Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T11:59:19.064Z Has data issue: false hasContentIssue false

Response of Acetolactate Synthase–Resistant Grain Sorghum to Nicosulfuron Plus Rimsulfuron

Published online by Cambridge University Press:  20 January 2017

D. Shane Hennigh
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Kassim Al-Khatib*
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Mitchell R. Tuinstra
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
*
Corresponding author's E-mail: khatib@kalkhatib@ucdavis.edu.

Abstract

The lack of POST herbicides to control grasses in grain sorghum prompted researchers to develop acetolactate synthase (ALS)–resistant grain sorghum. Field experiments were conducted to evaluate the differential response of ALS-resistant grain sorghum to POST application of nicosulfuron + rimsulfuron applied at three growth stages. ALS-resistant grain sorghum was treated with 0, 13 + 7, 26 + 13, 39 + 20, 52 + 26, 65 + 33, 78 + 39, and 91 + 46 g ai ha−1 of nicosulfuron + rimsulfuron when plants were at the three- to five-leaf, seven- to nine-leaf, or 11- to 13-leaf stage. In general, as nicosulfuron + rimsulfuron rates increased, visible injury increased at the three- to five-leaf and seven- to nine-leaf stages. Injury was greatest 1 wk after treatment for the three- to five-leaf and seven- to nine-leaf stages across all ratings, and plants then began to recover. No injury was observed at any rating time for the 11- to 13-leaf stage. Plant height and sorghum grain yield were reduced as nicosulfuron + rimsulfuron rates increased when applied at the three- to five-leaf stage. However, nicosulfuron + rimsulfuron applied at the seven- to nine-leaf and 11- to 13-leaf stages did not decrease sorghum yield. This research indicated that nicosulfuron + rimsulfuron application at the three- to five-leaf stage injured ALS-resistant grain sorghum; however, application at the seven- to nine-leaf or 11- to 13-leaf stages did not result in grain yield reduction.

La falta de herbicidas POST para el control de hierbas en el cultivo del Sorghum bicolor (L.) Moench., motivó a los cultivadores para desarrollar una variedad resistente al acetolactate synthase (ALS). Se llevaron al cabo experimentos de campo para evaluar la respuesta diferencial del Sorghum bicolor (L.) Moench. resistente a ALS a la aplicación POST de nicosulfuron + rimsulfuron aplicados en tres etapas de crecimiento. El Sorghum bicolor (L.) Moench., resistente a ALS fue tratado con 0, 13 + 7, 26 + 13, 39 + 20, 52 + 26, 65 + 33, 78 + 39 y 91 + 46 g ia ha1 de nicosulfuron + rimsulfuron cuando las plantas estaban en etapas de tres a cinco, de siete a nueve ó de 11 a 13 hojas. En general, como las dosis de nicosulfuron + rimsulfuron se incrementaron, el daño visible aumentó en las etapas de 3 a 5 y de 7 a 9 hojas de crecimiento. El daño mayor ocurrió 1 semana después del tratamiento en las etapas de 3 a 5 y de 7 a 9 hojas a todas las dosis y después las plantas se empezaron a recuperar. No se observó daño en la etapa de 11 a 13 hojas. La altura de la planta y el rendimiento del Sorghum bicolor (L.) Moench., se redujeron al incrementar las dosis de nicosulfuron + rimsulfuron aplicadas en las etapas de 3 a 5 hojas. Sin embargo, no se redujo el rendimiento, cuando se aplicó el nicosulfuron +rimsulfuron en las etapas de 7 a 9 y de 11 a 13 hojas. Esta investigación indicó que la aplicación de nicosulfuron + rimsulfuron en la etapa de 3 a 5 hojas dañó el Sorghum bicolor (L.) Moench., resistente al ALS. Sin embargo, la aplicación en la etapa de 7 a 9 ó de 11 a 13 hojas no resultó en una disminución en el rendimiento del grano.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K. and Peterson, D. E. 1999. Soybean (Glycine max) response to simulated drift from selected sulfonylurea herbicides, dicamba, glyphosate, and glufosinate. Weed Technol. 13:264270.Google Scholar
Al-Khatib, K. and Tamhane, A. 1999. Dry pea (Pisum sativum) response to low rates of selected foliar- and soil-applied sulfonylurea and growth regulator herbicides. Weed Technol. 13:753758.Google Scholar
Anonymous, 2009a. FAOSTAT (crops). http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#anco. Accessed: July 21, 2009.Google Scholar
Bennett, W. F., Tucker, B. B., and Maunder, A. B. 1990. Modern Grain Sorghum Production. Ames, IA: Iowa State University Press. Pp. 327.Google Scholar
Bridges, D. C. 1994. Impact of weeds on human endeavors. Weed Technol. 8:392395.CrossRefGoogle Scholar
Brown, D. W., Al-Khatib, K., Regehr, D. L., Stahlman, P. W., and Loughin, T. M. 2004. Safening grain sorghum injury from metsulfuron with growth regulator herbicides. Weed Sci. 52:319325.CrossRefGoogle Scholar
Burnside, O. C. and Wicks, G. A. 1969. Influence of weed competition on sorghum growth. Weed Sci. 17:332334.Google Scholar
Chachalis, D., Reddy, K. N., Elmore, D. D., and Steele, M. L. 2001. Herbicide efficacy, leaf structure, and spray droplet contact angle among Ipomoea species and small flower morningglory. Weed Sci. 49:628634.CrossRefGoogle Scholar
Coetzer, E., Al-Khatib, K., and Peterson, D. E. 2002. Glufosinate efficacy on Amaranthus species In glufosinate-resistant soybean (Glycine max). Weed Technol. 16:326331.Google Scholar
Damalas, C. A. and Eleftherohorinos, I. G. 2001. Dicamba and atrazine antagonism on sulfonylurea herbicides used for johnsongrass (Sorghum halepense) control in corn (Zea mays). Weed Technol. 15:6267.Google Scholar
Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Physiology of Herbicide Action. Englewood Cliffs, NJ: Prentice Hall. Pp. 2952, 67–94, and 274–278.Google Scholar
Dobbels, A. F. and Kapusta, G. 1993. Postemergence weed control in corn (Zea mays) with nicosulfuron combinations. Weed Technol. 7:844850.CrossRefGoogle Scholar
Durner, J., Gailus, V., and Boger, P. 1990. New aspects of inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin. Plant Physiol. 95:11441149.Google Scholar
Feltner, K. C., Hurst, H. R., and Anderson, L. E. 1969a. Yellow foxtail competition in grain sorghum. Weed Sci. 17:211213.CrossRefGoogle Scholar
Feltner, K. C., Hurst, H. R., and Anderson, L. E. 1969b. Tall waterhemp competition in grain sorghum. Weed Sci. 17:214216.CrossRefGoogle Scholar
Gressel, J. 2002. Molecular Biology of Weed Control. New York: Taylor & Francis. Pp. 155160.CrossRefGoogle Scholar
Heap, I. 2008. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: April 10, 2008.Google Scholar
Krausz, R. F., Kapusta, G., and Matthews, J. L. 1996. Control of annual weeds with glyphosate. Weed Technol. 10:957962.CrossRefGoogle Scholar
Kuehl, R. O. 2000. Design of Experiments: Statistical Principles of Research Design and Analysis. 2nd ed. Pacific Grove, CA: Duxbury. Pp. 292298.Google Scholar
LaRossa, R. A. and Schloss, J. V. 1984. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium . J. Biol. Chem. 259:87538757.CrossRefGoogle ScholarPubMed
Lee, S. D. and Oliver, L. R. 1982. Efficacy of acifluorfen on broadleaf weeds. Times and methods for application. Weed Sci. 30:520526.CrossRefGoogle Scholar
Post-Beittenmiller, D. 1996. Biochemistry and molecular biology of wax production in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:405430.Google Scholar
Ramsey, F. L. and Schafer, D. W. 1997. The Statistical Sleuth: A Course in Methods of Data Analysis. Volume 29. Belmont, CA: Duxbury. Pp. 566571.Google Scholar
Ray, T. B. 1984. Site of action of chlorsulfuron, inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75:827831.CrossRefGoogle ScholarPubMed
Regehr, D. L., Peterson, D. E., Fick, W. H., Stahlman, P. W., and Wolf, R. E. 2008. 2008 Chemical Weed Control for Field Crops, Pastures, Rangeland, and Noncropland. Report of Progress 994. Manhattan, KS: Kansas State University.Google Scholar
Sanyal, D., Bhowmik, P. C., and Reddy, K. N. 2006. Influence of leaf surface micomorphology, wax content, and surfactant on primisulfuron droplet spread on barnyardgrass (Echinochloa crus-galli) and green foxtail (Setaria viridis). Weed Sci. 54:627633.Google Scholar
Schloss, J. V., Ciskanik, L. M., and Van Dyk, D. E. 1988. Origin of the herbicide binding site of acetolactate synthase. Nature 331:360362.Google Scholar
Schuster, C. L., Al-Khatib, K., and Dille, J. A. 2007. Mechanism of antagonism of mesotrione on sulfonylurea herbicides. Weed Sci. 55:429434.Google Scholar
Smith, B. S., Murry, D. S., Green, J. D., Wanyahaya, W. M., and Weeks, D. L. 1990. Interference of three annual grasses with grain sorghum (Sorghum bicolor). Weed Technol. 4:245249.Google Scholar
Stahlman, P. W. and Wicks, G. A. 2000. Weeds and their control in sorghum. Pages 535590. In Smith, C. W. and Fredricksen, R. A. Sorghum: Origin, History, Technology, and Production. New York: John Wiley & Sons.Google Scholar
Tuinstra, M. R. and Al-Khatib, K. 2007. New herbicide tolerance traits in sorghum. Page. 14. in. Proceedings of the 2007 Corn, Sorghum, and Soybean Seed Research Conference and Seed Exposition. Chicago, IL American Seed Trade Association, Alexandria, VA.Google Scholar
Tuinstra, M. R., Soumana, S., Al-Khatib, K., et al. 2009. Efficacy of herbicide seed treatments for controlling Striga infestation of sorghum. Crop Sci. 49:923929.CrossRefGoogle Scholar
Wanamarta, G. and Penner, D. 1989. Foliar absorption of herbicides. Rev. Weed Sci. 4:215231.Google Scholar
Westwood, J. H., Whaley, C. M., and Wilson, H. M. 2007. A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Sci. 55:8390.Google Scholar
Zimdahl, R. L. 1999. Harmful aspects of weeds. Pages. 1340. in. Fundamentals of Weed Science. San Diego, CA: Academic Press.Google Scholar