGoogle Scholar
Handiseni, M., Brown, J., Zemetra, R., and Mazzola, M. 2011. Herbicidal activity of Brassicaceae seed meal on wild oat (Avena fatua), Italian ryegrass (Lolium multiflorum), redroot pigweed (Amaranthus retroflexus), and prickly lettuce (Lactuca serriola). Weed Technol. 25 :127134.CrossRefGoogle Scholar
Harker, K. N. 2004. My view. Weed Sci. 52 :183184.CrossRefGoogle Scholar
Harker, K. N., Clayton, G. W., Blackshaw, R. E., O'Donovan, J. T., and Stevenson, F. C. 2003a. Seeding rate, herbicide timing and competitive hybrids contribute to integrated weed management in canola (Brassica napus). Can. J. Plant Sci. 83 :433440.Google Scholar
Harker, K. N., Kirkland, K. J., Baron, V. S., and Clayton, G. W. 2003b. Early-harvest barley (Hordeum vulgare) silage reduces wild oat (Avena fatua) densities under zero tillage. Weed Technol. 17 :102110.Google Scholar
Harker, K. N., O'Donovan, J. T., Blackshaw, R. E., Beckie, H. J., Mallory-Smith, C., and Maxwell, B. D. 2012. Our view. Weed Sci. 60 :143144.CrossRefGoogle Scholar
Harker, K. N., O'Donovan, J. T., Irvine, R. B., Turkington, T. K., and Clayton, G. W. 2009. Integrating cropping systems with cultural techniques augments wild oat (Avena fatua) management in barley (Hordeum vulgare). Weed Sci. 57 :326337.CrossRefGoogle Scholar
Heap, I. 2012. International survey of herbicide resistant weeds. URL available: http://www.weedscience.org/In.asp. Accessed: May 23, 2012.Google Scholar
Holm, F. A., Zentner, R. P., Thomas, A. G., Sapsford, K., Légère, A., Gossen, B. D., Olfert, O., and Leeson, J. Y. 2006. Agronomic and economic responses to integrated weed management systems and fungicide in a wheat–canola-barley–pea rotation. Can J. Plant Sci. 86 :12811295.CrossRefGoogle Scholar
Holt, J. S. 1994. Impact of weed control on weeds: new problems and research needs. Weed Technol. 8 :400402.CrossRefGoogle Scholar
Jitsuyama, Y. and Ichikawa, S. 2011. Possible weed establishment control by applying cryogens to fields before snowfalls. Weed Technol. 25 :454458.Google Scholar
Kolb, L. N., Gallandt, E. R., and Mallory, E. B. 2012. Impact of spring wheat planting density, row spacing, and mechanical weed control on yield, grain protein, and economic return in Maine. Weed Sci. 60 :244253.CrossRefGoogle Scholar
Liebman, M. and Dyck, E. 1993. Crop rotation strategies for weed management. Ecol. Applic. 3 :92122.CrossRefGoogle ScholarPubMed
Liebman, M. and Gallandt, E. R. 1997. Many little hammers: ecological management of crop-weed interactions. Pages 291343 in Jackson, L. E., ed. Ecology in Agriculture. San Diego, CA : Academic.CrossRefGoogle Scholar
Liebman, M., Mohler, C. L., and Staver, C. P. 2001. Ecological management of agricultural weeds. Cambridge, UK : Cambridge University Press. 532 p.Google Scholar
Llewellyn, R. S., Lindner, R. K., Pannell, D. J., and Powles, S. B. 2004. Grain grower perceptions and use of integrated weed management. Aust. J. Exp. Agric. 44 :9931001.CrossRefGoogle Scholar
Mahajan, G. and Chauhan, B. S. 2011. Effects of planting pattern and cultivar on weed and crop growth in aerobic rice system. Weed Technol. 25 :521525.CrossRefGoogle Scholar
Maxwell, B. D. and Luschei, E. 2004. The ecology of crop-weed interactions: towards a more complete model of weed communities in agroecosystems. J. Crop Improv. 11 :137151.CrossRefGoogle Scholar
Maxwell, B. D. and O'Donovan, J. T. 2007. Understanding weed–crop interactions to manage weed problems. Pages 1733 in Upadhyaya, M. K. and Blackshaw, R. R., eds. Nonchemical Weed Management: Principles, Concepts and Technology. Oxfordshire, UK : CAB International.CrossRefGoogle Scholar
Melander, B., Heisel, T., and Jørgensen, M. H. 2002. Aspects of steaming the soil to reduce weed seedling emergence. Pages 236237 in Proceedings of the 12th EWRS Symposium. Wageningen, Papendal, the Netherlands : European Weed Research Society.Google Scholar
Melander, B., Rasmussen, I. A., and Bàrberi, P. 2005. Integrating physical and cultural methods of weed control—examples from European research. Weed Sci. 53 :369381.CrossRefGoogle Scholar
Mortensen, D. A., Bastiaans, L., and Sattin, M. 2000. The role of ecology in the development of weed management systems: an outlook. Weed Res. 40 :4962.CrossRefGoogle Scholar
Navas, M. L. 1991. Using plant population biology in weed research: a strategy to improve weed management. Weed Res. 31 :171179.Google Scholar
Nelson, A. G., Pswarayi, A., Quideau, S., Frick, B., and Spaner, D. 2012. Yield and weed suppression of crop mixtures in organic and conventional systems of the western Canadian prairie. Agron. J. 104 :756762.Google Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol. 22 :108113.CrossRefGoogle Scholar
[NRC] National Research Council. Proceedings of a conference on the destruction of weeds by means of chemicals. Oct 4. 1929. Edmonton, AB, Canada. 168 p.Google Scholar
O'Donovan, J. T. 1996. Computerised decision support systems: aids to rational and sustainable weed management. Can. J. Plant Sci. 76 :37.CrossRefGoogle Scholar
O'Donovan, J. T., Blackshaw, R. E., Harker, K. N., and Clayton, G. W. 2006. Wheat seeding rate influences herbicide performance in wild oat (Avena fatua L.). Agron. J. 98 :815822.Google Scholar
O'Donovan, J. T., Blackshaw, R. E., Harker, K. N., Clayton, G. W., Moyer, J. R., Dosdall, L. M., Maurice, D. C., and Turkington, T. K. 2007. Integrated approaches to managing weeds in spring-sown crops in western Canada. Crop Protect. 26 :390398.CrossRefGoogle Scholar
Powles, S. B. and Matthews, J. M. 1992. Multiple herbicide resistance in annual ryegrass (Lolium rigidum): a driving force for the adoption of integrated weed management strategies. Pages 7587 in Denholm, I., Devonshire, A. L., and Hollomon, D. W., eds. Resistance 91: Achievements and Developments in Combating Pesticide Resistance. New York : Elsevier.Google Scholar
Powles, S. B. and Yu, Q. 2010. Evolution in action: plant resistance to herbicides. Ann. Rev. Plant Biol. 61 :317347.CrossRefGoogle ScholarPubMed
Prokopy, R. J. 2003. Two decades of bottom-up, ecologically based pest management in a small commercial apple orchard in Massachusetts. Agric. Ecosyst. Environ. 94 :299309.CrossRefGoogle Scholar
Radosevich, S. R. and Ghersa, C. M. 1992. Weeds, crops and herbicides: a modern-day “neckriddle”. Weed Technol. 6 :788795.CrossRefGoogle Scholar
Roush, M. L., Radosevich, S. R., and Maxwell, B. D. 1990. Future outlook for herbicide resistance research. Weed Technol. 4 :208214.CrossRefGoogle Scholar
Shaw, W. C. 1982. Integrated weed management systems technology for pest management. Weed Sci. (Suppl.) 30 :212.Google Scholar
Shirtliffe, S. J. and Entz, M. H. 2005. Chaff collection reduces seed dispersal of wild oat (Avena fatua) by a combine harvester. Weed Sci. 53 :465470.CrossRefGoogle Scholar
Smith, R. G., Mortensen, D. A., and Ryan, M. R. 2009. A new hypothesis for the functional role of diversity in mediating resource pools and weed-crop competition in agroecosytems. Weed Res. 50 :3748.CrossRefGoogle Scholar
Steckel, L. E., Main, C. L., Ellis, A. T., and Mueller, T. C. 2008. Palmer amaranth (Amaranthus palmeri) in Tennessee has low level glyphosate resistance. Weed Technol. 22 :119123.CrossRefGoogle Scholar
Sutherland, S.J.M. 1991. Developing integrated weed management systems. Pages 4759 in Blackshaw, R. E. and Hall, L. M., eds. Integrated Weed Management: Explore the Potential. Sainte-Anne-de-Bellevue, QC : Expert Committee on Weeds.Google Scholar
Swanton, C. J., Mahoney, K. J., Chandler, K., and Gulden, R. H. 2008. Integrated weed management: knowledge-based weed management systems. Weed Sci. 56 :168172.CrossRefGoogle Scholar
Swanton, C. J. and Murphy, S. D. 1996. Weed science beyond the weeds: the role of integrated weed management (IWM) in agroecosystem health. Weed Sci. 4 :437445.Google Scholar
Swanton, C. J. and Weise, S. F. 1991. Integrated weed management: the rationale and approach. Weed Technol. 5 :657663.CrossRefGoogle Scholar
Thill, D. C., Lish, J. M., Callihan, R. H., and Bechinski, E. J. 1991. Integrated weed management—a component of integrated pest management: a critical review. Weed Technol. 5 :648656.CrossRefGoogle Scholar
Thomas, A. G., Légère, A., Leeson, J. Y., Stevenson, F. C., and Holm, F. A. 2010. Weed community response to contrasting integrated weed management systems for cool dryland annual crops. Weed Res. 51 :4150.CrossRefGoogle Scholar
Walker, R. H. and Buchanan, G. A. 1982. Crop manipulation in integrated weed management systems. Weed Sci. (Suppl.) 30 :1724.CrossRefGoogle Scholar
Walsh, M. J., Harrington, R. B., and Powles, S. B. 2012. Harrington seed destructor: a new nonchemical weed control tool for global grain crops. Crop Sci. 52 :13431347.CrossRefGoogle Scholar
Wang, L., Gruber, S., and Claupein, W. 2012. Effects of woodchip mulch and barley intercropping on weeds in lentil crops. Weed Res. 52 :161168.CrossRefGoogle Scholar
Westerman, P. R., Liebman, M., Menalled, F. D., Heggenstaller, A. H., Hartzler, R. G., and Dixon, P. M. 2005. Are many little hammers effective? Velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems. Weed Sci. 53 :382392.CrossRefGoogle Scholar
Wyse, D. L. 1992. Future of weed science research. Weed Technol. 6 :162165.Google Scholar
Xue, Q. and Stougaard, R. N. 2006. Effects of spring wheat seed size and reduced rates of tralkoxydim on wild oat control, wheat yield, and economic returns. Weed Technol. 20 :472477.CrossRefGoogle Scholar
Young, F. L., Ball, D. A., Thill, D. C., Alldredge, R., Ogg, A. G. Jr., and Seefeldt, S. S. 2010. Integrated weed management systems identified for jointed goatgrass (Aegilops cylindrica) in the Pacific Northwest. Weed Technol. 24 :430439.CrossRefGoogle Scholar
Zimdahl, R. L. 1994. Who are you and where are you going? Weed Technol. 8 :388391.Google Scholar
You have Access
145
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Recent Weed Control, Weed Management, and Integrated Weed Management
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Recent Weed Control, Weed Management, and Integrated Weed Management
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Recent Weed Control, Weed Management, and Integrated Weed Management
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *