Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T15:24:30.178Z Has data issue: false hasContentIssue false

Weed Interference Impacts and Yield Recovery after Four Years of Variable Crop Inputs in No-Till Barley and Canola

Published online by Cambridge University Press:  20 January 2017

K. Neil Harker*
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Lacombe Research Centre, 6000 C&E Trail, Lacombe, AB, T4L 1W1, Canada
John T. O'Donovan
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Lacombe Research Centre, 6000 C&E Trail, Lacombe, AB, T4L 1W1, Canada
T. Kelly Turkington
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Lacombe Research Centre, 6000 C&E Trail, Lacombe, AB, T4L 1W1, Canada
Robert E. Blackshaw
Affiliation:
AAFC, Lethbridge Research Centre, Box 3000, Lethbridge, AB, T1J 4B1, Canada
Eric N. Johnson
Affiliation:
AAFC, Scott Research Farm, Box 10, Scott, SK, S0K 4A0, Canada
Stu Brandt
Affiliation:
Scott, SK S0K 4A0, Canada
H. Randy Kutcher
Affiliation:
Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
George W. Clayton
Affiliation:
AAFC, Lethbridge Research Centre, Box 3000, Lethbridge, AB, T1J 4B1, Canada
*
Corresponding author's E-Mail: neil.harker@agr.gc.ca

Abstract

A 2-yr (2009 to 2010), no-till (direct-seeded) “follow-up” study was conducted at five western Canada sites to determine weed interference impacts and barley and canola yield recovery after 4 yr of variable crop inputs (seed, fertilizer, herbicide). During the initial period of the study (2005 to 2008), applying fertilizer in the absence of herbicides was often worse than applying no optimal inputs; in the former case, weed biomass levels were at the highest levels (2,788 to 4,294 kg ha−1), possibly due to better utilization of nutrients by the weeds than by the crops. After optimal inputs were restored (standard treatment), most barley and canola plots recovered to optimal yield levels after 1 yr. However, 4 yr with all optimal inputs but herbicides led to only 77% yield recovery for both crops. At most sites, when all inputs were restored for 2 yr, all plots yielded similarly to the standard treatment combination. Yield “recovery” occurred despite high weed biomass levels (> 4,000 kg ha−1) prior to the first recovery year and despite high wild oat seedbank levels (> 7,000 seeds m−2) at the end of the second recovery year. In relatively competitive narrow-row crops such as barley and canola, the negative effects of high soil weed seedbanks can be mitigated if growers facilitate healthy crop canopies with appropriate seed and fertilizer rates in combination with judicious herbicide applications to adequately manage recruited weeds.

Se realizó un estudio de “seguimiento” de 2 años de duración (2009 a 2010), en cero labranza (siembra directa), en cinco localidades del oeste de Canadá para determinar el impacto de la interferencia de malezas y la recuperación del rendimiento de la cebada y la colza después de 4 años de suministros variables de cultivos (semilla, fertilizante, herbicidas). Durante el período inicial del estudio (2005 a 2008), la aplicación de fertilizante en ausencia de herbicidas fue a menudo peor que la aplicación no óptima de insumos; en este caso, los niveles de biomasa de malezas fueron los más altos (2,788 a 4,292 kg ha−1), posiblemente debido a la mejor utilización de nutrientes por parte de las malezas que por los cultivos. Después de que los insumos óptimos fueron restablecidos (tratamiento estándar), la mayoría de las parcelas de cebada y colza recuperaron los niveles de rendimiento óptimos después de un año. Sin embargo, 4 años con todos los insumos óptimos, excepto herbicidas, llevaron a solamente una recuperación del rendimiento de 77% para ambos cultivos. En la mayoría de los sitios, cuando todos los insumos fueron restablecidos por 2 años, todas las parcelas tuvieron rendimientos similares a la combinación del tratamiento estándar. La “recuperación” del rendimiento ocurrió a pesar de los altos niveles de biomasa de malezas (>4,000 kg ha−1) previo al primer año de recuperación y a pesar de los altos niveles del banco de semillas de Avena fatua (>7,000 semillas m−2) al final del segundo año de recuperación. En cultivos en hileras angostas relativamente competitivos, tales como cebada y colza, los efectos negativos de altos bancos de semillas pueden ser mitigados si los productores facilitan doseles de cultivos saludables con dosis apropiadas de semilla y fertilizante en combinación con aplicaciones juiciosas de herbicidas para manejar adecuadamente las malezas emergidas.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beckie, H. J. 2007. Beneficial management practices to combat herbicide-resistant grass weeds in the northern Great Plains. Weed Technol. 21:290299.Google Scholar
Blackshaw, R. E., Brandt, R. N., Janzen, H. H., Entz, T., Grant, C. A., and Derksen, D. A. 2003. Differential response of weed species to added nitrogen. Weed Sci. 51:532539.CrossRefGoogle Scholar
Blackshaw, R. E., Harker, K. N., O'Donovan, J. T., Beckie, H. J., and Smith, E. G. 2008. Ongoing development of integrated weed management systems on the Canadian Prairies. Weed Sci. 56:146150.Google Scholar
Blackshaw, R. E., Moyer, J. R., Harker, K. N., and Clayton, G. W. 2005. Integration of agronomic practices and herbicides for sustainable weed management in a zero-till barley field pea rotation. Weed Technol. 19:190196.Google Scholar
Blackshaw, R. E., O'Donovan, J. T., Harker, K. N., Clayton, G. W., and Stougaard, R. N. 2006. Reduced herbicide doses in field crops: a review. Weed Biol. Manag. 6:1017.CrossRefGoogle Scholar
Brandt, S. A., Malhi, S. S., Ulrich, D., Lafond, G. P., Kutcher, H. R., and Johnston, A. M. 2007. Seeding rate, fertilizer level and disease management effects on hybrid versus open pollinated canola (Brassica napus L.). Can. J. Plant Sci. 87:255266.Google Scholar
Burnside, O. C., Moomaw, R. S., Roeth, F. W., Wicks, G. A., and Wilson, R. G. 1986. Weed seed demise in soil in weed-free corn production across Nebraska. Weed Sci. 34:248251.Google Scholar
Clayton, G. W., Brandt, S., Johnson, E. N., O'Donovan, J. T., Harker, K. N., Blackshaw, R. E., Smith, E. G., Kutcher, H. R., Vera, C., and Hartman, M. 2009. Comparison of certified and farm-saved seed on yield and quality characteristics of canola. Agron. J. 101:15811588.Google Scholar
Clayton, G. W., Harker, K. N., O'Donovan, J. T., Baig, M. N., and Kidnie, M. J. 2002. Glyphosate timing and tillage system effects on glyphosate-tolerant canola (Brassica napus). Weed Technol. 16:124130.Google Scholar
Dew, D. A. 1972. An index of competition for estimating crop loss due to weeds. Can. J. Plant Sci. 52:921927.Google Scholar
Dew, D. A. and Keyes, C. H. 1976. An index of competition for estimating loss of rape due to wild oats. Can. J. Plant Sci. 56:10051006.Google Scholar
Gehl, D. T., Bailey, L. D., Grant, C. A., and Sadler, J. M. 1990. Effects of incremental N fertilization on grain yield and dry matter accumulation of six spring wheat (Triticum aestivum L.) cultivars in southern Manitoba. Can. J. Plant Sci. 70:5160.Google Scholar
Grant, C. A., Derksen, D. A., Blackshaw, R. E., Entz, T., and Janzen, H. H. 2007. Differential response of weed and crop species to potassium and sulphur fertilizers. Can. J. Plant Sci. 87:293296.Google Scholar
Grant, C. A., Gauer, L. E., Gehl, D. T., and Bailey, L. D. 1991. Yield response of semidwarf and conventional height barley cultivars to nitrogen fertilizer under varying moisture conditions. Can. J. Plant Sci. 71:361371.Google Scholar
Harker, K. N. 2001. Survey of yield losses due to weeds in central Alberta. Can J. Plant Sci. 81:339342.Google Scholar
Harker, K. N., Blackshaw, R. E., and Clayton, G. W. 2001. Timing weed removal in field peas (Pisum sativum). Weed Technol. 15:277283.Google Scholar
Harker, K. N., O'Donovan, J. T., Blackshaw, R. E., Beckie, H. J., Mallory-Smith, C., and Maxwell, B. D. 2012a. Our view. Weed Sci. 60:143144.Google Scholar
Harker, K. N., O'Donovan, J. T., Blackshaw, R. E., Johnson, E. N., Holm, F. A., and Clayton, G. W. 2011. Environmental effects on the relative competitive ability of canola and small-grain cereals in a direct-seeded system. Weed Sci. 59:404415.Google Scholar
Harker, K. N., O'Donovan, J. T., Clayton, G. W., and Mayko, J. 2008. Field-scale time of weed removal in canola (Brassica napus L.). Weed Technol. 22:747749.Google Scholar
Harker, K. N., O'Donovan, J. T., Irvine, R. B., Turkington, T. K., and Clayton, G. W. 2009. Integrating cropping systems with cultural techniques augments wild oat (Avena fatua) management in barley (Hordeum vulgare). Weed Sci. 57:326337.CrossRefGoogle Scholar
Harker, K. N., O'Donovan, J. T., Turkington, T. K., Blackshaw, R. E., Lupwayi, N. Z., Smith, E. G., Klein-Gebbinck, H., Dosdall, L. M., Hall, L. M., Willenborg, C. J., Kutcher, H. R., Malhi, S. S., Vera, C. L., Gan, Y., Lafond, G. P., May, W. E., Grant, C. A., and McLaren, D. L. 2012b. High-yield no-till canola production on the Canadian Prairies. Can. J. Plant Sci. 92:221233.Google Scholar
Holm, F. A., Zentner, R. P., Thomas, A. G., Sapsford, K., Légère, A., Gossen, B. D., Olfert, O., and Leeson, J. Y. 2006. Agronomic and economic responses to integrated weed management systems and fungicide in a wheat-canola-barley-pea rotation. Can J. Plant Sci. 86:12811295.Google Scholar
Karamanos, R. E., Goh, T. B., and Poisson, D. P. 2005. Nitrogen, phosphorus, and sulfur fertility of hybrid canola. J. Plant Nutr. 28:11451161.Google Scholar
Kirkland, K. J., Holm, F. A., and Stevenson, F. C. 2000. Appropriate crop seeding rate when herbicide rate is reduced. Weed Technol. 14:692698.Google Scholar
Littel, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. 2006. SAS System for Mixed Models. 2nd ed.) Cary NC: SAS Institute. 813 p.Google Scholar
Malhi, S. S., Brandt, S. A., Ulrich, D., Lafond, G. P., Johnston, A. M., and Zentner, R. P. 2007. Comparative nitrogen response and economic evaluation for optimum yield of hybrid and open-pollinated canola. Can. J. Plant Sci. 87:449460.Google Scholar
May, W. E., Brandt, S. A., Gan, Y., Kutcher, H. R., Holzapfel, C. B., and Lafond, G. P. 2010. Adaption of oilseed crops across Saskatchewan. Can J. Plant Sci. 90:667677.Google Scholar
McKenzie, R. H., Middleton, A. B., and Bremer, E. 2005. Fertilization, seeding date, and seeding rate for malting barley yield and quality in southern Alberta. Can. J. Plant Sci. 85:603614.Google Scholar
Mulugeta, D. and Stoltenberg, D. E. 1997. Weed and seedbank management with integrated methods as influenced by tillage. Weed Sci. 45:706715.Google Scholar
Neve, P. and Powles, S. B. 2005. High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance. Heredity. 95:485–92.Google Scholar
Norris, R. F. 1999. Ecological implications of using thresholds for weed management. J. Crop Prod. 2:3158.Google Scholar
O'Donovan, J. T., Harker, K. N., Blackshaw, R. E., and Stougaard, R. N. 2003a. Influence of variable rates of imazamethabenz and difenzoquat on wild oat (Avena fatua) seed production, and wheat (Triticum aestivum) yield and profitability. Can. J. Plant Sci. 83:977985.Google Scholar
O'Donovan, J. T., Harker, K. N., Blackshaw, R. E., and Stougaard, R. N. 2003b. Effect of variable tralkoxydim rates on wild oat (Avena fatua) seed production, wheat (Triticum aestivum) yield, and economic return. Weed Technol. 17:149156.CrossRefGoogle Scholar
O'Donovan, J. T., Harker, K. N., Clayton, G. W., and Blackshaw, R. E. 2006. Comparison of a glyphosate-resistant canola (Brassica napus L.) system with traditional herbicide regimes. Weed Technol. 20:494501.Google Scholar
O'Donovan, J. T., Harker, K. N., Clayton, G. W., Newman, J. C., Robinson, D., and Hall, L. M. 2001. Barley seeding rate influences the effects of variable herbicide rates on wild oat. Weed Sci. 49:746754.Google Scholar
O'Donovan, J. T., Harker, K. N., and Dew, D. A. 2008. Effect of density and time of removal of volunteer canola (Brassica rapa L.) on yield loss of wheat (Triticum aestivum L.). Can. J. Plant Sci. 88:839842.Google Scholar
O'Donovan, J. T. and McAndrew, D. W. 2000. Effect of tillage on weed populations in continuous barley (Hordeum vulgare). Weed Technol. 14:726733.Google Scholar
O'Donovan, J. T., Turkington, T. K., Edney, M., Clayton, G. W., McKenzie, R., Juskiw, P., Lafond, G. P., Brandt, S., Grant, C. A., Irvine, R. B., Harker, K. N., and Johnson, E. 2011. Seeding rate, nitrogen rate, and cultivar effects on malting barley production. Agron. J. 103:709716.Google Scholar
Pieters, A. J. 1927. Green Manuring Principles and Practice. New York J. Wiley.Google Scholar
Rahman, A., James, T. K., and Grbavac, N. 2006. Correlation between the soil seed bank and weed populations in maize fields. Weed Biol. Manag. 6:228234.Google Scholar
SAS Institute. 2004. SAS/STAT 9.1 User's Guide. Cary NC: SAS. 4420 p.Google Scholar
SAS Institute. 2005. The GLIMMIX Procedure. Cary NC SAS. 256 p.Google Scholar
Saxton, A. M. 1998. A macro for converting mean separation output to letter groupings in Proc Mixed. in Proceedings of the 23rd SAS Users Group International Conference. Cary, NC SAS. Pages 12431246.Google Scholar
Schweizer, E. E. and Zimdahl, R. L. 1984. Weed seed decline in irrigated soil after six years of continuous corn (Zea mays) and herbicides. Weed Sci. 32:7683.Google Scholar
Sikkema, P. H., Shropshire, C., Hamill, A. S., Weaver, S. E., and Cavers, P. B. 2004. Response of common lambsquarters (Chenopodium album) to glyphosate application timing and rate in glyphosate-resistant corn. Weed Technol. 18:908916.Google Scholar
Sikkema, P. H., Shropshire, C., Hamill, A. S., Weaver, S. E., and Cavers, P. B. 2005. Response of barnyardgrass (Echinochloa crus-galli) to glyphosate application timing and rate in glyphosate-resistant corn (Zea mays). Weed Technol. 19:830837.Google Scholar
Smith, E. G., Favret, M. L., Clayton, G. W., Blackshaw, R. E., Brandt, S., Johnson, E. N., Harker, K. N., O'Donovan, J. T., Kutcher, H. R., and Vera, C. 2010. The profitability of seeding the F2 generation of hybrid canola. Agron. J. 102:598605.Google Scholar
Smith, R. G., Mortensen, D. A., and Ryan, M. R. 2009. A new hypothesis for the functional role of diversity in mediating resource pools and weed–crop competition in agroecosytems. Weed Res. 50:3748.Google Scholar
Tobias, R. D. 1995. An introduction to partial least squares regression. Pages 12501257 in Proceedings of the 20th Annual SAS Users Group International Conference. Cary, NC SAS. http://support.sas.com/rnd/app/stat/papers/pls.pdf. Accessed: December 28, 2012.Google Scholar
Wold, S. 1994. PLS for multivariate linear modeling. Pages 195218 in van de Waterbeemd, H., ed. QSAR: Chemometric Methods in Molecular Design: Methods and Principles in Medicinal Chemistry. Weinheim, Germany Verlag-Chemie.Google Scholar
Zhang, J., Weaver, S. E., and Hamill, A. S. 2000. Risks and reliability of using herbicides at below-labeled rates. Weed Technol. 14:106115.CrossRefGoogle Scholar