Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T01:03:38.175Z Has data issue: false hasContentIssue false

Phytoplankton community during a coccolithophorid bloom in the Patagonian Shelf: microscopic and high-performance liquid chromatography pigment analyses

Published online by Cambridge University Press:  04 May 2011

Márcio Silva de Souza*
Affiliation:
Laboratório de Fitoplâncton e Microorganismos Marinhos, Instituto de Oceanografia (FURG), PO Box 474, Campus Carreiros, 96201-900, Rio Grande, Brazil
Carlos Rafael Borges Mendes
Affiliation:
Laboratório de Fitoplâncton e Microorganismos Marinhos, Instituto de Oceanografia (FURG), PO Box 474, Campus Carreiros, 96201-900, Rio Grande, Brazil Universidade de Lisboa, Faculdade de Ciências, Centro de Oceanografia, Campo Grande, 1749-016, Lisbon, Portugal
Virgínia Maria Tavano Garcia
Affiliation:
Laboratório de Fitoplâncton e Microorganismos Marinhos, Instituto de Oceanografia (FURG), PO Box 474, Campus Carreiros, 96201-900, Rio Grande, Brazil
Ricardo Pollery
Affiliation:
Laboratório de Biogeoquímica, Departamento de Ecologia, Instituto de Biologia (UFRJ), Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
Vanda Brotas
Affiliation:
Universidade de Lisboa, Faculdade de Ciências, Centro de Oceanografia, Campo Grande, 1749-016, Lisbon, Portugal
*
Correspondence should be addressed to: M.S. de Souza, Laboratório de Fitoplâncton e Microorganismos Marinhos, Instituto de Oceanografia (FURG), PO Box 474, Campus Carreiros, 96201-900, Rio Grande, Brazil email: souza_msilva@yahoo.com.br

Abstract

We describe the phytoplankton community and biomass during a summer coccolithophorid bloom sampled over the Patagonian shelf (48.5°S–50.5°S). Those phytoplankton species can contribute to the flux of calcium carbonate out of surface waters. Results from both microscope and high-performance liquid chromatography (HPLC) analysis are shown to complement information on the phytoplankton community. From CHEMTAX analysis of HPLC data, the most important organisms and groups identified were the coccolithophorid Emiliania huxleyi, the haptophyte Phaeocystis antarctica, dinoflagellates, diatoms, cryptophytes, prasinophytes and cyanobacteria. Phytoplankton microscope counts were converted into phytoplankton group-specific biovolume estimates. Although some microscope-identified taxa could not be determined by CHEMTAX, e.g. the autotrophic ciliate Myrionecta rubra, cluster analyses from both techniques showed similar results for the main groups. Both Emiliania huxleyi cell concentration and biomass, and the pigment 19′-hexanoyloxyfucoxanthin were the most important biological features during the sampling period. At surface, nitrate was moderately high (0.2–4.2 µM) in coccolithophorid-dominated samples, whereas phosphate (<0.33 µM) and silicate (<1.35 µM) concentrations were low. Among the environmental factors low Si:N ratios were mainly associated with the dominance of E. huxleyi. Competition and probably differential grazing could also promote a coccolithophorid outgrowth over other photoautotrophs during the summer season in the Patagonian shelf.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acha, E.M., Mianzan, H.W., Guerrero, R.A., Favero, M. and Bava, J. (2004) Marine fronts at the continental shelves of austral South America: physical and ecological processes. Journal of Marine Systems 44, 83105.CrossRefGoogle Scholar
Aminot, A. and Chaussepied, M. (1983) Manuel des analyses chimiques en millieu marin. Brest: Centre National pour l’Éxploration des Océans, 395 pp.Google Scholar
Andruleit, H., Stäger, S., Rogalla, U. and Cepek, P. (2003) Living coccolithophores in the Northern Arabian Sea: ecological tolerances and environmental control. Marine Micropaleontology 49, 157181.CrossRefGoogle Scholar
Bianchi, A.A., Bianucci, L., Piola, A.R., Pino, D.R., Schloss, I., Poisson, A. and Balestrini, C.F. (2005) Vertical stratification and sea-air CO2 fluxes in the Patagonian shelf. Journal of Geophysical Research, 110, C07003.CrossRefGoogle Scholar
Bianchi, A.A., Pino, D.R., Perlender, H.G.I., Osiroff, A.P., Segura, V., Lutz, V., Clara, M.L., Balestrini, C.F. and Piola, A.R. (2009) Annual balance and seasonal variability of sea–air CO2 fluxes in the Patagonia Sea: their relationship with fronts and chlorophyll distribution. Journal of Geophysical Research 114, C03018.CrossRefGoogle Scholar
Brzezinski, M.A. (1985) The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology 21, 347357.CrossRefGoogle Scholar
Brown, C.W. (1995) Global distribution of coccolithophore blooms. Oceanography 8, 5960.CrossRefGoogle Scholar
Carreto, J.I., Montoya, N.G., Benavides, H.R., Guerrero, R. and Carignan, M.O. (2003) Characterization of spring phytoplankton communities in the Río de La Plata maritime front using pigment signatures and cell microscopy. Marine Biology 143, 10131027.CrossRefGoogle Scholar
Carreto, J.I., Montoya, N.G., Akselman, R., Carignan, M.O., Silva, R.I. and Colleoni, D.A.C. (2008) Algal pigment patterns and phytoplankton assemblages in different water masses of Río de La Plata maritime front. Continental Shelf Research 28, 15891606.CrossRefGoogle Scholar
Clarke, K.R. and Warwick, R.M. (1994) Changes in marine communities: an approach to statistical analysis and interpretation. Plymouth: Natural Environmental Research Council, 234 pp.Google Scholar
De Vargas, C., Aubry, M.-P., Probert, I. and Young, J. (2007) Origin and evolution of coccolithophores: from coastal hunters to oceanic farmers. In Falkowski, P. and Knoll, A.H. (eds) Evolution of primary producers in the sea. San Diego, CA: Academic Press, pp. 251286.CrossRefGoogle Scholar
Egge, J.K. and Aksnes, D.L. (1992) Silicate as regulating nutrient in phytoplankton competition. Marine Ecology Progress Series 83, 281289.CrossRefGoogle Scholar
Falkowski, P.G. and Raven, J.A. (2007) Aquatic photosynthesis. 2nd edition. Princeton, NJ: Princeton University Press, 500 pp.CrossRefGoogle Scholar
Falkowski, P.G., Katz, M.E., Knoll, A.H., Quigg, A., Raven, J.A., Schofield, O. and Taylor, F.J.R. (2004) The evolution of modern eukaryotic phytoplankton. Science 305, 354360.CrossRefGoogle ScholarPubMed
Fileman, E.S., Cummings, D.G. and Llewellyn, C.A. (2002) Microzooplankton community structure and the impact of microzooplankton grazing during an Emiliania huxleyi bloom, off the Devon coast. Journal of the Marine Biological Association of the United Kingdom 82, 359368.CrossRefGoogle Scholar
Garcia, V.M.T., Garcia, C.A.E., Mata, M.M., Pollery, R.C., Piola, A.R., Signorini, S.R., McClain, C.R. and Iglesias-Rodríguez, M.D. (2008) Environmental factors controlling the phytoplankton blooms at the Patagonia shelf-break in spring. Deep-Sea Research I 55, 11501166.CrossRefGoogle Scholar
Garcia, C.A.E., Garcia, V.M.T., Dogliotti, A.I., Ferreira, A., Romero, S.I., Mannino, A., de Souza, M.S. and Mata, M.M. (in press) Environmental conditions and bio-optical signature of a coccolithophorid bloom in the Patagonian Shelf. Journal of Geophysical Research—Oceans (doi: 10.1029/2010JC006595).CrossRefGoogle Scholar
Gayoso, A.M. (1995) Bloom of Emiliania huxleyi (Prymnesiophyceae) in the western South Atlantic Ocean. Journal of Plankton Research, 17, 17171722.CrossRefGoogle Scholar
Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollingher, U. and Zohary, T. (1999) Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403424.CrossRefGoogle Scholar
Iglesias-Rodríguez, M.D., Brown, C.W., Doney, S.C., Kleypas, J., Kolber, D., Kolber, Z., Hayes, P.K. and Falkowski, P.G. (2002) Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Global Biogeochemical Cycles 16, 1100.CrossRefGoogle Scholar
IOC UNESCO (Intergovernmental Oceanographic Commission of UNESCO) (2010) Karlson, B., Cusack, C. and Bresnan, E. (eds) Microscopic and molecular methods for quantitative phytoplankton analysis. Paris: UNESCO (IOC Manuals and Guides, no. 55) (IOC/2010/MG/55) 110 pp.Google Scholar
Koroleff, F. (1969) Direct determination of ammonia in natural waters as indophenol blue. International Council for the Exploration of the Sea (CM Documents) C: 9, Hydrological Communication.Google Scholar
Latasa, M. (2007) Improving estimations of phytoplankton class abundances using CHEMTAX. Marine Ecology Progress Series 329, 1321.CrossRefGoogle Scholar
Llewellyn, C.A., Fishwick, J.R. and Blackford, J.C. (2005) Phytoplankton community assemblage in the English Channel: a comparison using chlorophyll a derived from HPLC-CHEMTAX and carbon derived from microscopy cell counts. Journal of Plankton Research 27, 103119.CrossRefGoogle Scholar
Lutz, V.A., Segura, V., Dogliotti, A.I., Gagliardini, D.A., Bianchi, A.A. and Balestrini, C.F. (2010) Primary production in the Argentine Sea during spring estimated by field and satellite models. Journal Plankton Research 32, 181195.CrossRefGoogle Scholar
Mackey, M.D., Mackey, D.J., Higgins, H.W. and Wright, S.W. (1996) CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Marine Ecology Progress Series 144, 265283.CrossRefGoogle Scholar
Malin, G. and Steinke, M. (2004) Dimethyl sulfide production: what is the contribution of the coccolithophores? In Thierstein, H.R. and Young, J.R. (eds) Coccolithophores: from molecular processes to global impact. Berlin and Heidelberg: Springer-Verlag, pp. 127164.CrossRefGoogle Scholar
Margalef, R. (1958) Temporal succession and spatial heterogeneity in phytoplankton. In Buzzati-Traverso, A.A. (ed.) Perspectives in marine biology. Los Angeles: University of California Press, pp. 323349.Google Scholar
Merico, A., Tyrrell, T., Lessard, E.J., Oguz, T., Stabeno, P.J., Zeeman, S.I. and Whitledge, T.E. (2004) Modelling phytoplankton succession on the Bering Sea shelf: role of climate influences and trophic interactions in generating Emiliania huxleyi blooms 1997–2000. Deep-Sea Research I 51, 18031826.CrossRefGoogle Scholar
Merico, A., Tyrrell, T., Lessard, E.J. and Cokacar, T. (2006) Is there any relationship between phytoplankton seasonal dynamics and the carbonate system? Journal of Marine Systems 59, 120142.CrossRefGoogle Scholar
Mostajo, E.L. (1985) Nanoplankton calcareo del Océano Atlántico Sur. Revista Española de Micropaleontología 17, 261280.Google Scholar
Mostajo, E.L. (1986) La tanatocenosis de cocolitofóridos como indicadores biológicos de masas de agua superficiales. Neotropica 32, 167170.Google Scholar
Negri, R.M., Silva, R.I. and Valiñas, M. (2003) Distribución de Gephyrocapsa oceanica (Haptophyta) en un sector de la Plataforma Argentina (Atlántico Sudoccidental, 37°–40°S). Boletín de la Sociedad Argentina de Botánica 38, 131137.Google Scholar
Olson, M.B. and Strom, S.L. (2002) Phytoplankton growth, microzooplankton herbivory and community structure in the southeast Bering Sea: insight into the formation and temporal persistence of an Emiliania huxleyi bloom. Deep-Sea Research II 49, 59695990.CrossRefGoogle Scholar
Paasche, E. (2001) A review of the coccolithophorid Emiliana huxleyi (Prymnesiophyceae) with particular reference to growth, coccolith formation and calcification–photosynthesis interactions. Phycologia 40, 503529.CrossRefGoogle Scholar
Painter, S.C., Poulton, A.J., Allen, J.T., Pidcock, R. and Balch, W.M. (2010) The COPAS’08 expedition to the Patagonian Shelf: physical and environmental conditions during the 2008 coccolithophore bloom. Continental Shelf Research 30, 19071923.CrossRefGoogle Scholar
Putland, J.N., Whitney, F.A. and Crawford, D.W. (2004) Survey of bottom-up controls of Emiliania huxleyi in the Northeast Subarctic Pacific. Deep-Sea Research I 51, 17931802.CrossRefGoogle Scholar
Reynolds, C.S. (1997) Vegetation processes in the pelagic: a model for ecosystem theory. In Kinne, O. (ed.) Excellence in ecology. Oldendorf: Ecology Institute Publisher, 371 pp.Google Scholar
Romero, S.I., Piola, A., Charo, M. and Garcia, C.A.E. (2006) Chlorophyll a variability off Patagonia based on SeaWiFS data. Journal of Geophysical Research 111, C05021.CrossRefGoogle Scholar
Sabatini, M., Reta, R. and Matano, R. (2004) Circulation and zooplankton biomass distribution over the southern Patagonian shelf during late summer. Continental Shelf Research 24, 13591373.CrossRefGoogle Scholar
Signorini, S.R., Garcia, V.M.T., Piola, A.R., Garcia, C.A.E, Mata, M.M. and McClain, C.R. (2006) Seasonal and interannual variability of calcite in the vicinity of the Patagonia shelf break (38°S–52°S). Geophysical Research Letters, 33, L16610.CrossRefGoogle Scholar
Signorini, S.R., Garcia, V.M.T., Piola, A.R., Evangelista, H., McClain, C.R., Garcia, C.A.E. and Mata, M.M. (2009) Further studies on the physical and biogeochemical causes for large interannual changes in the Patagonian shelf spring–summer phytoplankton bloom biomass. NASA Goddard Space Flight Center, TM-2009-214176, Greenbelt, 43 pp.Google Scholar
Smayda, T.J. and Reynolds, C.S. (2001) Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. Journal of Plankton Research 23, 447461.CrossRefGoogle Scholar
Sournia, A. (ed.) (1978) Phytoplankton manual. Paris: UNESCO, Muséum National d'Histoire Naturelle, 337 pp.Google Scholar
Sukhanova, I.N. and Flint, M.V. (1998) Anomalous blooming of coccolithophorids over the eastern Bering Sea shelf. Oceanology 38, 502505Google Scholar
Turkoglu, M. (2008) Synchronous blooms of the coccolithophore Emiliania huxleyi and three dinoflagellates in the Dardanelles (Turkish Straits System). Journal of the Marine Biological Association of the United Kingdom 88, 433441.CrossRefGoogle Scholar
Tyrrell, T. and Merico, A. (2004) Emiliania huxleyi: bloom observations and the conditions that induce them. In Thierstein, H.R. and Young, J.R. (eds) Coccolithophores: from molecular processes to global impact. Berlin and Heidelberg: Springer-Verlag, pp. 7597.CrossRefGoogle Scholar
Utermöhl, H. (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9, 138.Google Scholar
Westbroek, P., Brown, C.W., Bleijswijk, J., Brownlee, C., Brummer, G.J., Conte, M., Egge, J., Fernández, E., Jordan, R., Knappertsbusch, M., Stefels, J., Veldhuis, M., van der Wal, P. and Young, J. (1993) A model system approach to biological climate forcing: the example of Emiliania huxleyi. Global Planet Change 8, 2746.CrossRefGoogle Scholar
Wright, S.W. and Jeffrey, S.W. (2006) Pigment markers for phytoplankton production. In Volkmann, J.K. (ed.) Marine organic matter: biomarkers, isotopes and DNA. Berlin and Heidelberg: Springer-Verlag, pp. 71104 [The Handbook of Environmental Chemistry, Volume 2, Part 2N].CrossRefGoogle Scholar
Wright, S.W., Ishikawa, A., Marchant, H.J., Davidson, A.T., van den Enden, R.L. and Nash, G.V. (2009) Composition and significance of picophytoplankton in Antarctic waters. Polar Biology 32, 797808.CrossRefGoogle Scholar
Zapata, M., Rodríguez, F. and Garrido, J.L. (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Marine Ecology Progress Series 195, 2945.CrossRefGoogle Scholar
Zapata, M., Jeffrey, S.W., Wright, S.W., Rodríguez, F., Garrido, J.L. and Clementson, L. (2004) Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Marine Ecology Progress Series 270, 83102.CrossRefGoogle Scholar
Zar, J.H. (1999) Biostatistical analysis. 4th edition. Upper Saddle River, NJ: Prentice-Hall, 663 pp.Google Scholar