Skip to main content
×
Home

Survey of Missouri Pesticide Applicator Practices, Knowledge, and Perceptions

  • Mandy D. Bish (a1) and Kevin W. Bradley (a1)
Abstract

The introduction of soybean and cotton traits with resistance to synthetic auxin herbicides has led to an increase in concern over the off-target movement of dicamba and 2,4-D. A direct-mail survey was sent to Missouri pesticide applicators in January of 2016 to understand current herbicide application practices and applicator knowledge and awareness of the new synthetic auxin technologies. Completed surveys were returned by 2,335 applicators, representing approximately 11% of the state’s registered pesticide applicators. Survey data reported herein provides information regarding current pesticide applicator knowledge and practices and highlights areas that need more emphasis during applicator training. Overall, survey respondents were familiar with physical drift and methods to minimize that risk. However respondents were less familiar with volatility and temperature inversions, which can each influence off-target herbicide movement. Of the 427 commercial applicators and 1,535 noncommercial applicators who answered questions regarding volatility, 81% and 74% respectively, recognized that high temperatures can contribute to a herbicide’s ability to volatilize. However, only 48% and 39% understood that a herbicide’s vapor pressure influences volatility. Answers from the survey indicate further education is needed on the synthetic auxin technologies, such as what herbicides can be used with each technology, proper methods for inspecting and cleaning spray equipment, and the importance of reading herbicide labels. When asked whether applicators were aware of the new 2,4-D-resistant and dicamba-resistant traits, 76% of 443 commercial applicators and only 40% of 1,713 noncommercial applicators selected “yes.” Additionally, survey results suggests that current methods aimed to facilitate communication among producers and applicators, such as FieldWatch and Flag the Technology, may not be successfully adopted, at least in Missouri. Findings from this survey can be utilized to enhance training of pesticide applicators in preparation for the synthetic auxin herbicide technologies.

La introducción de soja y algodón con resistencia a herbicidas auxinas sintéticas ha generado preocupación por el movimiento accidental de dicamba y 2,4−D a lugares no deseados. En Enero de 2016 se envió una encuesta vía correo directo a aplicadores de plaguicidas con licencia de Missouri para entender las prácticas de aplicación de herbicidas actuales y el conocimiento de los aplicadores acerca de las nuevas tecnologías de auxinas sintéticas. Se recibieron 2,335 encuestas completadas por aplicadores, lo que representó 11% del registro de aplicadores de plaguicidas del estado. Los datos de la encuesta presentados aquí brindan información acerca del conocimiento y prácticas actuales de los aplicadores de plaguicidas y resaltan las áreas que necesitan mayor énfasis para la capacitación de los aplicadores. En general, los encuestados estaban familiarizados con la volatilidad y las inversiones de temperatura, las cuales pueden influenciar el movimiento accidental del herbicida a zonas no deseadas. De los 427 aplicadores comerciales y los 1,535 aplicadores no comerciales que contestaron las preguntas relacionadas a volatilidad, 81% y 74% respectivamente, reconocieron que las altas temperaturas pueden contribuir a la habilidad del herbicida de volatilizarse. Sin embargo, solamente 48% y 39% entendía que la presión de vapor del herbicida influencia la volatilidad. Las respuestas en la encuesta indican que se necesita más educación acerca de las tecnologías con auxinas sintéticas, como cuáles herbicidas pueden ser usados con cada tecnología, métodos adecuados para inspeccionar y limpiar los equipos de aspersión, y la importancia de leer la etiqueta del herbicida. Cuando se preguntó si los aplicadores estaban al tanto de los nuevos cultivos con resistencia a 2,4−D y dicamba, 76% de 443 aplicadores comerciales y solamente 40% de 1,713 aplicadores no comerciales seleccionaron “sí”. Adicionalmente, los resultados de la encuesta sugieren que los métodos actuales dirigidos a facilitar la comunicación entre productores y aplicadores, tales como FieldWatch y la tecnología de Banderas, podrían no ser adoptadas exitosamente, al menos en Missouri. Los descubrimientos de esta encuesta pueden ser utilizados para mejorar la capacitación de aplicadores de plaguicidas en preparación para el uso de las tecnologías de herbicidas auxinas sintéticas.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Survey of Missouri Pesticide Applicator Practices, Knowledge, and Perceptions
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Survey of Missouri Pesticide Applicator Practices, Knowledge, and Perceptions
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Survey of Missouri Pesticide Applicator Practices, Knowledge, and Perceptions
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author’s E-mail: bishm@missouri.edu.
Footnotes
Hide All

Associate Editor for this paper: Lawrence E. Steckel, University of Tennessee.

Footnotes
References
Hide All
Akesson NB, Yates WE (1964) Problems relating to application of agricultural chemicals and resulting drift residues. Annu Rev Entomol 9:285318
Al-Khatib K, Parker R, Fuerst EP (1992) Alfalfa response to simulated herbicide spray drift. Weed Technol 6:956960
Al-Khatib K, Parker R, Fuerst EP (1993) Wine grape response to simulated herbicide drift. Weed Technol 7:97102
Al-Khatib K, Peterson D (1999) Soybean (Glycine max) response to simulated drift from selected sulfonylurea herbicides, dicamba, glyphosate, and glufosinate. Weed Technol 13:264270
Anonymous (2006) BanvelR herbicide product label. Arysta Lifesciences North America, LLC Publication No. AD091109. Research Triangle Park, NC: Arysta Lifesciences. 29 p
Anonymous (2008) 2,4-D Amine 4 herbicide product label. EPA Registration No. 1381-103. St. Paul, MN: Winfield Solutions, LLC. 21 p
Anonymous (2010) ClarityR herbicide product label. BASF Corporation Publication No. NVA 2010-04-065-0154. Research Triangle Park, NC: BASF. 22 p
Anonymous (2012) ShredderTM 2,4-D LV6 herbicide product label. EPA Registration No. 1381-250. St. Paul, MN: Winfield Solutions, LLC. 12 p
Anonymous (2016) Enlist DuoTM with Colex-D Technology herbicide product label. DowAgroSciences Publication No. H-59334. Indianapolis, IN: DowAgroScience. 7 p
Creech CF, Henry RS, Fritz BK, Kruger GR (2015) Influence of herbicide active ingredient, nozzle type, orifice size, spray pressure, and carrier volume rate on spray droplet size characteristics. Weed Technol 29:298310
Cundiff GT, Reynolds DB, Thomas W, Mueller T (2016) Evaluation of sequestration of dicamba in sprayer hoses. Weed Science Society of America Annual Meeting Abstracts 51:306
[EPA] Environmental Protection Agency (2016) Compliance Advisory: High Number of Complaints Related to Alleged Misuse of Dicamba Raises Concerns. https://www.epa.gov/sites/production/files/2016-08/documents/fifra-dicambacomplianceadvisory.pdf. Accessed September 12, 2016
Enz JW, Hofman V, Thostenson A (2014) Air Temperature Inversions: Causes, Characteristics, and Potential Effects on Pesticide Spray Drift. North Dakota State University Extension Service. https://www.ag.ndsu.edu/pubs/plantsci/pests/ae1705.pdf. Accessed September 12, 2016
Everitt JD, Keeling JW (2009) Cotton growth and yield response to simulated 2,4-D and dicamba drift. Weed Technol 23:503506
Godar AS, Stahlman PW (2015) Consultant’s perspective on the evolution and management of glyphosate-resistant kochia (Kochia scoparia) in western Kansas. Weed Technol 29:318328
Heap I (2016) The International Survey of Herbicide Resistant Weeds. www.weedscience.org. Accessed August 23, 2016
Inman MD, Jordan DL, York AC, Jennings KM, Monks DW, Everman WJ, Bollman SL, Fowler JT, Cole RM, Soteres JK (2016) Long-term management of Palmer amaranth (Amaranthus palmeri) in dicamba-tolerant cotton. Weed Sci 64:161169
Legleiter TR, Bradley KW (2008) Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Technol 56:582587
Maybank J, Yoshida K, Grover R (1978) Spray drift from agricultural pesticide applications. J Air Pollut Control Assoc 28:10091014
Maynard E, Overstreet B, Riddle J (2012). Watch Out for: Pesticide Drift and Organic Production. Lafayette, IN: Purdue Extension Pub. DW-1-W. https://www.extension.purdue.edu/extmedia/ho/dw-1-w.pdf. Accessed October 24, 2016
Norsworthy JK, Bond J, Scott RC (2013) Weed management practices and needs in Arkansas and Mississippi rice. Weed Technol 27:623630
Norsworthy JK, Griffith GM, Scott RC, Smith KL, Oliver LR (2008) Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol 22:108113
Pfleeger TG, Olszyk D, Burdick CA, King G, Kern J, Fletcher J (2006) Using a geographic information system to identify areas with potential for off-target pesticide exposure. Environ Toxicol Chem 25:22502259
Regnier EE, Harrison SK, Loux MM, Holloman C, Venkatesh R, Diekmann F, Taylor R, Ford RA, Stoltenberg DE, Hartzler RG, Davis AS, Schutte BJ, Cardina J, Mahoney KJ, Johnson WJ (2016) Certified crop advisors’ perceptions of giant ragweed (Ambrosia trifida) distribution, herbicide resistance, and management in the Corn Belt. Weed Sci 64:361377
Scott B, Saraswat D, Spradley P, Baker R (2011) Flag the Technology. Fayetteville, AR: University of Arkansas Division of Agriculture Research and Extension Pub. FSA2162. Revised 2014. https://www.uaex.edu/publications/pdf/FSA-2162.pdf. Accessed October 24, 2016
Shaw DR, Givens WA, Farno LA, Gerard PD, Jordan D, Johnson WG, Weller SC, Young BG, Wilson RG, Owen MDK (2009) Using a grower survey to assess the benefits and challenges of glyphosate-resistant cropping systems for weed management in U.S. corn, cotton, and soybean. Weed Technol 23:134149
Sinzogan AAC, Van Huis A, Kossou DK, Jiggins J, Vodouhe S (2004) Farmers’ knowledge and perception of cotton pests and pest control practices in Benin: results of a diagnostic study. NJAS Wageningen J of Life Sci 52:285303
Solomon CB, Bradley KW (2014) Influence of application timings and sublethal rates of synthetic auxin herbicides on soybean. Weed Technol 28:454464
Soltani N, Nurse RE, Sikkema PH (2016) Response of glyphosate-resistant soybean to dicamba spray tank contamination during vegetative and reproductive growth stages. Can J Plant Sci 96:160164
Steckel L, Craig C, Thompson A (2010) Cleaning plant growth regulator (PGR) herbicides out of field sprayers. Knoxville, TN: The University of Tennessee Agricultural Extension Service Pub W071:3 p
[USDA-APHIS] US Department of Agriculture-Animal and Plant Health Inspection Service (2014) Determination of Nonregulated Status for Dow AgroSciences DAS-68416-4 Soybean. Washington, DC: US Department of Agriculture. https://www.aphis.usda.gov/brs/aphisdocs/11_23401p_det.pdf. Accessed September 12, 2016
[USDA-APHIS] US Department of Agriculture-Animal and Plant Health Inspection Service (2015a) Determination of Nonregulated Status for Dow AgroSciences DAS-8190-7 Cotton. Washington, DC: US Department of Agriculture. https://www.aphis.usda.gov/brs/aphisdocs/13_26201p_pdet.pdf. Accessed September 12, 2016
[USDA-APHIS] US Department of Agriculture-Animal and Plant Health Inspection Service. (2015b) Determination of Nonregulated Status for Monsanto Company MON 88701 cotton. Washington, DC: US Department of Agriculture. https://www.aphis.usda.gov/brs/aphisdocs/12_18501p_det.pdf. Accessed September 12, 2016
[USDA-APHIS] US Department of Agriculture-Animal and Plant Health Inspection Service. (2015c) Determination of Nonregulated Status for Monsanto Company MON 88708 soybean. Washington, DC: US Department of Agriculture. https://www.aphis.usda.gov/brs/aphisdocs/10_18801p_det.pdf. Accessed September 12, 2016
[USDA-NASS] US Department of Agriculture-National Agricultural Statistics Service (2012) Census of Agriculture, Ag Census Web Maps. Washington, DC: US Department of Agriculture. https://www.agcensus.usda.gov/Publications/2012/. Accessed July 22, 2016
VanGessel MJ, Johnson QR (2005) Evaluating drift control agents to reduce short distance movement and effect on herbicide performance. Weed Technol 19:7885
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Technology
  • ISSN: 0890-037X
  • EISSN: 1550-2740
  • URL: /core/journals/weed-technology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 9
Total number of PDF views: 79 *
Loading metrics...

Abstract views

Total abstract views: 487 *
Loading metrics...

* Views captured on Cambridge Core between 11th April 2017 - 18th November 2017. This data will be updated every 24 hours.