Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T15:22:52.519Z Has data issue: false hasContentIssue false

A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa Walcott

Published online by Cambridge University Press:  08 April 2016

Nicholas J. Butterfield*
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138

Abstract

The enigmatic fossil Wiwaxia corrugata is organically preserved in the Burgess Shale (Middle Cambrian, British Columbia) and is therefore extractable by careful acid maceration of the mineralic matrix. High magnification transmitted light microscopy and SEM of macerated Wiwaxia sclerites reveal a substantial amount of previously undescribed structural and microstructural detail. Anatomical and histological comparison with modern organisms indicates that Wiwaxia sclerites are polychaete paleae (flattened setae) and that Wiwaxia was a jawed annelid broadly related to the extant polychaete families Chrysopetalidae and/or Aprhoditidae (Palmyra). Canadia spinosa, an uncontested fossil polychaete from the same beds, shows a paleal microstructure identical to that of Wiwaxia, as well as a closely comparable gross anatomy and taphonomic grade. The unique combination of taxonomically significant characters shared by Wiwaxia and Canadia suggest that they are more closely related to each other than either is to any other fossil or extant polychaete. Thus they constitute a separate superfamily, Canadiacea superfam. nov., in the order Phyllodocida.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allison, P. A. 1988. Konservat-Lagerstätten: cause and classification. Paleobiology 14:331344.CrossRefGoogle Scholar
Bengtson, S. 1985. Redescription of the Lower Cambrian Halkieria obliqua Poulsen. Geologiska Föreningens i Stockholm Förhandlingar 107:101106.Google Scholar
Bengtson, S., and Missarzhevsky, V. V. 1981. Coeloscleritophora—a major group of enigmatic Cambrian metazoans. In Taylor, M. E. (ed.), Short Papers for the Second International Symposium on the Cambrian System. United States Geological Survey Open-File Report 81–743:1921.Google Scholar
Bengtson, S., and Conway Morris, S. 1984. A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia. Lethaia 17:307329.CrossRefGoogle Scholar
Briggs, D. E. G., and Conway Morris, S. 1986. Problematica from the Middle Cambrian Burgess Shale of British Columbia. Pp. 167183. In Hoffman, A., and Nitecki, M. H. (eds.), Problematic Fossil Taxa. Oxford University Press; New York.Google Scholar
Briggs, D. E. G., and Clarkson, E. N. K. 1987. The first tomopterid, a polychaete from the Carboniferous of Scotland. Lethaia 20:257262.Google Scholar
Briggs, D. E. G., and Williams, S. H. 1981. The restoration of flattened fossils. Lethaia 14:157164.Google Scholar
Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 16:272286.Google Scholar
Colbath, G. K. 1986. Jaw mineralogy in eunicean polychaetes (Annelida). Micropaleontology 32:186189.CrossRefGoogle Scholar
Colbath, G. K., and Larson, S. K. 1980. On the chemical composition of fossil polychaete jaws. Journal of Paleontology 54:485488.Google Scholar
Conway Morris, S. 1979. Middle Cambrian polychaetes from the Burgess Shale of British Columbia. Philosophical Transactions of the Royal Society of London B 285:227274.Google Scholar
Conway Morris, S. 1985. The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada. Philosophical Transactions of the Royal Society of London B 307:507586.Google Scholar
Conway Morris, S. 1986. The community structure of the Middle Cambrian Phyllopod Bed (Burgess Shale). Palaeontology 29:423467.Google Scholar
Conway Morris, S. 1989. Burgess Shale faunas and the Cambrian explosion. Science 246:339346.CrossRefGoogle Scholar
Conway Morris, S., and Robison, R. A. 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. University of Kansas Paleontological Contributions 122.Google Scholar
Conway Morris, S., and Peel, J. S. 1990. Articulated halkieriids from the Lower Cambrian of North Greenland. Nature 345:802805.Google Scholar
Dennell, R. 1949. Earthworm chaetae. Nature 164:370.Google Scholar
Dales, R. P. 1962. The polychaete stomodeum and the interrelationships of the families of Polychaeta. Proceedings of the Zoological Society of London 139:389428.Google Scholar
Dzik, J. 1986. Turrilepadida and other Machaeridia. Pp. 116134. In Hoffman, A., and Nitecki, M. H. (eds.), Problematic Fossil Taxa. Oxford University Press; New York.Google Scholar
Fauchald, K. 1977. The polychaete worms. Definition and keys to the orders, families and genera. Natural History Museum of Los Angeles County, Science Series 28.Google Scholar
Gall, J., and Grauvogel, L. 1967. Faune de Buntsandstein III. Quelques annélides du Grès à Voltzia des Vosges. Annales des Paléontologie (Invertébrés) 53:105110.Google Scholar
George, J. D., and Southward, E. C. 1973. A comparative study of the setae of Pogonophora and polychaetous Annelida. Journal of the Marine Biological Association of the United Kingdom 53:403424.Google Scholar
Goodrich, E. S. 1896. Notes on oligochaetes, with the description of a new species. Quarterly Journal of Microscopical Science 39:5169.Google Scholar
Grube, A. E. 1850. Die Familien der Anneliden. Archiv für Naturgeschichte 16:249364.Google Scholar
Gustus, R. M., and Cloney, R. A. 1973. Ultrastructure of the larval compound setae of the polychaete Nereis vexillosa Grube. Journal of Morphology 140:355366.Google Scholar
Gould, S. J. 1989. Wonderful Life. W. W. Norton; New York.Google Scholar
Howell, B. F. 1962. Worms. Pp. 144177. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology W (Miscellanea). Geological Society of America and University of Kansas Press; Lawrence.Google Scholar
Jell, P. A. 1981. Thambetolepis delicata gen. et sp. nov., an enigmatic fossil from the Early Cambrian of South Australia. Alcheringa 5:8593.Google Scholar
Jeuniaux, C. 1971. Chitinous structures. Pp. 595632. In Florkin, M., and Stotz, E. H. (eds.), Comparative Biochemistry, Volume 26C. Elsevier Scientific Publishing Company; Amsterdam.Google Scholar
Kielan-Jaworowska, Z. 1966. Polychaete jaw apparatuses from the Ordovician and Silurian of Poland and a comparison with modern forms. Palaeontologica Polonica 16:1152.Google Scholar
Lamarck, J.-B. 1802. Recherches sur l'organisation des corps vivans, …. Maillard; Paris.Google Scholar
Lippert, W., and Gentil, K. 1963. Uber den Feinbau der Schillerhaare des Polychaeten Aphrodite aculeata L. Zeitschrift für Morphologie und Ökologie der Tiere 53:2228.CrossRefGoogle Scholar
Matthew, G. F. 1899. Studies on Cambrian faunas. 3. Upper Cambrian fauna of Mount Stephen, British Columbia. The trilobites and worms. Transactions of the Royal Society of Canada 5:3966.Google Scholar
Michel, C., and Devillez, E. J. 1978. Digestion. Pp. 509554. In Mill, P. J. (ed.), Physiology of Annelids. Academic Press; London.Google Scholar
Orrhage, L. 1971. Light and electron microscope studies of some annelid setae. Acta Zoologica 52:157169.CrossRefGoogle Scholar
Perkins, T. H. 1985. Chrysopetalum, Bhawania and two new genera of Chrysopetalidae (Polychaeta), principally from Florida. Proceedings of the Biological Society of Washington 98:856915.Google Scholar
Richards, K. S. 1978. Epidermis and cuticle. Pp. 3361. In Mill, P. J. (ed.), Physiology of Annelids. Academic Press, London.Google Scholar
Richardson, E. S. Jr. 1980. Howellitubus is not a worm tube. Journal of Paleontology 54:587.Google Scholar
Robison, R. A. 1969. Annelids from the Middle Cambrian Spence Shale of Utah. Journal of Paleontology 43:11691173.Google Scholar
Romer, A. S. 1966. Vertebrate Paleontology. Third Edition. University of Chicago Press; Chicago.Google Scholar
San Martin, G. 1986. Acanthopale perkinsi gen. et sp. n. (Polychaeta, Chrysopetalidae) from Cuba and Florida. Zoologica Scripta 15:305312.Google Scholar
Schram, F. R. 1979. Worms of the Mississippian Bear Gulch Limestone of central Montana, USA. Transactions of the San Diego Society of Natural History 19:107120.Google Scholar
Schroeder, P. C. 1984. Annelida. Chaetae. Pp. 297309. In Bereiter-Hahn, J., Matoltsy, A. G., and Richards, K. S. (eds.), Biology of the Integument, Volume 1, Invertebrates. Springer-Verlag; Berlin.Google Scholar
Sokolov, B. S. 1985. Vendian polychaetes. Pp. 198200. In Sokolov, B. S., and Ivanovskii, A. B. (eds.), Vendskaia Sistema, Volume 1. Nauka, Moscow. [in Russian]Google Scholar
Thompson, I. 1979. Errant polychaetes (Annelida) from the Pennsylvanian Essex fauna of northern Illinois. Palaeontographica Abteilung A 163:169199.Google Scholar
Thompson, I., and Johnson, R. G. 1977. New fossil polychaete from Essex, Illinois. Fieldiana Geology 33:471487.Google Scholar
Uschakov, P. V. 1982. Polychaetes of the suborder Aphroditiformia of the Arctic Ocean and the northwestern part of the Pacific. Families Aphroditidae and Polynoidae. Fauna SSSR (new series) 126. [in Russian]Google Scholar
Voss-Foucart, M., Fonze-Vignaux, M., and Jeuniaux, C. 1973. Systematic characters of some polychaetes (Annelida) at the level of the chemical composition of the jaws. Biochemical Systematics 1:119122.Google Scholar
Walcott, C. D. 1911. Middle Cambrian annelids. Cambrian Geology and Paleontology II. Smithsonian Miscellaneous Collections 57:109144.Google Scholar
Watson Russell, C. 1989. Revision of Palmyra Savigny (Polychaeta: Aphroditidae) and redescription of Palmyra aurifera. The Beagle, Records of the Northern Territory Museum of Arts and Sciences 6:3553.Google Scholar
Whittington, H. B. 1971. The Burgess Shale: history of research and preservation of fossils. Pp. 11701201. In Yochelson, E. L. (ed.), Proceedings of the First North American Paleontological Convention, Volume II. Allen Press; Lawrence, Kansas.Google Scholar
Whittington, H. B., and Briggs, D. E. G. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B 309:569609.Google Scholar