Skip to main content
×
×
Home

Survey of Nebraska Farmers’ Adoption of Dicamba-Resistant Soybean Technology and Dicamba Off-Target Movement

  • Rodrigo Werle (a1), Maxwel C. Oliveira (a2), Amit J. Jhala (a3), Christopher A. Proctor (a4), Jennifer Rees (a5) and Robert Klein (a6)...
Abstract

In 2017, dicamba-resistant (DR) soybean was commercially available to farmers in the United States. In August and September of 2017, a survey of 312 farmers from 60 Nebraska soybean-producing counties was conducted during extension field days or online. The objective of this survey was to understand farmers’ adoption and perceptions regarding DR soybean technology in Nebraska. The survey contained 16 questions and was divided in three parts: (1) demographics, (2) dicamba application in DR soybean, and (3) dicamba off-target injury to sensitive soybean cultivars. According to the results, 20% of soybean hectares represented by the survey were planted to DR soybean in 2017, and this number would probably double in 2018. Sixty-five percent of survey respondents own a sprayer and apply their own herbicide programs. More than 90% of respondents who adopted DR soybean technology reported significant improvement in weed control. Nearly 60% of respondents used dicamba alone or glyphosate plus dicamba for POST weed control in DR soybean; the remaining 40% added an additional herbicide with an alternative site of action (SOA) to the POST application. All survey respondents used one of the approved dicamba formulations for application in DR soybean. Survey results indicated that late POST dicamba applications (after late June) were more likely to result in injury to non-DR soybean compared to early POST applications (e.g., May and early June) in 2017. According to respondents, off-target dicamba movement resulted both from applications in DR soybean and dicamba-based herbicides applied in corn. Although 51% of respondents noted dicamba injury on non-DR soybean, 7% of those who noted injury filed an official complaint with the Nebraska Department of Agriculture. Although DR soybean technology allowed farmers to achieve better weed control during 2017 than previous growing seasons, it is apparent that off-target movement and resistance management must be addressed to maintain the viability and effectiveness of the technology in the future.

Copyright
Corresponding author
Author for correspondence: Rodrigo Werle, University of Wisconsin–Madison, Department of Agronomy, 1575 Linden Drive, Madison, WI 53706 (Email: rwerle@wisc.edu)
References
Hide All
Alves, GS, Kruger, GR, da Cunha, JPAR, Vieira, BC, Henry, RS, Obradovic, A, Grujic, M (2017) Spray drift from dicamba and glyphosate applications in a wind tunnel. Weed Technol 31:387395
Auch, DE, Arnold, WE (1978) Dicamba use and injury on soybean (Glycine max) in South Dakota. Weed Sci 26:471475
Behrens, MR, Mutlu, N, Chakraborty, S, Dumitru, R, Jiang, WZ, Lavallee, BJ, Herman, PL, Clemente, TE, Weeks, DP (2007) Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:11851188
Behrens, R, Lueschen, WE (1979) Dicamba volatility. Weed Sci 27:486493
Benbrook, CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28(3):115
Bish, MD, Bradley, KW (2017) Survey of Missouri pesticide applicator practices, knowledge, and perceptions. Weed Technol 31:165177
Bonny, S (2008) Genetically modified glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects. A review. Agron Sustain Dev 28:2132
Busi, R, Goggin, DE, Heap, I, Horak, MJ, Jugulam, M, Masters, RA, Napier, R, Riar, DS, Satchivi, NM, Torra, J, Westra, P, Wright, TR (2018) Weed resistance to synthetic auxin herbicides. Pest Manag Sci. doi:10.1002/ps.4823
Carlsen, SCK, Spliid, NH, Svensmark, B (2006) Drift of 10 herbicides after tractor spray application. 2. Primary drift (droplet drift). Chemosphere 64:778786
Dill, GM, CaJacob, CA, Padgette, SR (2008) Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag Sci 64:326331
Duke, SO (2015) Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction. Pest Manag Sci 71:652657
Duke, SO, Powles, SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319325
Egan, JF, Barlow, KM, Mortensen, DA (2014) A Meta-analysis on the effects of 2,4-D and dicamba drift on soybean and cotton. Weed Sci 62:193206
Egan, JF, Mortensen, DA (2012) Quantifying vapor drift of dicamba herbicides applied to soybean. Environ Toxicol Chem 31:10231031
Environmental Protection Agency [EPA] (2017) EPA and states’ collective efforts lead to regulatory action on dicamba. https://www.epa.gov/newsreleases/epa-and-states-collective-efforts-lead-regulatory-action-dicamba. Accessed: January 04, 2018
Fernandez-Cornejo, J, Wechsler, S, Livingston, M, Mitchell, L (2014) Genetically engineered crops in the United States. USDA-ERS Economic Research Report Number 162. SSRN. http://dx.doi.org/10.2139/ssrn.2503388. 42 p
Givens, WA, Shaw, DR, Kruger, GR, Johnson, WG, Weller, SC, Young, BG, Wilson, RG, Owen, MDK, Jordan, D (2009) Survey of tillage trends following the adoption of glyphosate-resistant crops. Weed Technol 23:150155
Griffin, JL, Bauerle, MJ, Stephenson, DO, Miller, DK, Boudreaux, JM (2013) Soybean response to dicamba applied at vegetative and reproductive growth stages. Weed Technol 27:696703
Hager, A (2017) Observations of the Midwest weed extension scientists. Page 98 in Proceedings of the 72nd Annual Meeting of the North Central Weed Science Society. St Louis, MO: North Central Weed Science Society
Heap, I (2014) Global perspective of herbicide-resistant weeds. Pest Manag Sci 70:13061315
Heap, I (2018a) Weeds resistant to ALS inhibitors (B/2). http://www.weedscience.org/Summary/MOA.aspx. Accessed: January 10, 2018
Heap, I (2018b) Weeds resistant to the herbicide glyphosate. http://www.weedscience.org/Summary/ResistbyActive.aspx. Accessed: January 15, 2018
Heap, I (2018c) Weeds resistant to the herbicide dicamba. http://www.weedscience.org/Summary/ResistbyActive.aspx. Accessed: January 24, 2018
Johnson, B, Young, B, Matthews, J, Marquardt, P, Slack, C, Bradley, K, York, A, Culpepper, S, Hager, A, Al-Khatib, K, Steckel, L, Moechnig, M, Loux, M, Bernards, M, Smeda, R (2010) Weed control in dicamba-resistant soybean. Crop Manag 9(1). doi:10.1094/CM-2010-0920-01-RS
Keelin, JW, Abernathy, JR (1988) Woollyleaf bursage (Ambrosia grayi) and Texas blueweed (Helianthus ciliaris) control by dicamba. Weed Technol 2:1215
Kniss, A (2018) An updated meta-analysis of soybean response to dicamba. Abstract 29, Proceedings of the 58th Annual Meeting of the Weed Science Society of America. Arlington, VA: Weed Science Society of America
Mohseni-Moghadam, M, Doohan, D (2015) Response of bell pepper and broccoli to simulated drift rates of 2,4-D and dicamba. Weed Technol 29:226232
Mohseni-Moghadam, M, Wolfe, S, Dami, I, Doohan, D (2016) Response of wine grape cultivars to simulated drift rates of 2,4-D, dicamba, and glyphosate, and 2,4-D or dicamba plus glyphosate. Weed Technol 30:807814
Mueller, T (2017) Dicamba volatization from field surfaces. Page 95 in Proceedings of the 72nd Annual Meeting of the North Central Weed Science Society. St Louis, MO: North Central Weed Science Society
Perry, ED, Ciliberto, F, Hennessy, DA, Moschini, G (2016) Genetically engineered crops and pesticide use in U.S. maize and soybean. Sci Adv 2:e1600850
Rankins, AJ, Byrd, JD Jr, Mask, DB, Barnett, JW, Gerard, PD (2005) Survey of soybean weeds in Mississippi. Weed Technol 19:492498
Schroeder, J, Banks, PA (1989) Soft red winter wheat (Triticum aestivum) response to dicamba and dicamba plus 2,4-D. Weed Technol 3:6771
Service, RF (2007) Agbiotech. a growing threat down on the farm. Science 316:11141117
Soltani, N, Dille, JA, Burke, IC, Everman, WJ, Vangessel, MJ, Davis, VM, Sikkema, PH (2017) Perspectives on potential soybean yield losses from weeds in North America. Weed Technol 31:148154
Spandl, E, Rabaey, TL, Kells, JJ, Gordon, R (1997) Application timing for weed control in corn (Zea mays) with dicamba tank mixtures. Weed Technol 11:602607
Steckel, L, Bond, J, Ducar, J, York, A, Scott, B, Dotray, P, Barber, T, Bradley, K (2017) The good and the bad and the ugly: dicamba observations of southern weed extension scientists. Pages 98–99 in Proceedings of the 72nd Annual Meeting of the North Central Weed Science Society. St Louis, MO: North Central Weed Science Society
Stubben, CJ and Milligan, BG (2007) Estimating and analyzing demographic models using the popbio package in R. J Stat Soft 22:123.
US Department of Agriculture [USDA] (2017) National Agricultural Statistics Service 2017. Washington, DC: US Department of Agriculture
Vieira, G, Oliveira, MC, Giacomini, D, Arsenijevic, N, Tranel, P, Werle, R (2017a) Molecular screening of PPO and glyphosate resistance in Palmer amaranth populations from southwest Nebraska. Pages 32–33 in Proceedings of the 72nd Annual Meeting of the North Central Weed Science Society. St Louis, MO: North Central Weed Science Society
Vieira, BC, Samuelson, SL, Alves, GS, Gaines, TA, Werle, R, Kruger, GR (2017b) Distribution of glyphosate-resistant Amaranthus spp. in Nebraska. Pest Manag Sci. doi/abs/10.1002/ps.4781
Vink, JP, Soltani, N, Robinson, DE, Tardif, FJ, Lawton, MB, Sikkema, PH (2012) Glyphosate-resistant giant ragweed (Ambrosia trifida) control in dicamba-tolerant soybean. Weed Technol 26:422428
Webster, TM and MacDonald, GE (2001) A survey of weeds in various crops in Georgia. Weed Technol 15:771790
Wehtje, G (2008) Synergism of dicamba with diflufenzopyr with respect to turfgrass weed control. Weed Technol 22:679684
Young, BG, Farrell, S, Bradley, KW, Latorre, DO, Kruger, GR, Barber, T, Norsworthy, JK, Scott, B, Reynolds, D, Steckel, L (2017) University research on dicamba volatility. Pages 100–101 in Proceedings of the 72nd Annual Meeting of the North Central Weed Science Society. St Louis, MO: North Central Weed Science Society
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Technology
  • ISSN: 0890-037X
  • EISSN: 1550-2740
  • URL: /core/journals/weed-technology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed