Published online by Cambridge University Press: 11 July 2019
This paper concerns the study of some bifurcation properties for the following class of Choquard-type equations:(P)$$\left\{ {\begin{array}{*{20}{l}}{ - \Delta u = \lambda f(x)\left[ {u + \left( {{I_\alpha }*f( \cdot )H(u)} \right)h(u)} \right],{\rm{ in }} \ {{\mathbb{R}}^3},}\\{{{\lim }_{|x| \to \infty }}u(x) = 0,\quad u(x) > 0,\quad x \in {{\mathbb{R}}^3},\quad u \in {D^{1,2}}({{\mathbb{R}}^3}),}\end{array}} \right.$$
${I_\alpha }(x) = 1/|x{|^\alpha },\,\alpha\in (0,3),\,\lambda> 0,\,f:{{\mathbb{R}}^3} \to {\mathbb{R}}$ is a positive continuous function and h :
${\mathbb{R}} \to {\mathbb{R}}$ is a bounded Hölder continuous function. The main tools used are Leray–Schauder degree theory and a global bifurcation result due to Rabinowitz.
Please note a has been issued for this article.