Skip to main content

Walnut Response to Multiple Exposures to Simulated Drift of Bispyribac-Sodium

  • Mariano F. Galla (a1), Kassim Al-Khatib (a2) and Bradley D. Hanson (a3)

A field study was established to evaluate symptoms, growth, yield, and nut quality of walnut trees subjected to multiple exposures of simulated bispyribac-sodium drift. Nut yield the year following simulated drift treatment was also evaluated because tissue differentiation for future fruiting position occurs in the prior season. Bispyribac-sodium was applied four times, at weekly intervals, at 0.5% and 3% of the use rate in rice (45 g ai ha-1). Injury from the 0.5% rate exceeded 5% after three applications. In general, the severity of the symptoms peaked 14 d after last application (23% and 40% injury for 0.5% and 3% rate, respectively) and subsequently remained nearly constant over the duration of the study. Growth of shoots treated with the 0.5% rate was initially delayed during the treatment regime but recovered after treatments ended; however, walnut shoots exposed to the higher rate had fewer internodes than nontreated trees at the end of the season. No measurable reduction in walnut yield or average nut weight either in the year of exposure or in the subsequent year was observed. However, both rates negatively affected walnut kernel color in the year of exposure.

Corresponding author
Author for correspondence: Kassim Al-Khatib, Professor, Department of Plant Sciences MS4, University of California, One Shields Avenue, Davis, CA 95616. (E-mail:
Hide All
Abramoff, MD, Magalhaes, PJ, Ram, SJ (2004) Image processing with Image. J Biophotonics Int 11:3642
Ali, A, Streibig, JC, Duus, J, Andreasen, C (2013) Use of image analysis to assess color response on plants caused by herbicide application. Weed Technol 27:604611
Anonymous (2016) 2014–2015 California Agricultural Statistic Review. Sacramento: California Department of Food and Agriculture. p 126
Al-Khatib, K (2015) Herbicide Symptoms. Accessed February 12, 2017
Al-Khatib, K, Peteson, D (1999) Soybean (Glycine max) response to simulated drift from selected sulfonylurea herbicides, dicamba, glyphosate, and glufosinate. Weed Technol 13:264270
Al-Khatib, K, Tamhane, A (1999) Dry pea (Pisum sativum L.) response to low rates of selected foliar- and soil- applied sulfonylurea and growth regulator herbicide. Weed Technol, 753758
Al-Khatib, K, Parker, R, Fuerst, E (1992) Sweet cherry (Prunus avium) response to simulated drift from selected herbicides. Weed Technol 6:975979
Al-Khatib, K, Parker, R, Fuerst, EP (1993) Wine grape (Vitis vinifera L.) response to simulated herbicide drift. Weed Technol 7:97102
Bhatti, MA, Felsot, AS, Al‐Khatib, K, Kadir, S, Parker, R (1995) Effects of simulated chlorsulfuron drift on fruit yield and quality of sweet cherries (Prunus avium L.). Environ Toxicol Chem 14:537544
Boutin, C, Lee, H, Peart, E, Batchelor, P, Maguire, R (2000) Effects of the sulfonylurea herbicide metsulfuron methyl on growth and reproduction of five wetland and terrestrial plant species. Environ Toxicol Chem 19:25322541
[CalPIP] California Pesticide Information Portal (2016) California Department of Pesticide Regulation. Accessed: February 14, 2017
[DFA] Dried Fruit Asscociation of California (2016) Walnut Inspection Manual. Sacramento, CA: Dried Fruit Association of California. 75 p
Fischer, AJ, Cheetham, DP, Vidotto, F, De Prado, R (2004) Enhanced effect of thiobencarb on bispyribac-sodium control of Echinochloa phyllopogon (Stapf ) Koss. in California rice (Oryza sativa L.). Weed Biol Manage 4:206212
Fischer, AJ, Strong, GL, Shackel, K, Mutters, RG (2010) Temporary drought can selectively suppress Schoenoplectus mucronatus in rice. Aquat Bot 92:257264
Fletcher, JS, Pfleeger, TG, Ratsch, HC, Hayes, R (1996) Potential impact of low levels of chlorsulfuron and other herbicides on growth and yield of nontarget plants. Environ Toxicol Chem 15:11891196
Galla, MF (2017) Effect of Simulated Rice Herbicide Drift on English Walnut (Juglans regia) Growth and Development. Ph.D dissertation. Davis, CA: University of California Davis. 72 p
Hill, J, Williams, J, Mutters, R, Greer, C (2006) The California rice cropping system: agronomic and natural resource issues for long-term sustainability. Paddy Water Environ 4:1319
Hothorn, T, Bretz, F, Westfall, P (2008) Simultaneous inference in general parametric models. Biom J 50:346363
Kjaer, C, Strandberg, M, Erlandsen, M (2006) Effects on hawthorn the year after simulated spray drift. Chemosphere 63:853859
Kuznetsova, A, Brockhoff, PB, Christensen, RHB (2016) lmerTest: tests in linear mixed effects models. R package version 2:033. Accessed: July 1, 2016
Labavitch, JM, Polito, VS (1985) Fruit growth and development. Pages 9094 in Ramos DE ed, Walnut Production Manual. Oakland, CA: University of California Agriculture and Natural Resources Pub. 3373
Olson, WH, Coates, WW (1985) Maturation, harvesting, and nut quality. Pages 172174 in Ramos DE ed, Walnut Production Manual. Oakland, CA: University of California Agriculture and Natural Resources Pub. 3373
Polito, VS (1985) Flower differentiation and pollination. Pages 8186 in Ramos DE, ed. Walnut Production Manual. Oakland, CA: University of California Agriculture and Natural Resources Pub. 3373
Rana, SS, Norsworthy, JK, Scott, RC (2014) Soybean sensitivity to drift rates of imazosulfuron. Weed Technol 28:443453
Sabatier, S, Barthélémy, D (2001) Bud structure in relation to shoot morphology and position on the vegetative annual shoots of Juglans regia L. (Juglandaceae). Ann Bot 87:117123
Sabatier, S, Barthélémy, D, Ducousso, I (2003) Periods of organogenesis in mono‐and bicyclic annual shoots of Juglans regia L.(Juglandaceae). Ann Bot 92:231238
Strand, LL (2003) Integrated Pest Management for Walnuts. Oakland, CA: University of California Agricultural and Natural Resources Pub: 3720. 136 p
[USDA] US Department of Agriculture (2005) California Walnut Acreage Report 2005. Washington, DC: US Department of Agriculture. 4 p
[USDA] US Department of Agriculture (2016) 2015 California Walnut Acreage Report. Washington, DC: US Department of Agriculture. 4 p
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Technology
  • ISSN: 0890-037X
  • EISSN: 1550-2740
  • URL: /core/journals/weed-technology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed