Hostname: page-component-cb9f654ff-w5vf4 Total loading time: 0 Render date: 2025-08-07T03:48:17.649Z Has data issue: false hasContentIssue false

ASYMPTOTIC DIMENSION AND GEOMETRIC DECOMPOSITIONS IN DIMENSIONS 3 AND 4

Published online by Cambridge University Press:  21 April 2025

H. CONTRERAS PERUYERO
Affiliation:
Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México UNAM, Antigua Carretera a Pátzcuaro # 8701, Col. Ex Hacienda San José de la Huerta, 58089, Morelia, Michoacán, Mexico e-mail:haydeeperuyero@matmor.unam.mx
P. SUÁREZ-SERRATO*
Affiliation:
Max-Planck-Institute for Mathematics, Bonn, Germany and Instituto de Matemáticas, Universidad Nacional Autónoma de México UNAM, Mexico Tenochtitlan
*

Abstract

We show that the fundamental groups of smooth $4$-manifolds that admit geometric decompositions in the sense of Thurston have asymptotic dimension at most four, and equal to four when aspherical. We also show that closed $3$-manifold groups have asymptotic dimension at most three. Our proof method yields that the asymptotic dimension of closed $3$-dimensional Alexandrov spaces is at most three. Thus, we obtain that the Novikov conjecture holds for closed $4$-manifolds with such a geometric decomposition and for closed $3$-dimensional Alexandrov spaces. Consequences of these results include a vanishing result for the Yamabe invariant of certain $0$-surgered geometric $4$-manifolds and the existence of zero in the spectrum of aspherical smooth $4$-manifolds with a geometric decomposition.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Communicated by Graeme Wilkin

HCP was supported by UNAM Posdoctoral Program (POSDOC). PSS thanks the Max-Planck-Institute for Mathematics in Bonn.

References

Albanese, M., ‘The Yamabe invariants of Inoue surfaces, Kodaira surfaces, and their blowups’, Ann. Global Anal. Geom. 59 (2021), 179195.10.1007/s10455-020-09744-3CrossRefGoogle Scholar
Bárcenas, N., Juan-Pineda, D. and Suárez-Serrato, P., ‘Topological rigidity of higher graph manifolds’, Bol. Soc. Mat. Mex. (3) 23(1) (2017), 119127.10.1007/s40590-016-0099-5CrossRefGoogle Scholar
Bartels, A. C., ‘Squeezing and higher algebraic K-theory’, K-Theory 28(1) (2003), 1937.10.1023/A:1024166521174CrossRefGoogle Scholar
Bell, G., ‘Asymptotic dimension’, in: Office Hours with a Geometric Group Theorist (eds. Clay, M. and Margalit, D.) (Princeton University Press, Princeton, NJ, 2017), pp. 219236.10.2307/j.ctt1vwmg8g.15CrossRefGoogle Scholar
Bell, G. and Dranishnikov, A., ‘On asymptotic dimension of groups’, Algebr. Geom. Topol. 1 (2001), 5771.10.2140/agt.2001.1.57CrossRefGoogle Scholar
Bell, G. and Dranishnikov, A., ‘Asymptotic dimension’, Topology Appl. 155(12) (2008), 12651296.10.1016/j.topol.2008.02.011CrossRefGoogle Scholar
Brown, K. S., Cohomology of Groups, Graduate Texts in Mathematics, 87 (Springer, New York, 2012).Google Scholar
Cappell, S. E., ‘A splitting theorem for manifolds’, Invent. Math. 33 (1976), 69170.10.1007/BF01402340CrossRefGoogle Scholar
Cappell, S. E., ‘On homotopy invariance of higher signatures’, Invent. Math. 33 (1976), 171179.10.1007/BF01402341CrossRefGoogle Scholar
Carlsson, G. and Goldfarb, B., ‘The integral Novikov Conjecture for groups with finite asymptotic dimension’, Invent. Math. 157 (2004), 405418.10.1007/s00222-003-0356-xCrossRefGoogle Scholar
Carlsson, G. and Goldfarb, B., ‘On homological coherence of discrete groups’, J. Algebra 276(2) (2004), 502514.10.1016/j.jalgebra.2004.02.006CrossRefGoogle Scholar
Chodosh, O. and Li, C., ‘Generalized soap bubbles and the topology of manifolds with positive scalar curvature’, Ann. of Math. (2) 199(2) (2024), 707740.10.4007/annals.2024.199.2.3CrossRefGoogle Scholar
Choi, S., ‘Geometric structures on orbifolds and holonomy representations’, Geom. Dedicata 104 (2004), 161199.10.1023/B:GEOM.0000022859.74165.44CrossRefGoogle Scholar
Connell, C. and Suárez-Serrato, P., ‘On higher graph manifolds’, Int. Math. Res. Not. IMRN 2019(5) (2019), 12811311.10.1093/imrn/rnx133CrossRefGoogle Scholar
Contreras Peruyero, H. and Suárez-Serrato, P., ‘Collapsing and group growth as obstructions to Einstein metrics on some smooth 4-manifolds’, New York J. Math. 28 (2022), 659671.Google Scholar
Dahmani, F. and Yaman, A., ‘Bounded geometry in relatively hyperbolic groups’, New York J. Math. 11 (2005), 8995.Google Scholar
Davis, J. F., ‘Manifold aspects of the Novikov conjecture’, in: Surveys on Surgery Theory, Volume 1, Annals of Mathematics Studies, 145 (eds. Cappell, S., Ranicki, A. and Rosenberg, J.) (Princeton University Press, Princeton, NJ, 2000), pp. 195224.Google Scholar
Dranishnikov, A., ‘On hypersphericity of manifolds with finite asymptotic dimension’, Trans. Amer. Math. Soc. 355(1) (2003), 155167.10.1090/S0002-9947-02-03115-XCrossRefGoogle Scholar
Dranishnikov, A., ‘Cohomological approach to asymptotic dimension’, Geom. Dedicata 141 (2009), 5986.10.1007/s10711-008-9343-0CrossRefGoogle Scholar
Engel, A. and Marcinkowski, M., ‘Burghelea conjecture and asymptotic dimension of groups’, J. Topol. Anal. 12(2) (2020), 321356.10.1142/S1793525319500559CrossRefGoogle Scholar
Ferry, S. C., Ranicki, A. and Rosenberg, J., ‘A history and survey of the Novikov conjecture’, in: Novikov Conjectures, Index Theorems and Rigidity. Volume 1, London Mathematical Society Lecture Note Series, 226 (eds. S. C. Ferry, A. Ranicki and J. Rosenberg) (Cambridge University Press, Cambridge, 1995).Google Scholar
Filipkiewicz, R. O., Four Dimensional Geometries, PhD Thesis, University of Warwick, 1984.Google Scholar
Freedman, M. H. and Teichner, P., ‘ $4$ -manifold topology. I. Subexponential groups’, Invent. Math. 122(3) (1995), 509529.10.1007/BF01231454CrossRefGoogle Scholar
Frigerio, R., Lafont, J.-F. and Sisto, A., ‘Rigidity of high dimensional graph manifolds’, Astérisque 372 (2015), xxi+177 pp.Google Scholar
Galaz-García, F. and Guijarro, L., ‘On three-dimensional Alexandrov spaces’, Int. Math. Res. Not. IMRN 2015(14) (2015), 55605576.10.1093/imrn/rnu101CrossRefGoogle Scholar
Grave, B., ‘Asymptotic dimension of coarse spaces’, New York J. Math. 12 (2006), 249256.Google Scholar
Gromov, M., ‘Volume and bounded cohomology’, Publ. Math. Inst. Hautes Études Sci. 56 (1982), 599.Google Scholar
Gromov, M., Geometric Group Theory. Volume 2: Asymptotic Invariants of Infinite Groups (Sussex, 1991), London Mathematical Society Lecture Note Series, 182 (Cambridge University Press, Cambridge, 1993), 1295.Google Scholar
Gromov, M., ‘No metrics with positive scalar curvatures on aspherical 5-manifolds’, Preprint, 2020, arXiv:2009.05332.Google Scholar
Higson, N., ‘Bivariant K-theory and the Novikov conjecture’, Geom. Funct. Anal. 10(3) (2000), 563581.10.1007/PL00001630CrossRefGoogle Scholar
Hillman, J. A., Four-Manifolds, Geometries and Knots, Geometry and Topology Monographs, 5 (Geometry and Topology Publications, Coventry, 2002).Google Scholar
Hillman, J. A., ‘ ${\mathrm{S}}^2$ -bundles over $2$ -orbifolds’, J. Lond. Math. Soc. (2) 87(1) (2013), 6986.10.1112/jlms/jds038CrossRefGoogle Scholar
Ji, L., ‘Asymptotic dimension and the integral K-theoretic Novikov conjecture for arithmetic groups’, J. Differential Geom. 68(3) (2004), 535544.10.4310/jdg/1115669594CrossRefGoogle Scholar
Ji, L., ‘Buildings and their applications in geometry and topology’, Asian J. Math. 10(1) (2006), 1180.10.4310/AJM.2006.v10.n1.a5CrossRefGoogle Scholar
Koebe, P., ‘Über die Uniformisierung reeller analytischer Kurven’, Göttinger Nachr. 67(2) (1907), 177190.Google Scholar
Lang, U. and Schlichenmaier, T., ‘Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions’, Int. Math. Res. Not. IMRN 2005(58) (2005), 36253655.10.1155/IMRN.2005.3625CrossRefGoogle Scholar
LeBrun, C., ‘Kodaira dimension and the Yamabe problem’, Comm. Anal. Geom. 7(1) (1999), 133156.10.4310/CAG.1999.v7.n1.a5CrossRefGoogle Scholar
Lott, J., ‘The zero-in-the-spectrum question’, Enseign. Math. 42 (1996), 341376.Google Scholar
Mackay, J. M. and Sisto, A., ‘Embedding relatively hyperbolic groups in products of trees’, Algebr. Geom. Topol. 13(4) (2013), 22612282.10.2140/agt.2013.13.2261CrossRefGoogle Scholar
Núñez-Zimbrón, J., ‘Topological and geometric rigidity for spaces of curvature bounded below’, in: Recent Advances in Alexandrov Geometry, CIMAT Lectures in Mathematical Sciences, 1 (eds. L. Hernández-Lamoneda and R. Herrera Guzmán) (Birkhäuser, Cham, 2022).Google Scholar
Osin, D., ‘Asymptotic dimension of relatively hyperbolic groups’, Int. Math. Res. Not. IMRN 2005(35) (2005), 21432161.10.1155/IMRN.2005.2143CrossRefGoogle Scholar
Paternain, G. P. and Petean, J., ‘Minimal entropy and collapsing with curvature bounded from below’, Invent. Math. 151(2) (2003), 415450.10.1007/s00222-002-0262-7CrossRefGoogle Scholar
Paternain, G. P. and Petean, J., ‘Entropy and collapsing of compact complex surfaces’, Proc. Lond. Math. Soc. (3) 89(3) (2004), 763786.10.1112/S002461150401487XCrossRefGoogle Scholar
Perelman, G., ‘Ricci flow with surgery on three-manifolds’, Preprint, 2003, arXiv:math/0303109 [math.DG].Google Scholar
Petean, J., ‘Computations of the Yamabe invariant’, Math. Res. Lett. 5(6) (1998), 703709.10.4310/MRL.1998.v5.n6.a1CrossRefGoogle Scholar
Petean, J., ‘The Yamabe invariant of simply connected manifolds’, J. reine angew. Math. 523 (2000), 225231.Google Scholar
Poincaré, H., ‘Sur l’uniformisation des fonctions analytiques’, Acta Math. 31 (1907), 163.10.1007/BF02415442CrossRefGoogle Scholar
Ren, Q., ‘3-manifold group and finite decomposition complexity’, J. Funct. Anal. 258(11) (2010), 37923800.10.1016/j.jfa.2010.01.020CrossRefGoogle Scholar
Roe, J., Lectures on Coarse Geometry, University Lecture Series, 31 (American Mathematical Society, Providence, RI, 2003).10.1090/ulect/031CrossRefGoogle Scholar
Roe, J., ‘Hyperbolic groups have finite asymptotic dimension’, Proc. Amer. Math. Soc. 133(9) (2005), 24892490.10.1090/S0002-9939-05-08138-4CrossRefGoogle Scholar
Schoen, R., ‘Variational theory for the total scalar curvature functional for Riemannian metrics and related topics’, in: Topics in Calculus of Variations. Lecture Notes in Mathematics, 1365 (ed. M. Giaquinta) (Springer Verlag, Berlin, 1987), pp. 120154.Google Scholar
Scott, P., ‘The geometries of 3-manifolds’, Bull. Lond. Math. Soc. 15(5) (1983), 401487.10.1112/blms/15.5.401CrossRefGoogle Scholar
Skandalis, G., Tu, J. L. and Yu, G., ‘The coarse Baum–Connes conjecture and groupoids’, Topology 41(4) (2002), 807834.10.1016/S0040-9383(01)00004-0CrossRefGoogle Scholar
Suárez-Serrato, P., ‘Atoroïdalité complète et annulation de l’invariant ${\bar{\lambda}}$ de Perelman’, Actes Sémin. Théor. Spectr. Géom. 26(Année) (2007–2008), 145154.Google Scholar
Suárez-Serrato, P., ‘Minimal entropy and geometric decompositions in dimension four’, Algebr. Geom. Topol. 9(1) (2009), 365395.10.2140/agt.2009.9.365CrossRefGoogle Scholar
Suárez-Serrato, P. and Torres, R., ‘A note on collapse, entropy, and vanishing of the Yamabe invariant of symplectic 4-manifolds’, J. Geom. Phys. 86 (2014), 383391.10.1016/j.geomphys.2014.09.001CrossRefGoogle Scholar
Thurston, W. P., The Geometry and Topology of $3$ -manifolds, Lecture Notes, 1 (Princeton University Press, Princeton, NJ, 1979).Google Scholar
Thurston, W. P., Three-Dimensional Geometry and Topology. Volume 1, Princeton Mathematical Series, 35 (Princeton University Press, Princeton, NJ, 1997).10.1515/9781400865321CrossRefGoogle Scholar
Valette, A., ‘On the Baum–Connes assembly map for discrete groups’, in: Proper Group Actions and the Baum–Connes Conjecture, CRM Barcelona, 1 (eds. G. Mislin and A. Valette) (Birkhäuser, Basel, 2003), pp. 79124.10.1007/978-3-0348-8089-3_2CrossRefGoogle Scholar
Wall, C. T. C., Surgery on Compact Manifolds, London Mathematical Society Monographs, 1 (Academic Press, London and New York, 1970).Google Scholar
Wall, C. T. C., ‘Geometric structures on compact complex analytic surfaces’, Topology 25(2) (1986), 119153.10.1016/0040-9383(86)90035-2CrossRefGoogle Scholar
Weinberger, S., Variations on a Theme of Borel: An Essay on the Role of the Fundamental Group in Rigidity, Cambridge Tracts in Mathematics, 213 (Cambridge University Press, Cambridge, 2023).Google Scholar
Yu, G., ‘The Novikov conjecture for groups with finite asymptotic dimension’, Ann. of Math. (2) 147(2) (1998), 325355.10.2307/121011CrossRefGoogle Scholar
Yu, G., ‘The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space’, Invent. Math. 139(1) (2000), 201240.10.1007/s002229900032CrossRefGoogle Scholar
Yu, G., ‘The Novikov conjecture’, Russian Math. Surveys 74(3) (2019), 525541.10.1070/RM9882CrossRefGoogle Scholar