Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T12:01:58.982Z Has data issue: false hasContentIssue false

Soybean Response to Dicamba Applied at Vegetative and Reproductive Growth Stages

Published online by Cambridge University Press:  20 January 2017

James L. Griffin*
Affiliation:
School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
Matthew J. Bauerle
Affiliation:
School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
Daniel O. Stephenson III
Affiliation:
Dean Lee Research and Extension Center, Alexandria, LA 71302
Donnie K. Miller
Affiliation:
Northeast Research Station, St. Joseph, LA 71366
Joseph M. Boudreaux
Affiliation:
School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
*
Corresponding author's Email: jgriffin@agcenter.lsu.edu

Abstract

Availability of soybean with dicamba resistance will provide an alternative weed management option, but risk of dicamba injury to sensitive crops from off-target movement and spray tank contamination is of concern. Research conducted at multiple locations and years evaluated soybean injury and yield response to POST applications of the diglycolamine salt of dicamba. Dicamba was applied at the two to three trifoliate stage (V3/V4) at 4.4, 8.8, 17.5, 35, 70, 140, and 280 g ae ha−1 (1/128 to 1/2 of the recommended use rate of 560 g ae ha−1). Soybean injury 7 d after application was 20% following dicamba at 4.4 g ha−1 and increased to 89% at 280 g ha−1. At 14 d after application, injury for the same rates increased from 39 to 97%. In a separate study, dicamba was applied at first flower (R1) at 1.1, 2.2, 4.4, 8.8, 17.5, 35, and 70 g ha−1 (1/512 to 1/8 of use rate). Soybean injury 7 d following dicamba application was 19% at 1.1 g ha−1 and increased to 64% at 70 g ha−1. For the same rates of dicamba, injury from 7 to 14 d after application increased no more than 4 percentage points. For dicamba rates in common for the timing studies, soybean injury 14 d after treatment was greatest for application at V3/V4, but the negative effect on mature soybean height and yield was greatest for application at R1. For dicamba at 4.4 g ha−1 (1/128th of use rate), soybean yield was reduced 4% when applied at V3/V4 and 10% when applied at R1. For 17.5 g ha−1 dicamba (1/32 of use rate), yield was reduced 15% at V3/V4 and 36% at R1. Based on yield reductions for 4.4 and 17.5 g ha−1 dicamba, soybean at flowering was around 2.5 times more sensitive compared with vegetative exposure.

La disponibilidad de soya con resistencia a dicamba brindará una opción de manejo de malezas alternativa, pero el riesgo de daño con dicamba en cultivos sensibles debido a deriva y a contaminación en tanques de aplicación es preocupante. Se evaluó el daño en la soya y la respuesta en rendimiento a aplicaciones POST de la sal diglycolamine de dicamba mediante investigaciones realizadas en múltiples localidades y años. Dicamba fue aplicado en el estado de dos y tres hojas trifoliadas (V3/V4) a 4.4, 8.8, 17.5, 35, 70, 140, y 280 g ae ha−1 (de 1/128 a 1/2 de la dosis recomendada de 560 g ae ha−1). El daño en la soya 7 d después de la aplicación fue 20% con dicamba a 4.4 g ha−1 e incrementó a 89% a 280 g ha−1. A 14 d después de la aplicación, el daño con las mismas dosis estuvo entre 39 y 97%. En un estudio aparte, se aplicó dicamba en el estado de primera flor (R1) a 1.1, 2.2, 4.4, 8.8, 17.5, 35, y 70 g ha−1 (de 1/512 a 1/8 de la dosis recomendada). El daño de la soya 7 d después de la aplicación de dicamba fue 19% a 1.1 g ha−1, el cual incrementó a 64% a 70 g ha−1. Para las mismas dosis de dicamba, el daño de 7 a 14 d después de la aplicación incrementó en no más de 4 puntos porcentuales. Para las dosis de dicamba en común para los estudios de momento de aplicación, el daño de la soya a 14 d después del tratamiento fue mayor para la aplicación en V3/V4, pero el efecto negativo en la altura de soya en la madurez y en el rendimiento fue mayor en la aplicación en R1. Para dicamba a 4.4 g ha−1 (1/128 de la dosis recomendada), el rendimiento de la soya se redujo 4% cuando se aplicó en V3/V4 y 10% cuando se aplicó en R1. Para 17.5 g ha−1 de dicamba (1/32 de la dosis recomendada), el rendimiento se redujo 15% en V3/V4 y 36% en R1. Con base en las reducciones en rendimiento para 4.4 y 17.5 g ha−1 de dicamba, la soya en el estado de floración fue aproximadamente 2.5 veces más sensible en comparación con el estado vegetativo.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K. and Peterson, D. 1999. Soybean (Glycine max) response to simulated drift from selected sulfonylurea herbicides, dicamba, glyphosate, and glufosinate. Weed Technol. 13:264270.Google Scholar
Andersen, S. M., Clay, S. A., Wrage, L. J., and Matthees, D. 2004. Soybean foliage residues of dicamba and 2,4-D and correlations to application rates and yield. Agron. J. 96:750760.Google Scholar
Auch, D. E. and Arnold, W. E. 1978. Dicamba use and injury on soybeans (Glycine max) in South Dakota. Weed Sci. 26:471475.Google Scholar
Behrens, R. and Lueschen, W. E. 1979. Dicamba volatility. Weed Sci. 27:486493.Google Scholar
Carmer, S. G., Nyquist, W. E., and Walker, W. M. 1989. Least significant differences for combined analyses of experiments with two- and three- factor treatment designs. Agron. J. 81:665672.Google Scholar
Derksen, D. A. 1989. Dicamba, chlorsulfuron, and clopyralid as sprayer contaminants on sunflower (Helianthus annuus), mustard (Brassica juncea), and Lentil (Lens culinaris), respectively. Weed Sci. 37:616621.Google Scholar
Egan, J. F. and Mortensen, D. A. 2012. Quantifying vapor drift of dicamba herbicides applied to soybean. Environ. Toxicol. Chem. 31:10231031.CrossRefGoogle ScholarPubMed
Ellis, J. M., Griffin, J. L., and Jones, C. A. 2002. Effect of carrier volume on corn (Zea mays) and soybean (Glycine max) response to simulated drift of glyphosate and glufosinate. Weed Technol. 16:587592.CrossRefGoogle Scholar
Hatterman-Valenti, H., Owen, M. D. K., and Christians, N. E. 1995. Comparison of spray drift during postemergence herbicide applications to turfgrass. Weed Technol. 9:321325.CrossRefGoogle Scholar
Heap, I. 2012. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/in.asp. Accessed January 15, 2013.Google Scholar
Johnson, V. A., Fisher, L. R., Jordan, D. L., Edmisten, K. E., Stewart, A. M., and York, A. C. 2012. Cotton, peanut, and soybean response to sublethal rates of dicamba, glufosinate, and 2,4-D. Weed Technol. 26:195206.CrossRefGoogle Scholar
Kelley, K. B., Wax, L. M., Hager, A. G., and Riechers, D. E. 2005. Soybean response to plant growth regulator herbicides is affected by other postemergence herbicides. Weed Sci. 53:101112.Google Scholar
Maybank, J., Yoshida, K., and Grover, R. 1978. Spray drift from agricultural pesticide applications. Air Pollut. Control Assoc. J. 28:10091014.Google Scholar
Roider, C. A., Griffin, J. L., Harrison, S. A., and Jones, C. A. 2008. Carrier volume affects wheat response to simulated glyphosate drift. Weed Technol. 22:453458.Google Scholar
Seifert-Higgins, S. and Arnevik, C. L. 2012. Development of weed management recommendations for dicamba tolerant soybeans. Proc. So. Weed Sci. Soc. 65:266.Google Scholar
Wax, L. M., Knuth, L. A., and Slife, F. W. 1969. Response of soybeans to 2,4–D, dicamba, and picloram. Weed Sci. 17:388393.Google Scholar
Weidenhamer, J. D., Triplett, G. B. Jr., and Sobotka, F. E. 1989. Dicamba injury to soybean. Agron. J. 81:637643.Google Scholar
Wolf, T. M., Grover, R., Wallace, K., Shewchuk, S. R., and Maybank, J. 1992. Effect of protective shields on drift and deposition characteristics of field sprayers. Pages 2952 in The Role of Application Factors in the Effectiveness and Drift of Herbicides. Regina, SK Agric. Canada,Google Scholar