Hostname: page-component-cb9f654ff-lqqdg Total loading time: 0 Render date: 2025-08-10T19:25:19.773Z Has data issue: false hasContentIssue false

Microstructure and geochemical properties of modern and buried soils and hosting permafrost sediments of the Batagay retrogressive thaw slump

Published online by Cambridge University Press:  26 February 2025

A.V. Lupachev*
Affiliation:
Institute of Physico–Chemical and Biological Problems in Soil Science, Russian Academy of Sciences, 2/2 Institutskaya, Pushchino, 142290, Russian Federation
N.I. Tananaev
Affiliation:
Melnikov Permafrost Institute, Siberian Branch, Russian Academy of Sciences, Russian Federation
J.B. Murton
Affiliation:
Permafrost Laboratory, Department of Geography, University of Sussex, Brighton, United Kingdom
P.I. Kalinin
Affiliation:
Institute of Physico–Chemical and Biological Problems in Soil Science, Russian Academy of Sciences, 2/2 Institutskaya, Pushchino, 142290, Russian Federation
V.V. Malyshev
Affiliation:
Institute of Physico–Chemical and Biological Problems in Soil Science, Russian Academy of Sciences, 2/2 Institutskaya, Pushchino, 142290, Russian Federation
P.P. Danilov
Affiliation:
Prof. D.D. Savvinov Science Research Institute of Applied Ecology of the North, M.K. Ammosov North-East Federal University, Russian Federation
*
Corresponding author: A.V Lupachev; Email: a.lupachev@gmail.com

Abstract

The paleopedology of the world’s largest retrogressive thaw slump, Batagay, is understudied. Micromorphological and geochemical analysis reveal the properties of th host sediments and major pedogenic features. Epigenetic soil profiles of Marine Oxygen Isotope Stage (MIS) 7 (or older) and 5e are clearly distinguished and well developed due to favorable bioclimatic conditions for pedogenesis, probably similar to modern ones. The oldest unit contains a paleosol similar to a Histic Reductaquic Cryosol, indicating a peat-covered, boggy environment. The MIS 5e unit contains organic-rich Histic Spodic Cryosol with well-developed structure, formed during the interglacial optimum, which was relatively warm and presumably resembled modern bioclimatic conditions. MIS 4–3 deposits contains soil-like bodies enriched in coarse organogenic material resembling incipient Histic Reductaquic Cryosols. Interglacial/interstadial units contain micromorphological evidence of aggregate and pore formation, Fe-oxide and organic matter redistribution and clay accumulation. Stadial deposits show weakly expressed soil structure with uneven aggregates, cryogenic disintegration of plant detritus and rare evidence of accumulation of humic substances. Major elemental ratios indicate intensification of biochemical weathering in paleosols and soil-like bodies. Pedogenically reworked material of stadial sedimentary units with sporadic and incipient soil-like bodies provide a significant source for paleoenvironmental reconstruction of harsh Late Pleistocene environments.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aide, M.T., Aide, C. (2012) Rare earth elements: Their importance in understanding soil genesis. ISRN Soil Science, 783876. https://doi.org/10.5402/2012/783876CrossRefGoogle Scholar
Akulshina, E.P. (1971) Substantial composition of the clay part of the Paleozoic rocks of the Siberian and Russian platforms and its evolution. Nauka, Novosibirsk. (in Russian)Google Scholar
Alekseev, A., Alekseeva, T., Ostroumov, V., Siegert, C., Gradusov, B. (2003) Mineral transformations in permafrost‐affected soils, North Kolyma lowland, Russia. Soil Science Society of America Journal 67, 596605.Google Scholar
Anderson, P.M., Lozhkin, A.V. (2001) The Stage 3 interstadial complex (Karginskii/middle Wisconsinan interval) of Beringia: Variations in paleoenvironments and implications or paleoclimatic interpretations. Quaternary Science Reviews 20, 93125.CrossRefGoogle Scholar
Andreev, A., Schirrmeister, L., Tarasov, P., Ganopolski, A., Brovkin, V., Siegert, C., Wetterich, S. and Hubberten, H.-W. (2011) Vegetation and climate history in the Laptev Sea region (arctic Siberia) during Late Quaternary inferred from pollen records. Quaternary Science Reviews 30, 21822199.CrossRefGoogle Scholar
Aquino, A., Scardia, G., Prud’homme, C., Dave, A.K., Lezzerini, M., Johansson, A.E., Marquer, L., Safaraliev, N., Lauer, T. and Fitzsimmons, K.E. (2024) Variability in geochemical weathering indices in loess over the last full glacial cycle at Karamaidan, central Asia (Tajikistan). Frontiers in Earth Science 12, 1347910. https://doi.org/10.3389/feart.2024.1347910CrossRefGoogle Scholar
Ashastina, K., Kuzmina, S., Rudaya, N., Troeva, E., Schoch, W.H., Römermann, C., Reinecke, J. et al. (2018) Woodlands and steppes: Pleistocene vegetation in Yakutia’s most continental part recorded in the Batagay permafrost sequence. Quaternary Science Reviews 196, 3861.CrossRefGoogle Scholar
Ashastina, K., Schirrmeister, L., Scheidemann, D., Fuchs, M.C., Kienast, F. (2017) Bulk sedimentology of the Batagay thaw slump, Northeastern Siberia (dataset). PANGAEA. https://doi.org/10.1594/PANGAEA.877343Google Scholar
Atlas Obscura. Siberia’s doorway to the underworld is getting even bigger. (2024). (accessed: May, 27 2024). https://www.atlasobscura.com/articles/batagaika-crater-growingGoogle Scholar
Bolikhovskaya, N.S., Bolikhovskii, V.S. (1979) Buried soils in loess-like deposits of Eurasian North-East. Doklady Akademii Nauk SSSR 247, 409412. (in Russian)Google Scholar
Bosq, M., Bertran, P., Degeai, J.P., Queffelec, A., Moine, O. (2020) Geochemical signature of sources, recycling and weathering in the Last Glacial loess from the Rhône Valley (southeast France) and comparison with other European regions. Aeolian Research 42, 100561. https://doi.org/10.1016/j.aeolia.2019.100561CrossRefGoogle Scholar
Butler, J.R., Bowden, P., Smith, A.Z. (1962) K/Rb ratios in the evolution of the younger granites of Northern Nigeria. Geochimica et Cosmochimica Acta 26, 1, 89100.CrossRefGoogle Scholar
Cai, G., Guo, F., Liu, X., Sui, S., Li, C., Zhao, L. (2008) Geochemistry of Neogene sedimentary rocks from the Jiyang basin, North China Block: The roles of grain size and clay minerals. Geochemical Journal 42, 381402.CrossRefGoogle Scholar
Casetou-Gustafson, S., Grip, H., Hillier, S., Linder, S., Olsson, B.A., Simonsson, M., Stendahl, J. (2020) Current, steady-state and historical weathering rates of base cations at two forest sites in northern and southern Sweden: A comparison of three methods. Biogeosciences 17, 281-304.CrossRefGoogle Scholar
Chen, J., An, Z.S., Wang, Y.J., Ji, J.F., Chen, Y., Lu, H.Y. (1999) Distribution of Rb and Sr in the Louchuan loess-paleosol sequence of China during the last 800ka: Implications for the paleomonsoon study. Science in China Series D: Earth Sciences 42, 225232.CrossRefGoogle Scholar
Churchman, G.J. (1980) Clay minerals formed from micas and chlorites in some New Zealand soils. Clay Minerals 15, 5976.CrossRefGoogle Scholar
Courtin, J., Perfumo, A., Andreev, A.A., Opel, T., Stoof-Leichsenring, K.R., Edwards, M.E., Murton, J.B., Herzschuh, U. (2022) Pleistocene glacial and interglacial ecosystems inferred from ancient DNA analyses of permafrost sediments from Batagay megaslump, East Siberia. Environmental DNA 4, 12651283.CrossRefGoogle Scholar
Dokuchaev’s Soil Institute (2008) Field determinant of Russian soils. Moscow, V.V. Dokuchaev’s Soil Institute, 182. (in Russian)Google Scholar
Ershov, E.D. (1996) Geocryological Map of the USSR, Scale 1:2 500 000. State Cartographic Factory, Vinnytsia, Ukraine. (in Russian).Google Scholar
Froese, D.G., Westgate, J.A., Reyes, A.V., Enkin, R.J., Preece, S.J. (2008) Ancient permafrost and a future, warmer Arctic. Science 321, 16481648.CrossRefGoogle Scholar
Gallet, S., Borming, J., Masayuki, T. (1996) Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications. Chemical Geology 133, 6788.CrossRefGoogle Scholar
Garrels, R.M., Mackenzie, F.T. (1971) Evolution of sedimentary rocks. W. W. Norton and Company, New York.Google Scholar
Geological Institute of RAS Commission on Neogene and Quaternary Systems of the MSC of Russia (2018) Neogene and Quaternary of Russia: stratigraphy, events and paleogeography. Moscow: GEOS. (in Russian)Google Scholar
Goldberg, K., Humayun, M. (2010) The applicability of the chemical index of alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 293, 175183.CrossRefGoogle Scholar
Gubin, S.V. (1996) Late Pleistocene pedogenesis on the territory of North-East Eurasia. Doklady Akademii nauk SSSR 35, 544547. (in Russian)Google Scholar
Gubin, S.V. (2002) Pedogenesis as the element of the formation mechanism of the Late Pleistocene Ice Complex. Earth’s Cryosphere 6, 8291. (in Russian)Google Scholar
Gubin, S.V., Gulyaeva, L.A. (1997) Dynamic of soil micromorphology fabric. In: Shoba, S., Gerasimova, M. and Miedema, R. (Eds.), 1st International Working meeting on soil micromorphology. Moscow-Wageningen, pp. 2327.Google Scholar
Gubin, S.V., Lupachev, A.V. (2012) Approaches to the distinguishing and investigation of buried soils in frozen deposits of ice complex. Earth’s Cryosphere 2, 7984 (in Russian).Google Scholar
Gubin, S.V., Veremeeva, A.A. (2010) Parent materials enriched in organic matter in the northeast of Russia. Eurasian Soil Science 43, 12381243.CrossRefGoogle Scholar
Günther, F., Grosse, G., Wetterich, S., Jones, B.M., Kunitsky, V.V., Kienast, F., Schirrmeister, L. (2015) The Batagay mega thaw slump, Yana Uplands, Yakutia, Russia: permafrost thaw dynamics on decadal time scale. Conference: PAST Gateways - Palaeo-Arctic Spatial and Temporal Gateways - Third International Conference and Workshop, Terra Nostra. 4546.Google Scholar
Heier, K.S., Billings, G.K. (1970) Rubidium. In: K.H, Wedepohl. (Ed.) Handbook of Geochemistry. Springer, Berlin.Google Scholar
Höfle, C., Edwards, M.E., Hopkins, D.M., Mann, D.H., Ping, C-L. (2000) The full-glacial environment of the northern Seward Peninsula, Alaska, reconstructed from the 21,500-year-old Kitluk Paleosol. Quaternary Research 53, 143153.CrossRefGoogle Scholar
Isaev, A.P., Timofeyev, P.A. (2010) General characteristics of boreal forests. The Far North: Plant Biodiversity and Ecology of Yakutia. Dordrecht, Springer. pp. 164168.Google Scholar
IUSS Working Group WRB (2022) World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS). Vienna, Austria.Google Scholar
Ivanova, R.N. (2003) Seasonal thawing of soils in the Yana River valley, northern Yakutia. Permafrost: Proceedings of the Eighth International Conference on Permafrost. pp. 479482.Google Scholar
Jongejans, L.L., Mangelsdorf, K., Karger, C., Opel, T., Wetterich, S., Courtin, J., Meyer, H., et al. (2022) Molecular biomarkers in Batagay megaslump permafrost deposits reveal clear differences in organic matter preservation between glacial and interglacial periods. The Cryosphere 16 (9), 36013617. https://doi.org/10.5194/tc-16-36012022CrossRefGoogle Scholar
Kabala, C., Musztyfaga, E., Jary, Z., Waroszewski, J., Gałka, B., Kobierski, M. (2022) Glossic planosols in the postglacial landscape of central Europe: Modern polygenetic soils or subaerial palaeosols? Geoderma 426, 116101. https://doi.org/10.1016/j.geoderma.2022.116101CrossRefGoogle Scholar
Kalinin, P.I., Alekseev, A.O. (2011) Geochemical characterization of loess-soil complexes on the Terek-Kuma Plain and the Azov-Kuban’Lowland. Eurasian Soil Science 44, 13151332.CrossRefGoogle Scholar
Kalinin, P.I., Zanina, O.G., Panin, P.G. and Kudrevatykh, I.Y. (2024) Phytolithic and paleolandscape evidences of environmental change in the south of the East-European Plain in the Pleistocene. Eurasian Soil Science 57, 7485.CrossRefGoogle Scholar
Kanevskiy, M., Shur, Y., Fortier, D., Jorgenson, M.T., Stephani, E. (2011) Cryostratigraphy of Late Pleistocene syngenetic permafrost (yedoma) in Northern Alaska, Itkillik River exposure. Quaternary Research 75, 584596.CrossRefGoogle Scholar
Kizyakov, A.I., Korotaev, M.V., Wetterich, S., Opel, T., Pravikova, N.V., Fritz, M., Lupachev, A.V., et al. (2024) Characterizing Batagay megaslump topography dynamics and matter fluxes at high spatial resolution using a multidisciplinary approach of permafrost field observations, remote sensing and 3D geological modeling. Geomorphology 455, 109183. https://doi.org/10.1016/j.geomorph.2024.109183CrossRefGoogle Scholar
Kizyakov, A.I., Wetterich, S., Günther, F., Opel, T., Jongejans, L., Courtin, J., Meyer, H., et al. (2023) Landforms and degradation pattern of the Batagay thaw slump, Northeastern Siberia. Geomorphology 420, 108501. https://doi.org/10.1016/j.geomorph.2022.108501CrossRefGoogle Scholar
Kovda, I., Lebedeva, M. (2013) Modern and relict features in clayey cryogenic soils: Morphological and micromorphological identification. Spanish Journal of Soil Science 3, 118.Google Scholar
Kubiena, W.L. (1938) Micropedology. Collegiate Press, Ames, Iowa.Google Scholar
Kunitsky, V.V., Syromyatnikov, I.I., Schirrmeister, L., Skachkov, Y.B., Grosse, G., Wetterich, S. and Grigoriev, M.N. (2013) Ice-rich permafrost and thermal denudation in the Batagay area (Yana Upland, East Siberia). Earth’s Cryosphere 7, 5668. (in Russian)Google Scholar
Lacelle, D. and Vasilchuk, Y. (2013) Recent progress (2007–2012) in permafrost isotope geochemistry. Permafrost and Periglacial Processes 24, 138145.CrossRefGoogle Scholar
Laxton, N.F., Burn, C.R. and Smith, C.A.S. (1996) Productivity of Loessal Grasslands in the Kluane Lake Region, Yukon Territory, and the Beringian “Production Paradox”. Arctic 49(2), 129140. http://doi.org/10.14430/arctic1191CrossRefGoogle Scholar
Le, S., Josse, J., Husson, F. (2008) FactoMineR: An R package for multivariate analysis. Journal of Statistical Software 25, .CrossRefGoogle Scholar
Le Borgne, E. (1955) Susceptibilite magnetique anomale du sol superficial. Annales de géophysique, 11, 399419.Google Scholar
Le Borgne, E. (1960) Influence du feu sur les propriétés magnétiques du sol et sur celles du schiste et du granite. Annales de géophysique 16, 159195.Google Scholar
Liu, Q., Hu, P., Torrent, J., Barrón, V., Zhao, X., Jiang, Z., Su, Y. (2010) Environmental magnetic study of a Xeralf chronosequence in northwestern Spain: Indications for pedogenesis. Palaeogeography, Palaeoclimatology, Palaeoecology 293, 144156.CrossRefGoogle Scholar
Lupachev, A.V. and Gubin, S.V. (2023) Soil-cryogenic complex: The evidence of Late Pleistocene-Holocene coevolution of permafrost and cryogenic soils. Permafrost and periglacial processes 34(3). http://doi.org/10.1002/ppp.2191CrossRefGoogle Scholar
Lupachev, A.V., Tikhonravova, Ya.V., Danilov, P.P., Zanina, O.G., Cheprasov, M.Yu., Novgorodov, G.P. (2024) Paleoecological indicators of the conditions of permafrost development in the area of Batagay retrogressive thaw slump. Earth’s Cryosphere 28, 3649. (in Russian)Google Scholar
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K. (2022) Cluster: Cluster analysis basic and extensions. R package version 2.1.4.Google Scholar
Makeev, A., Kust, P., Lebedeva, M., Rusakov, A., Terhorst, B., Yakusheva, T. (2019) Soils in the bipartite sediments within the Moscow glacial limits of the Russian Plain: Sedimentary environment, pedogenesis, paleolandscape implication. Quaternary International 501, 147173.CrossRefGoogle Scholar
McLennan, S.M. (1993) Weathering and global denudation. The Journal of Geology 101, 295303.CrossRefGoogle Scholar
McLennan, S.M. (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2(4), 1021. https://doi.org/10.1029/2000GC000109CrossRefGoogle Scholar
Muhs, D.R. (2018) The geochemistry of loess: Asian and North American deposits compared. Journal of Asian Earth Sciences 155, 81115.CrossRefGoogle Scholar
Muhs, D.R., Ager, T.A., Bettis, E.A. III, McGeehin, J., Been, J.M., Begét, J.E., Pavich, M.J., Stafford, T.W. Jr., Stevens, De, A.S.P. (2003) Stratigraphy and paleoclimatic significance of late Quaternary loess-paleosol sequences of the last interglacial-glacial cycle in central Alaska. Quaternary Science Reviews 22, 19471986.CrossRefGoogle Scholar
Muhs, D.R., Ager, T.A., Skipp, G., Beann, J., Budahn, J., McGeehin, J.P. (2008) Paleoclimatic significance of chemical weathering in loess-derived paleosols of subarctic central Alaska. Arctic, Antarctic and Alpine Research 40, 396411CrossRefGoogle Scholar
Murton, J.B. (2022a) Cryostratigraphy. Treatise on geomorphology, Schroder, J.F., (Ed.), Vol. 4. Elsevier, Academic Press. https://doi.org/10.1016/B978-0-12-818234-5.00115-2Google Scholar
Murton, J.B. (2022b) Ground ice. Treatise on geomorphology, Schroder, J.F., (Ed.), Vol. 4. Elsevier, Academic Press. https://doi.org/10.1016/B978-0-12-818234-5.00114-0Google Scholar
Murton, J.B., Edwards, M.E., Lozhkin, A.V., Anderson, P.M., Savvinov, G.M., Bakulina, N., Bondarenko, O.V., et al. (2017) Preliminary paleoenvironmental analysis of permafrost deposits at Batagaika megaslump, Yana Uplands, northeast Siberia. Quaternary Research 87, 314330.CrossRefGoogle Scholar
Murton, J.B., Goslar, T., Edwards, M.E., Bateman, M.D., Danilov, P.P., Savvinov, G.N., Gubin, S.V., et al. (2015) Palaeoenvironmental interpretation of Yedoma Silt (ice complex) deposition as cold‐climate loess, Duvanny Yar, Northeast Siberia. Permafrost and Periglacial Processes 26, 208288.CrossRefGoogle Scholar
Murton, J., Opel, T., Toms, P., Blinov, A., Fuchs, M., Gärtner, A., Merchel, S., et al. (2022) A multimethod dating study of ancient permafrost, Batagay megaslump, east Siberia. Quaternary Research 105, 122.CrossRefGoogle Scholar
Murton, J., Opel, T., Wetterich, S., Ashastina, K., Savvinov, G., Danilov, P. and Boeskorov, V. (2023) Batagay megaslump: A review of the permafrost deposits, Quaternary environmental history, and recent development. Permafrost and Periglacial Processes 34, 399416.CrossRefGoogle Scholar
Nesbitt, H.W., Young, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48, 15231534.CrossRefGoogle Scholar
Nesterova, N., Leibman, M., Kizyakov, A., Lantuit, H., Tarasevich, I., Nitze, I., Veremeeva, A. and Grosse, G. (2024) Review article: Retrogressive thaw slump characteristics and terminology. The Cryosphere 18(10). https://doi.org/10.5194/tc-18-4787-2024CrossRefGoogle Scholar
Nitzbon, J., Gadylyaev, D., Schlüter, S., Köhne, J.M., Grosse, G., Boike, J. (2022) Brief communication: Unravelling the composition and microstructure of a permafrost core using X-ray computed tomography. The Cryosphere 16, 35073515.CrossRefGoogle Scholar
Novgorodov, G.P., Grigorev, S.E., Cheprasov, M.Y. (2013) Prospective location of the mammoth fauna in the Yana river basin. International Journal of Applied and Fundamental Research 8, 255259. (in Russian)Google Scholar
Opel, T., Murton, J.B., Wetterich, S., Meyer, H., Ashastina, K., Günther, F., Grotheer, H. et al. (2019) Stable water isotope data of ice wedges at the Batagay megaslump and the Adycha River, including other Siberian ice-wedge sites for regional comparison. PANGAEA. https://doi.pangaea.de/10.1594/PANGAEA.904105Google Scholar
Parfitt, R.L., Smart, R.St.C. (1978) The mechanism of sulphate adsorption on iron oxides. Soil Science Society of America Journal 42, 4850.CrossRefGoogle Scholar
Patzner, M.S., Kainz, N., Lundin, E., Barszok, M., Smith, C., Herndon, E., Kinsman-Costello, L., et al. (2022) Seasonal fluctuations in iron cycling in thawing permafrost peatlands. Environmental Science and Technology 56, 46204631.CrossRefGoogle ScholarPubMed
Péwé, T.L., Berger, G.W., Westgate, J.A., Brown, P.M., Leavitt, S.W. (1997) Eva Interglaciation Forest Bed, unglaciated central Alaska: global warming 125,000 years ago. Geological Society of America Special Paper 319, 155.Google Scholar
Posit team (2023) RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA. URL: http://www.posit.co/ (accessed 7 July 2023).Google Scholar
Raiche, G., Magis, D. (2022) nFactors: Parallel analysis and other non-graphical solutions to the Cattell Scree Test. R package version 2.4.1.1. https://CRAN.R-project.org/package=nFactorsGoogle Scholar
R Core Team (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/ (accessed 16 June 2023).Google Scholar
Retallack, G.J. (2003) Soils and global change in the carbon cycle over geological time. Treatise on Geochemistry 5, 581605.Google Scholar
Reyes, A.V., Froese, D.G., Jensen, B.J.L. (2010) Permafrost response to last interglacial warming: Field evidence from non-glaciated Yukon and Alaska. Quaternary Science Reviews 29, 32563274.CrossRefGoogle Scholar
Rybakova, N.O. (1990) Changes in the vegetation cover and climate in the Kolyma lowlands in late-Quaternary time. Polar Geography 14, 279286.CrossRefGoogle Scholar
Sanborn, P.T., Smith, C.A.S., Froese, D.G., Zazula, G.D., Westgate, J.A. (2006) Full-glacial paleosols in perennially frozen loess sequences, Klondike goldfields, Yukon Territory, Canada. Quaternary Research 66, 147157.CrossRefGoogle Scholar
Savvinov, G.N., Danilov, P.P., Petrov, A.A., Makarov, V.S., Boeskorov, V. S. and Grigoriev, S.E. (2018) Environmental Problems of the Verkhoyansky Region. Vestnik of North-Eastern Federal University 6, 1933. (in Russian).Google Scholar
Schirrmeister, L., Froese, D., Wetterich, S., Strauss, J., Veremeeva, A. and Grosse, G. (2024) Yedoma: Late Pleistocene ice-rich syngenetic permafrost of Beringia. In: Elias, Scott A. (Ed.), Encyclopedia of Quaternary Science, 3rd Edition, 296311, Elsevier.Google Scholar
Sheinkman, V., Sedov, S., Shumilovskikh, L.S., Bezrukova, E., Dobrynin, D., Timireva, S., Rusakov, A., Maksimov, F. (2021) A multiproxy record of sedimentation, pedogenesis, and environmental history in the north of West Siberia during the late Pleistocene based on the Belaya Gora section. Quaternary Research 99, 204222.CrossRefGoogle Scholar
Sheldon, N.D., Retallack, G.J., Tanaka, S. (2002) Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. The Journal of Geology 110, 687696.CrossRefGoogle Scholar
Sheldon, N.D., Tabor, N.J (2009) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Review 95, 152.CrossRefGoogle Scholar
Shepelev, A.G., Kizyakov, A., Wetterich, S., Cherepanova, A., Fedorov, A., Syromyatnikov, I., & Savvinov, G. (2020) Sub-surface carbon stocks in northern taiga landscapes exposed in the Batagay megaslump, Yana Upland, Yakutia. Land 9, 305.CrossRefGoogle Scholar
Sher, A.V. (2010) New data on Late Cenozoic deposits of the Kolyma Lowland. International Geology Review 6, 643655.Google Scholar
Shestakova, A.A., Fedorov, A.N., Torgovkin, Y.I., Konstantinov, P.Y., Vasyliev, N.F., Kalinicheva, S.V., Samsonova, V.V., et al. (2021) Mapping the main characteristics of permafrost on the basis of a permafrost-landscape map of Yakutia using GIS. Land 10, 462.CrossRefGoogle Scholar
Shur, Y., Fortier, D., Jorgenson, M.T., Kanevskiy, M., Schirrmeister, L., Strauss, J., Vasiliev, A., Ward Jones, M., (2022) Yedoma permafrost genesis: Over 150 Years of mystery and controversy. Frontiers in Earth Science 9, 757891.CrossRefGoogle Scholar
Shur, Y., French, H.M., Bray, M.T., Anderson, D.A. (2004) Syngenetic permafrost growth: Cryostratigraphic observations from the CRREL tunnel near Fairbanks, Alaska. Permafrost and Periglacial Processes 15, 339347.CrossRefGoogle Scholar
Shur, Y., Hinkel, K.M., Nelson, F.E. (2005) The transient layer: implications for geocryology and climate-change science. Permafrost and Periglacial Process 16, 517.CrossRefGoogle Scholar
Stoops, G. (2003) Guidelines for the Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America, 184 + CD-ROM.Google Scholar
Stoops, G., Marcelino, V., Mees, F. (2010) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam.Google Scholar
Sycheva, S.A., Pushkina, P.R., Golyeva, A.A., Khokhlova, O.S., Gorbacheva, T.M., Kovda, I.V. (2024) Stages of development of the Ryshkovo pedolithocomplex as an alternation of favorable and extreme conditions in the Mikulino interglacial (MIS-5e). Eurasian Soil Science 57, 114127.CrossRefGoogle Scholar
Újvári, G., Varga, A., Balogh-Brunstad, Z. (2008) Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quaternary Research 69, 421437.CrossRefGoogle Scholar
Ulrich, M., Jongejans, L.L., Grosse, G. (2021) Geochemistry and weathering indices of yedoma and alas deposits beneath thermokarst lakes in Central Yakutia. Frontiers in Earth Science 9, 704141.CrossRefGoogle Scholar
Vadakkedath, V., Zawadzki, J., Przeździecki, K. (2020) Multisensory satellite observations of the expansion of the Batagaika crater and succession of vegetation in its interior from 1991 to 2018. Environmental Earth Sciences 79, 150.CrossRefGoogle Scholar
Van Vliet-Lanoe, B. (2010) Frost action. In: Stoops, G., Marcelino, V. & Mees, F. (Eds.). Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp. 81108.CrossRefGoogle Scholar
Vasilchuk, Y.K., Vasilchuk, D.Y., Ginzburg, A.P. (2020) Cryogenic soils in the area of Batagai crater in Northern Yakutia. Arctic and Antarctic 3, 5298. (in Russian)Google Scholar
Vasilchuk, Y.K., Vasilchuk, J.Y., Budantseva, N.A., Vasilchuk, A.C., Trishin, A.Y. (2019) High-resolution oxygen isotope and deuterium diagrams for ice wedges of the Batagay yedoma, Northern Central Yakutia. Doklady Earth Sciences 487, 975978.Google Scholar
Vdovina, L.G. (2002) SUNGE (State Unitary Mining and Geological Enterprise) ‘Yanageology’ report for additional geological study, revision and preparation for publication of the ‘State geological map of the Russian Federation’, 1:200 000 scale (new series), sheet Q-53-III, IV (Batagay, Ege-Khaya) in 1995–2001. Annexes 4 (symbols for the geological map) and 7 (symbols for the Quaternary units map).Google Scholar
Vodyanitskii, Yu.N., Shoba, S.A., Lopatovskaya, O.G. (2014) Iron compounds in sulfate-carbonate soils on red-colored Cambrian rocks in the southern Angara region. Eurasian Soil Sciences 47, 407415.CrossRefGoogle Scholar
Vorobyova, L.A. (2006) Theory and practice of chemical analysis of soils. Moscow, GEOS, 400 (in Russian).Google Scholar
Wang, P., Du, Y., Yu, W., Algeo, T. J., Zhou, Q., Xu, Y., Qi, L.,Yuan, L., Pan, W. (2020) The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history. Earth-Science Reviews 201, 103032. https://doi.org/10.1016/j.earscirev.2019.103032CrossRefGoogle Scholar
Wang, W., Feng, J., Qui, M. (2023) Mineral weathering and element migration in granite weathering pits (gnammas): A case study in Eastern China. Minerals 13, 70. https://doi.org/10.3390/min13010070CrossRefGoogle Scholar
Wei, T., Simko, V. (2021) R package ‘corrplot’: Visualization of a Correlation Matrix (Version 0.92).Google Scholar
Yang, Y., Ye, C., Galy, A., Fang, X., Xue, Y., Liu, Y., Yang, R., et al. (2021) Monsoon-enhanced silicate weathering as a new atmospheric CO2 consumption mechanism contributing to fast late Miocene global cooling. Paleoceanography and Paleoclimatology, 36, e2020PA004008. https://doi.org/10.1029/2020PA004008CrossRefGoogle Scholar
Yudovich, J.E., Ketris, M.P. (2000) Fundamentals of lithochemistry. Nauka, Saint-Petersburg. (in Russian)Google Scholar
Zolkos, S., Tank, S.E. (2019) Permafrost geochemistry and retrogressive thaw slump morphology (Peel Plateau, Canada), v. 1.0 (2017-2017). Nordicana D45. https://doi.org/10.5885/45573XD-28DD57D553F14BF0CrossRefGoogle Scholar
Supplementary material: File

Lupachev et al. supplementary material 1

Lupachev et al. supplementary material
Download Lupachev et al. supplementary material 1(File)
File 44.9 KB
Supplementary material: File

Lupachev et al. supplementary material 2

Lupachev et al. supplementary material
Download Lupachev et al. supplementary material 2(File)
File 18.4 MB