Skip to main content
×
×
Home

A Statewide Survey of Stakeholders to Assess the Problem Weeds and Weed Management Practices in Nebraska

  • Debalin Sarangi (a1) and Amit J. Jhala (a2)
Abstract

Stakeholders were surveyed across Nebraska to identify the problem weeds and assess common weed management practices. A total of 425 responses were returned across four Nebraska extension districts (Northeast, Panhandle, Southeast, and West Central). Collectively, 61.2% of total farmed or scouted areas in Nebraska were under no-till production, and corn and soybean were the major crops (82.3% of total farmed or scouted area). Common waterhemp, horseweed, and kochia were the most problematic weeds statewide. Widespread occurrence of glyphosate-resistant (GR) weeds such as common waterhemp, horseweed, kochia, and Palmer amaranth were a serious problem in GR crop production. Additionally, 60% of growers in Nebraska reported the presence of at least one GR weed species on their farms. The most commonly used preplant burndown herbicides were 2,4-D and glyphosate, followed by saflufenacil and dicamba. In Nebraska, 74% and 59% of corn and soybean growers, respectively, were using PRE herbicides; however, more than 80% of growers were using POST herbicides for in-crop weed management. Atrazine alone or in premix or tank mix with mesotrione, S-metolachlor, or acetochlor were the most widely applied PRE herbicides in corn and grain sorghum, whereas the most commonly used PRE herbicides in soybean were the inhibitors of acetolactate synthase (ALS) and protoporphyrinogen oxidase (PPO). Glyphosate was the most frequent choice of the survey respondents as a POST herbicide in GR corn and soybean; 2,4-D was the most commonly used POST herbicide in grain sorghum and wheat. In Nebraska, only 5.2% of total crop area was planted with glufosinate-resistant crops. Most of the respondents (89%) were aware of the new multiple herbicide–resistant crops, and 80% of them listed physical drift and volatility of the auxinic herbicides as their primary concern. Forty-eight percent of survey respondents identified herbicide-resistant weed management as their primary research and extension priority.

Copyright
Corresponding author
Author for correspondence: Amit J. Jhala, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583. (Email: Amit.Jhala@unl.edu)
References
Hide All
Bagavathiannan, MV, Norsworthy, JK (2012) Late-season seed production in arable weed communities: management implications. Weed Sci 60:325334
Benbrook, CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28:3. https://doi.org/10.1186/s12302-016-0070-0
Bradley, K (2017a) Ag Industry, Do We Have a Problem Yet. Integrated Pest & Crop Management. https://ipm.missouri.edu/IPCM/2017/7/Ag_Industry_Do_we_have_a_problem_yet/. Accessed: October 5, 2017
Bradley, K (2017b) Update on dicamba-related injury investigations and estimates of injured soybean acreage. Integrated Pest & Crop Management. https://ipm.missouri.edu/IPCM/2017/8/Update-on-Dicamba-related-Injury-Investigations-and-Estimates-of-Injured-Soybean-Acreage/. Accessed: October 5, 2017
Buhler, DD (1995) Influence of tillage systems on weed population dynamics and management in corn and soybean in the central USA. Crop Sci 35:12471258
Bultena, GL, Hoiberg, EO (1983) Factors affecting farmers’ adoption of conservation tillage. J Soil Water Conserv 38:281284
Chahal, PS, Jhala, AJ (2015) Herbicide programs for control of glyphosate-resistant volunteer corn in glufosinate-resistant soybean. Weed Technol 29:431443
Chahal, PS, Jhala, AJ (2016) Impact of glyphosate-resistant volunteer corn (Zea mays L.) density, control timing, and late-season emergence on yield of glyphosate-resistant soybean (Glycine max L.). Crop Prot 81:3842
Chahal, PS, Varanasi, VK, Jugulam, M, Jhala, AJ (2017) Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Nebraska: confirmation, EPSPS gene amplification, and response to POST corn and soybean herbicides. Weed Technol 31:8093
Culpepper, AS (2006) Glyphosate-induced weed shifts. Weed Technol 20:277281
D’Emden, FH, Llewellyn, RS, Burton, MP (2008) Factors influencing adoption of conservation tillage in Australian cropping regions. Aust J Agric Resour Econ 52:169182
Dille, JA, Stahlman, PW, Du, J, Geier, PW, Riffel, JD, Currie, RS, Wilson, RG, Sbatella, GM, Westra, P, Kniss, AR, Moechnig, MJ, Cole, RM (2017) Kochia (Kochia scoparia) emergence profiles and seed persistence across the central Great Plains. Weed Sci 65:614625
Duke, SO (2012) Why have no new herbicide modes of action appeared in recent years? Pest Manag Sci 68:505512
Fernandez-Cornejo, J, Nehring, R, Osteen, C, Wechsler, S, Martin, A, Vialou, A (2014) Pesticide use in U.S. agriculture: 21 selected crops, 1960–2008. Washington, DC: US Department of Agriculture–Economic Research Service EIB 124. 11 p
Fite, GC (1980) Mechanization of cotton production since World War II. Agric Hist 54:190207
Ganie, ZA, Sandell, LD, Jugulam, M, Kruger, GR, Marx, DB, Jhala, AJ (2016) Integrated management of glyphosate-resistant giant ragweed (Ambrosia trifida) with tillage and herbicides in soybean. Weed Technol 30:4556
Gibson, KD, Johnson, WG, Hillger, DE (2005) Farmer perceptions of problematic corn and soybean weeds in Indiana. Weed Technol 19:10651070
Givens, WA, Shaw, DR, Johnson, WG, Weller, SC, Young, BG, Wilson, RG, Owen, MDK, Jordan, D (2009a) A grower survey of herbicide use patterns in glyphosate-resistant cropping systems. Weed Technol 23:156161
Givens, WA, Shaw, DR, Kruger, GR, Johnson, WG, Weller, SC, Young, BG, Wilson, RG, Owen, MDK, Jordan, D (2009b) Survey of tillage trends following the adoption of glyphosate-resistant crops. Weed Technol 23:150155
Godar, AS, Stahlman, PW (2015) Consultant’s perspective on the evolution and management of glyphosate-resistant kochia (Kochia scoparia) in western Kansas. Weed Technol 29:318328
Green, JM (2014) Current state of herbicides in herbicide-resistant crops. Pest Manag Sci 70:13511357
Hartzler, RG, Battles, BA, Nordby, D (2004) Effect of common waterhemp (Amaranthus rudis) emergence date on growth and fecundity in soybean. Weed Sci 52:242245
Heap, I (2018) The International Survey of Herbicide Resistant Weeds. Weeds Resistant to EPSP Synthase Inhibitors http://www.weedscience.org/Summary/MOA.aspx?MOAID=12 Accessed: March 25, 2018
Jha, P, Norsworthy, JK (2009) Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci 57:644651
Jhala, AJ (2018) Herbicide-resistant weeds in Nebraska. Pages 1819 in Knezevic SZ, Creech CF, Jhala AJ, Klein RN, Kruger GR, Proctor CA, Shea PJ, Ogg CL, Thompson C, Lawrence N & Werle R eds., 2018 Guide for Weed, Disease, and Insect Management in Nebraska. Lincoln, NE: University of Nebraska–Lincoln Extension EC130
Knezevic, SZ, Evans, SP, Mainz, M (2003) Row spacing influences the critical timing for weed removal in soybean (Glycine max). Weed Technol 17:666673
Knowler, D, Bradshaw, B (2007) Farmers’ adoption of conservation agriculture: a review and synthesis of recent research. Food Policy 32:2548
Kruger, GR, Johnson, WG, Weller, SC, Owen, MDK, Shaw, DR, Wilcut, JW, Jordan, DL, Wilson, RG, Bernards, ML, Young, BG (2009) US grower views on problematic weeds and changes in weed pressure in glyphosate-resistant corn, cotton, and soybean cropping systems. Weed Technol 23:162166
Lambert, DM, Larson, JA, Roberts, RK, English, BC, Zhou, XV, Falconer, LL, Hogan, RJ Jr., Johnson, JL, Reeves, JM (2017) “Resistance is futile”: estimating the costs of managing herbicide resistance as a first-order Markov process and the case of US upland cotton producers. Agric Econ 48:387396
Legleiter, TR, Bradley, KW, Massey, RE (2009) Glyphosate-resistant waterhemp (Amaranthus rudis) control and economic returns with herbicide programs in soybean. Weed Technol 23:5461
Lund, P, Price, R (1998) The measure of average farm size. J Agric Econ 49:100110
MacDonald, JM, Korb, P, Hoppe, RA (2013) Farm size and the organization of US crop farming. Washington, DC: US Department of Agriculture–Economic Research Service ERR 152. Pp 89
Nichols, V, Verhulst, N, Cox, R, Govaerts, B (2015) Weed dynamics and conservation agriculture principles: a review. Field Crop Res 183:5668
Norsworthy, JK (2003) Use of soybean production surveys to determine weed management needs of South Carolina farmers. Weed Technol 17:195201
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:3162
Nowak, PJ (1987) The adoption of agricultural conservation technologies: economic and diffusion explanations. Rural Sociol 52:208220
[NRCS-USDA] Natural Resource Conservation Service–US Department of Agriculture (2008) Nebraska No-Till. Washington, DC: US Department of Agriculture. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/ne/technical/?cid=nrcs142p2_029625. Accessed: October 5, 2017
Oliveira, MC (2017) Evolution of HPPD-Inhibitor Herbicide Resistance in a Waterhemp (Amaranthus tuberculatus var. rudis) Population from Nebraska, USA. Ph.D. dissertation. Lincoln, NE: University of Nebraska-Lincoln. 129 p
Oliveira, MC, Feist, D, Eskelsen, S, Scott, JE, Knezevic, SZ (2017a) Weed control in soybean with preemergence- and postemergence-applied herbicides. Crop Forage Turfgrass Manag 3. DOI: 10.2134/cftm2016.05.0040
Oliveira, MC, Jhala, AJ, Gaines, T, Irmak, S, Amundsen, K, Scott, JE, Knezevic, SZ (2017b) Confirmation and control of HPPD-inhibiting herbicide–resistant waterhemp (Amaranthus tuberculatus) in Nebraska. Weed Technol 31:6779
Peterson, G (1967) The discovery and development of 2,4-D. Agric Hist 41:243254
Prince, JM, Shaw, DR, Givens, WA, Newman, ME, Owen, MDK, Weller, SC, Young, BG, Wilson, RG, Jordan, DL (2012a) Benchmark study: III. Survey on changing herbicide use patterns in glyphosate-resistant cropping systems. Weed Technol 26:536542
Prince, JM, Shaw, DR, Givens, WA, Owen, MDK, Weller, SC, Young, BG, Wilson, RG, Jordan, DL (2012b) Benchmark study: I. Introduction, weed population, and management trends from the benchmark survey 2010. Weed Technol 26:525530
R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org. Accessed: February 3, 2017
Rana, N, Jhala, AJ (2016) Confirmation of glyphosate- and acetolactate synthase (ALS)-inhibitor–resistant kochia (Kochia scoparia) in Nebraska. J Agr Sci 8:5462
Riar, DS, Norsworthy, JK, Steckel, LE, Stephenson, DO IV, Bond, JA (2013a) Consultant perspectives on weed management needs in midsouthern United States cotton: a follow-up survey. Weed Technol 27:778787
Riar, DS, Norsworthy, JK, Steckel, LE, Stephenson, DO IV, Eubank, TW, Scott, RC (2013b) Assessment of weed management practices and problem weeds in the midsouth United States—soybean: a consultant’s perspective. Weed Technol 27:612622
Sandell, L, Datta, A, Knezevic, S, Kruger, G (2011) Glyphosate-resistant giant ragweed confirmed in Nebraska. CropWatch. https://cropwatch.unl.edu/glyphosate-resistant-giant-ragweed-confirmed-nebraska. Accessed: October 5, 2017
Sarangi, D, Jhala, AJ (2017) Response of glyphosate-resistant horseweed [Conyza canadensis (L.) Cronq.] to a premix of atrazine, bicyclopyrone, mesotrione, and S-metolachlor. Can J Plant Sci 97:702714
Sarangi, D, Jhala, AJ (2018) Comparison of a premix of atrazine, bicyclopyrone, mesotrione, and S-metolachlor with other preemergence herbicides for weed control and corn yield in no-tillage and reduced tillage production systems in Nebraska, USA. Soil Till Res 178:8291
Sarangi, D, Sandell, LD, Knezevic, SZ, Aulakh, JS, Lindquist, JL, Irmak, S, Jhala, AJ (2015) Confirmation and control of glyphosate-resistant common waterhemp (Amaranthus rudis) in Nebraska. Weed Technol 29:8292
Sarangi, D, Sandell, LD, Kruger, GR, Knezevic, SZ, Irmak, S, Jhala, AJ (2017a) Comparison of herbicide programs for season-long control of glyphosate-resistant common waterhemp (Amaranthus rudis) in soybean. Weed Technol 31:5366
Sarangi, D, Tyre, AJ, Patterson, EL, Gaines, TA, Irmak, S, Knezevic, SZ, Lindquist, JL, Jhala, AJ (2017b) Pollen-mediated gene flow from glyphosate-resistant common waterhemp (Amaranthus rudis Sauer): consequences for the dispersal of resistance genes. Sci Rep 7:44913 DOI: 10.1038/srep44913
Shaner, DL (2000) The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manag Sci 56:320326
Shaw, DR, Givens, WA, Farno, LA, Gerard, PD, Jordan, D, Johnson, WG, Weller, SC, Young, BG, Wilson, RG, Owen, MDK (2009) Using a grower survey to assess the benefits and challenges of glyphosate-resistant cropping systems for weed management in US corn, cotton, and soybean. Weed Technol 23:134149
Sosnoskie, LM, Webster, TM, Kichler, JM, MacRae, AW, Grey, TL, Culpepper, AS (2012) Pollen-mediated dispersal of glyphosate-resistance in Palmer amaranth under field conditions. Weed Sci 60:366373
Stougaard, RN, Kapusta, G, Roskamp, G (1984) Early preplant herbicide applications for no-till soybean (Glycine max) weed control. Weed Sci 32:293298
Tan, S, Heerink, N, Kruseman, G, Qu, F (2008) Do fragmented landholdings have higher production costs? Evidence from rice farmers in Northeastern Jiangxi province, P.R. China. China Econ Rev 19:347358
Triplett, GB Jr., Van Doren, DM Jr., Johnson, WH (1964) Non-plowed, strip-tilled corn culture. Trans ASAE 7:105107
[USDA-ERS] US Department of Agriculture–Economic Research Service (2017) Recent Trends in GE Adoption. Washington, DC: US Department of Agriculture. https://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us/recent-trends-in-ge-adoption.aspx. Accessed: September 3, 2017
[USDA-NASS] US Department of Agriculture−National Agricultural Statistics Service (2012) Agricultural Chemical Use: Field Crops 2011 (Barley and Sorghum). Washington, DC: US Department of Agriculture https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Chemical_Use/BarleySorghumChemicalUseFactSheet.pdf
[USDA-NASS] US Department of Agriculture−National Agricultural Statistics Service (2014a) 2012 Census of Agriculture: Nebraska State and County Data. Washington, DC: US Department of Agriculture AC-12-A-27. Pp 7250
[USDA-NASS] US Department of Agriculture−National Agricultural Statistics Service (2014b) Acreage. Washington, DC: US Department of Agriculture. http://usda.mannlib.cornell.edu/usda/nass/Acre//2010s/2014/Acre-06-30-2014.pdf. Accessed: September 3, 2017
[USDA-NASS] US Department of Agriculture−National Agricultural Statistics Service (2015) Crop Production: 2014 Summary. Washington, DC: US Department of Agriculture ISSN: 1057-7823. Pp 8–45
[USDA-NASS] US Department of Agriculture−National Agricultural Statistics Service (2016a) 2015 Agricultural Chemical Use Survey: Soybeans. Washington, DC: US Department of Agriculture. NASS Highlights No. 2016-4
[USDA-NASS] US Department of Agriculture−National Agricultural Statistics Service (2016b) 2015 Agricultural Chemical Use Survey: Wheat. Washington, DC: US Department of Agriculture. NASS Highlights No. 2016-5
[USDA-NASS] US Department of Agriculture−National Agricultural Statistics Service (2017) 2016 Agricultural Chemical Use Survey: Corn. Washington, DC: US Department of Agriculture. NASS Highlights No. 2017-2
Vangessel, MJ, Ayeni, AO, Majek, BA (2001) Glyphosate in full-season no-till glyphosate-resistant soybean: role of preplant applications and residual herbicides. Weed Technol 15:714724
Van Wychen, L (2016a) 2015 Baseline Survey of the Most Common and Troublesome Weeds in the United States and Canada. Weed Science Society of America National Weed Survey Dataset. http://wssa.net/wp-content/uploads/2015_Weed_Survey_Final.xlsx. Accessed: October 5, 2017
Van Wychen, L (2016b) 2016 Survey of the Most Common and Troublesome Weeds in Broadleaf Crops, Fruits & Vegetables in the United States and Canada. Weed Science Society of America National Weed Survey Dataset. http://wssa.net/wp-content/uploads/2016_Weed_Survey_Final.xlsx. Accessed: October 5, 2017
Vieira, BC, Samuelson, SL, Alves, GS, Gaines, TA, Werle, R, Kruger, GR (2017) Distribution of glyphosate-resistant Amaranthus spp. in Nebraska. Pest Manag Sci https://onlinelibrary.wiley.com/doi/abs/10.1002/ps.4781
Webster, TM, Macdonald, GE (2001) A survey of weeds in various crops in Georgia. Weed Technol 15:771790
Werle, R, Sandell, LD, Buhler, DD, Hartzler, RG, Lindquist, JL (2014) Predicting emergence of 23 summer annual weed species. Weed Sci 62:267279
Yilmaz, I, Akcaoz, H, Ozkan, B (2005) An analysis of energy use and input costs for cotton production in Turkey. Renew. Energy 30:145155
Young, BG (2006) Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol 20:301307
Young, SL (2017) A systematic review of the literature reveals trends and gaps in integrated pest management studies conducted in the United States. Pest Manag Sci 73:15531558
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Technology
  • ISSN: 0890-037X
  • EISSN: 1550-2740
  • URL: /core/journals/weed-technology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed