Skip to main content Accessibility help
×
Home

Spray mixture pH as affected by dicamba, glyphosate, and spray additives

  • Thomas C Mueller (a1) and Lawrence E Steckel (a2)

Abstract

The pH of spray mixtures is an important attribute that affects dicamba volatility under field conditions. This report examined the effect of different components added to water sources that ranged in initial pH from 4.6 to 8.4. Commercial products were used, which include formulations of dicamba, glyphosate, the drift retardant Intact, ammonium sulfate (AMS), and several pH modifiers. Adding BAPMA salt of dicamba always increased the mixture pH, whereas diglycolamine + VaporGrip® (DGA+VG) had a mixed response. The addition of AMS decreased pH slightly (usually <0.5 pH unit), whereas the addition of potassium salt of glyphosate (GLY-K) always decreased the measured pH (from 1.0 to 2.1 pH units). A substantial pH change could have profound effects on dicamba volatility. Moreover, the 1.0 to 2.1 pH units would not be consistent with the registrant’s report stating that GLY-K decreased mixtures with DGA+VG pH by only 0.2 to 0.3 units. The drift retardant Intact had no effect on pH. There was no difference in resultant pH when comparing K salt and isopropylamine (IPA) salts of glyphosate. Spray carrier volume, ranging from 94 to 187 L ha–1, had only a minor effect on measured pH after the addition of various spray components. The addition of selected pH modifiers raised the pH above 5.0, which is a critical value according to the latest dicamba application labels. The order of mixing of various pH modifiers, including AMS, had only limited effect on measured spray solution pH.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Spray mixture pH as affected by dicamba, glyphosate, and spray additives
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Spray mixture pH as affected by dicamba, glyphosate, and spray additives
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Spray mixture pH as affected by dicamba, glyphosate, and spray additives
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-ncsa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

Author for correspondence: Tom Mueller, Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996. Email: tmueller@utk.edu

References

Hide All
Anonymous (2018a) XtendiMax label. http://www.cdms.net. Accessed: March 24, 2019
Anonymous (2018b) Engenia label. http://www.cdms.net. Accessed: March 24, 2019
Anonymous (2018c) Clarity label. http:///www.cdms.net. Accessed: March 24, 2019
Bish, MD, Bradley, KW (2017) Survey of Missouri pesticide applicator practices, knowledge, and perceptions. Weed Technol 31:165177
Blouin, DC, Webster, EP, Bond, JA (2011) On the analysis of combined experiments. Weed Technol 25:165169
Bradley, KW (2017) How to proceed in 2018: a university perspective. Page 246 in Kruger, G, ed. Proceedings of the 72nd Annual Meeting of the North Central Weed Science Society, December 4–7, 2017. St. Louis, MO: North Central Weed Science Society
Carmer, SG, Nyquist, WE, Walker, WM (1989) Least significant differences in combined analyses of experiments with two- or three-factor treatment designs. Agron J 81:655672
Carrizosa, MJ, Koskinen, WC, Hermosin, MC, Cornejo, J (2001) Dicamba and sorption desorption on organo-clays. Applied Clay Sci 18:223231
de Carvalho, SJP, Damin, V, Dias, ACR, Yamasaki, GM, Christoffoleti, PJ (2009) Efficacy and pH of glyphosate spray solutions after the addition of nitrogen fertilizers and the use of CO2 pressurized sprayer. Pesquisa Agropecuaria Brasileira 44:569575
Hager, A (2017) Observations of Midwest weed extension scientists. Page 240 in Kruger, G, ed. Proceedings of the 72nd Annual Meeting of the North Central Weed Science Society, December 4–7, 2017. St. Louis, MO: North Central Weed Science Society
Hemminghaus, JW, MacInnes, A, Zhang, J, inventors; Monsanto Technology LLC, assignee (2017) August 29. Low volatility herbicidal compositions. US Patent 9,743,664 B2
Huston, PL, Pignatello, JJ (1999) Degradation of selected pesticide active ingredients in commercial formulation in water by photo assisted Fenton reaction. Water Res 33:12381246
Jordan, DL, York, AC, Griffin, JL, Clay, PA, Vidrine, PR, Reynolds, DB (1997) Influence of application variables on efficacy of glyphosate. Weed Technol 11:354362
MacInnes, A (2017) Vaporgrip technology: how it works and its benefits. Abstracts of the Weed Science Society of America 45:160
McIntosh (1983) Analysis of combined experiments. Agron J 75:153155
McMullan, PM (2000) Utility adjuvants. Weed Technol 14:792797
Mueller, TC, Main, CL, Thompson, MA, Steckel, LE (2006) Comparison of glyphosate salts (isopropylamine, diammonium, and potassium) and calcium and magnesium concentrations on the control of various weeds. Weed Technol 20:164171
Mueller, TC, Steckel, LE (2019) Dicamba volatility in humidomes as affected by temperature and herbicide treatment. Weed Technol 33, https://doi.org/10.1017/wet.2019.36
Royal, S, Lunsford, JN, Greeson, CV (1999) Performance of Touchdown5 alone and tank mixed in Pioneer brand soybeans. Proc South Weed Sci Soc 52:44
Shaner, DL (2014) Dicamba. Pages 139141 in Shaner, DL, ed., Herbicide Handbook, 10th edn. Lawence, KS: Weed Science Society of America
Steckel, L, Ducar, J, York, A, Scott, B, Barber, T, Bradley, K (2017) Off-target dicamba in Tennessee: an extension perspective. Pages 53, 165 in Kruger, G, ed., Proceedings of the 72nd Annual Meeting of the North Central Weed Science Society, December 4–7, 2017. St. Louis, MO: North Central Weed Science Society
Thelen, KD, Jackson, EP, Penner, D (1995) The basis for the hard-water antagonism of glyphosate activity. Weed Sci 43:541548
Werle, R, Oliverira, MC, Jhala, AJ, Procotor, CA, Rees, J, Klein, R (2018) Survey of Nebraska farmer’s adoption of dicamba-resistant soybean technology and dicamba off-target movement. Weed Technol 32:754761
Witten, T. (2019) Understanding spray solution pH with Xtendimax with VaporGrip Technology. https://monsanto.com/app/uploads/2019/03/Understanding-Spray-Solution-pH-with-XtendiMax.pdf (Available from the author).

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed