Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T23:21:25.990Z Has data issue: false hasContentIssue false

Wheat, Field Pea, and Canola Response to Glyphosate and AMPA Soil Residues

Published online by Cambridge University Press:  23 February 2017

Robert E. Blackshaw*
Affiliation:
Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge, Alberta, Canada T1J4B1
K. Neil Harker
Affiliation:
Agriculture and Agri-Food Canada, 6000 C & E Trail, Lacombe, Alberta, Canada T4L1W1
*
Corresponding author's E-mail: robert.blackshaw@agr.gc.ca

Abstract

The tripling of glyphosate use in the Canadian prairies during the past decade has raised concerns over the possible accumulation of glyphosate and its main metabolite AMPA in soil over time and whether there could be any detrimental effects on crop production. A controlled environment study was conducted at two locations in Alberta, Canada, to determine glyphosate and AMPA soil concentrations that would injure wheat, field pea, and canola. Treatments included glyphosate acid or AMPA applied at 0, 10, 25, 100, 250, and 500 mg kg−1 soil. Shoot and root biomass determinations 8 wk after emergence (WAE) indicated that shoot and root biomass of all crops progressively declined with increasing soil concentrations of glyphosate at both locations. In contrast, AMPA reduced crop shoot and root biomass at only one of two sites. Estimated soil concentrations of glyphosate causing 20% reductions in shoot and root biomass ranged from 80 to 190, 90 to 350, and 120 to 320 mg kg−1 for field pea, canola, and wheat, respectively. Soil concentrations of AMPA causing 20% crop biomass reductions ranged from 40 to 70, 20 to 30, and 80 to 120 mg kg−1 for field pea, canola, and wheat, respectively. Although substantial crop injury occurred in this study, it must be noted that these rates are very high in terms of field application rates that would be required to achieve these soil concentrations. Doses causing crop injury would convert to estimated glyphosate field rates ranging from 17.6 to 77 kg ha−1. Overall results indicate that even with frequent high-dose glyphosate applications over several years, the likelihood of wheat, field pea, and canola injury from soil residues is low. Nevertheless, there may be merit in greater monitoring of glyphosate and AMPA soil residues in cropping systems with high glyphosate utilization over a long time period.

El que se haya triplicado el uso de glyphosate en las praderas canadienses durante la década pasada ha incrementado la preocupación por la posible acumulación de glyphosate y su principal metabolito AMPA en el suelo a lo largo del tiempo y por la posibilidad de que haya efectos negativos sobre la producción de cultivos. Se realizó un estudio en ambiente controlado en dos localidades en Alberta, Canada, para determinar las concentraciones en el suelo de glyphosate y AMPA que podrían dañar al trigo, al guisante, y a la colza. Los tratamientos incluyeron glyphosate ácido o AMPA aplicados a 0, 10, 25, 100, 250, y 500 mg kg−1 de suelo. Determinaciones de biomasa de tejido aéreo y de raíz a 8 semanas después de la emergencia (WAE) indicaron que las biomasa de la parte aérea y de la raíz de todos los cultivos declinó progresivamente al aumentarse las concentraciones de glyphosate en ambas localidades. En contraste, AMPA redujo la biomasa aérea y de raíz den solamente en uno de los dos sitios. Las concentraciones de glyphosate en el suelo estimadas que causaron reducciones del 20% en la biomasa de la parte aérea y la raíz variaron de 80 a 190, 90 a 350, y 120 a 320 mg kg−1 para el guisante, la colza, y el trigo, respectivamente. Las concentraciones de AMPA en el suelo que causaron reducciones del 20% en la biomasa del cultivo variaron de 40 a 70, 20 a 30, y 80 a 120 mg kg−1 para el guisante, la colza, y el trigo, respectivamente. Aunque en este estudio ocurrió un daño sustancial al cultivo, se debe notar que estas dosis son muy altas en términos de las dosis de aplicación de campo requeridas para alcanzar estas concentraciones en el suelo. Las dosis que causan daño al cultivo se convertirían en dosis estimadas de campo de glyphosate que variarían entre 17,6 y 77 kg ha−1. En general, los resultados indican que inclusive con aplicaciones frecuentes de dosis altas de glyphosate durante varios años, la probabilidad de que ocurran daños al trigo, el guisante, y la colza producto de residuos en el suelo es baja. Sin embargo, puede haber suficiente mérito en realizar un mayor monitoreo de los residuos en el suelo de glyphosate y AMPA en sistemas de cultivos con una alta utilización de glyphosate durante un largo período de tiempo.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Prashant Jha, Montana State University.

References

Literature Cited

Blackshaw, RE, Entz, T (1995) Day and night temperature effects on vegetative growth of Erodium cicutarium. Weed Res 35: 471476 Google Scholar
Borggaard, OK, Gimsing, AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64: 441456 Google Scholar
Bott, S, Tesfamariam, T, Kania, A, Eman, B, Aslan, N, Romheld, V, Neumann, G (2011) Phytotoxicity of glyphosate soil residues re-mobilized by phosphate fertilisation. Plant Soil 342: 249263 Google Scholar
Cornish, PS (1992) Glyphosate residues in a sandy soil affect tomato transplants. Aust J Exp Agric 32: 395399 Google Scholar
Corrêa, EA, Dayan, FE, Owens, DK, Rimando, AM, Duke, SO (2016) Glyphosate-resistant and conventional canola (Brassica napus L.) responses to glyphosate and aminophosphonic acid (AMPA) treatment. J Agric Food Chem 64: 35083513 Google Scholar
de Jonge, H, de Jonge, LW, Jacobsen, OH, Yamaguchi, T, Moldrup, P (2001) Glyphosate sorption in soils of different pH and phosphorus content. Soil Sci 166: 230238 Google Scholar
Ding, W, Reddy, KN, Zablotowicz, RM, Bellaloui, N, Bruns, HA (2011) Physiological responses of glyphosate-resistant and glyphosate-sensitive soybean to aminomethylphosphonic acid, a metabolite of glyphosate. Chemosphere 83: 593598 Google Scholar
Doublet, J, Mamy, L, Barriuso, E (2009) Delayed degradation in soil of foliar herbicides glyphosate and sulcotrione previously absorbed by plants: consequences on herbicide fate and risk assessment. Chemosphere 77: 582589 Google Scholar
Duke, SO, Powles, SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64: 319325 Google Scholar
Franz, JE, Mao, KK, Sikorski, JA (1997) Glyphosate: A Unique Global Herbicide. Washington, DC: American Chemical Society Monograph 189. 653 pGoogle Scholar
Gimsing, AL, Borggaard, OK, Jacobsen, OS, Aamand, J, Sorensen, J (2004) Chemical and microbiological soil characteristics controlling glyphosate mineralization in Danish surface soils. Appl Soil Ecol 27: 233242 Google Scholar
Gomes, MP, Smedbol, E, Chalifour, A, Hénault-Ethier, L, Labrecque, M, Lepage, L, Lucotte, M, Juneau, P (2014) Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. J Exp Bot 65: 26914703 Google Scholar
Grunewald, K, Schmidt, W, Unger, C, Hanschmann, G (2001) Behavior of glyphosate and aminomethylphosphonic acid (AMPA) in soils and water of reservoir Radeburg II catchment (Saxony/Germany). J Plant Nutr Soil Sci 164: 6570 Google Scholar
Hoagland, RE (1980) Effects of glyphosate on metabolism of phenolic compounds: VI. Effects of glyphosine and glyphosate metabolites on phenylalanine ammonia-lyase activity, growth, and protein, chlorophyll, and anthocyanin levels in soybean (Glycine max) seedlings. Weed Sci 28: 393400 Google Scholar
Hornsby, AG, Wauchope, RD, Herner, A (1996) Pesticide Properties in the Environment. New York: Springer-Verlag. 227 pGoogle Scholar
Kjaer, GA, Olsen, P, Ullum, M, Grant, R (2005) Leaching of glyphosate and aminophosphonic acid from Danish agricultural field sites. J Environ Qual 34: 608620 Google Scholar
Laitinen, P, Ramo, S, Nikunen, U, Jauhiainen, L, Siimes, K, Turtola, E (2009) Glyphosate and phosphorus leaching and residues in boreal sandy soil. Plant Soil 323: 267283 Google Scholar
Laitinen, P, Siimes, K, Eronen, L, Ramo, S, Welling, L, Oinonen, S, Mattsoff, L, Ruohonen-Lehto, M (2006) Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils. Pest Manag Sci 62: 473491 Google Scholar
Mamy, L, Barriuso, E, Gabrielle, B (2005) Environmental fate of herbicides trifluralin, metazachlor, metamitron, and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops. Pest Manag Sci 61: 905916 Google Scholar
Nandula, VK, Reddy, KN, Rimando, AM, Duke, SO, Poston, DH (2007) Glyphosate-resistant and -susceptible soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with glyphosate. J Agric Food Chem 55: 35403545 Google Scholar
Piccolo, A, Celano, G, Arienzo, M, Mirabella, A (1994) Adsorption and desorption of glyphosate in some European soils. J Environ Sci Health B 29: 11051115 Google Scholar
Reddy, KN, Rimando, AM, Duke, SO (2004) Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 52: 51395143 Google Scholar
Simonsen, L, Fomsgaard, IS, Svensmark, B, Spliid, NH (2008) Fate and availability of glyphosate and AMPA in agricultural soil. J Environ Sci Health Part B 43: 365375 Google Scholar
Smith, AE, Aubin, AJ (1993) Degradation of 14C-glyphosate in Saskatchewan soils. Bull Environ Contam Toxicol 50: 499505 Google Scholar
Vereecken, H (2005) Mobility and leaching of glyphosate: a review. Pest Manag Sci 61: 11391151 Google Scholar