Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T23:36:19.230Z Has data issue: false hasContentIssue false

Trace fossils and marine-nonmarine cyclicity in the Fountain Formation (Pennsylvanian: Morrowan/Atokan) near Manitou Springs, Colorado

Published online by Cambridge University Press:  14 July 2015

Christopher G. Maples
Affiliation:
Kansas Geological Survey, The University of Kansas, Lawrence 66047
Lee J. Suttner
Affiliation:
Department of Geology, Indiana University, Bloomington 47405

Abstract

The Lower Pennsylvanian (Morrowan/Atokan) portion of the Fountain Formation in the Manitou Springs, Colorado, area commonly has been interpreted as a subaerial alluvial fan. However, approximately 12 marine-nonmarine cycles, each represented by a discrete progradational sequence, have been recognized within the lower third of the Fountain Formation in this area. The typical cycle is composed of six lithofacies: 1) transgressive-lag conglomerate; 2) offshore mudstone; 3) hummocky crossbedded sandstone; 4) planar crossbedded granular sandstone; 5) low-angle, crossbedded, coarse-grained sandstone; 6) lenticular conglomeratic sandstone. Only lithofacies 6 is nonmarine (alluvial) in origin. Two diverse trace-fossil assemblages (totalling 18 ichnogenera and 20 ichnospecies) within the Fountain Formation are restricted to the marine portions of the section, or to those portions within 1 m below marine-deposited strata. The assemblage includes Arenicolites carbonarius, ?A. ichnosp., Aulichnites parkerensis, two types of Chondrites, ?Conostichus broadheadi, ?Crossopodia ichnosp., Curvolithus manitouensis (ichnosp. nov.), Eione ichnosp., Lockeia ichnosp., Macaronichnus segregatis, Palaeophycus heberti, Palaeophycus striatus, Planolites beverleyensis, Psammichnites plummeri, Rhizocorallium irregulare, ?Skolithos ichnosp., Taenidium serpentinum, ?Teichichnus ichnosp., ?Thalassinoides ichnosp., ?Zoophycos ichnosp., and several unnamed traces.

Trace fossils in the Fountain Formation can be used as indicators of sedimentary processes (e.g., rates of deposition, energy regime). Trace-fossil composition changes along a roughly south-to-north, nearshore-to-offshore gradient, generally reflecting increased influence and duration of normal-marine sedimentation. Ichnotaxa present and their distributions within marine strata in the lower part of the Fountain Formation suggest that they belong to the Curvolithus ichnoassemblage, which has been shown to indicate high sedimentaiton rates in relatively nearshore shelf settings. The Curvolithus ichnoassemblage can be subdivided into Macaronichnus-dominated and Curvolithus-dominated parts. Macaronichnus-dominated portions of the Fountain Formation indicate generally higher wave-energy sedimentation as compared with Curvolithus-dominated portions.

Type
Research Article
Copyright
Copyright © The Journal of Paleontology 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpert, S. P. 1975. Planolites and Skolithos from the upper Precambrian-Lower Cambrian, White-Inyo Mountains, California. Journal of Paleontology, 49:509521.Google Scholar
Andrews, H. N. Jr. 1955. Index of generic names of fossil plants, 1820-1950. U.S. Geological Survey Bulletin 1013, 262 p.Google Scholar
Archer, A. W. 1984. Preservational control of trace-fossil assemblages: Middle Mississippian carbonates of south-central Indiana. Journal of Paleontology, 58:285297.Google Scholar
Archer, A. W., and Maples, C. G. 1984. Trace-fossil distribution across a marine-to-nonmarine gradient in the Pennsylvanian of southwestern Indiana. Journal of Paleontology, 58:448466.Google Scholar
Badve, R. M., and Ghare, M. A. 1978. Jurassic ichnofauna of Kutch—I. Biovigyanam, 4:125140.Google Scholar
Bartsch-Winkler, S., and Schmall, H. R. 1984. Bedding types in Holocene tidal channel sequences, Knik Arm, Upper Cook Inlet, Alaska. Journal of Sedimentary Petrology, 54:12391250.Google Scholar
Basan, P. B., and Scott, R. W. 1979. Morphology of Rhizocorallium and associated traces from the Lower Cretaceous Purgatoire Formation, Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology, 28:523.CrossRefGoogle Scholar
Bassler, R. S. 1915. Bibliographic index of American Ordovician and Silurian fossils. U. S. National Museum Bulletin 92, 718 p.Google Scholar
Benton, M. J. 1982. Dictyodora and associated trace fossils from the Palaeozoic of Thuringia. Lethaia, 15:115132.CrossRefGoogle Scholar
Benton, M. J., and Trewin, N. H. 1980. Dictyodora from the Silurian of Peebleshire, Scotland. Palaeontology, 23:501513.Google Scholar
Billings, E. 1862. New species of fossils from different parts of the Lower, Middle and Upper Silurian rocks of Canada, p. 96168. In Palaeozoic Fossils, Vol. 1: containing descriptions and figures of new or little known species of organic remains from the Silurian rocks (1861-1865). Geological Survey of Canada.Google Scholar
Binney, E. W. 1852. On some trails and holes found in rocks of the Carboniferous strata, with remarks on the Microconchus carbonarius. Manchester Literary and Philosophical Society, Memoirs and Proceedings, Series 2, 10:181201.Google Scholar
Blair, T. C. 1987. Tectonic and hydrologic controls on cyclic alluvialfan, fluvial, and lacustrine rift-basin sedimentation, Jurassic-lowermost Cretaceous Todos Santos Formation, Chiapas, Mexico. Journal of Sedimentary Petrology, 57:845862.Google Scholar
Blair, T. C., and Bilodeau, W. L. 1988. Sedimentary response to episodic tectonism. Geology, 16:517520.2.3.CO;2>CrossRefGoogle Scholar
Bornemann, J. G. 1889. Über den Buntsandstein in Deutschlank und seine Bedeutung für die Trias. Beiträge Geologie, Paläontologie, 1:161.Google Scholar
Bromley, R. G., and Ekdale, A. A. 1984. Chondrites: a trace fossil indicator of anoxia in sediments. Science, 224:872874.CrossRefGoogle ScholarPubMed
Brongniart, A. T. 1828-1838. Histoire des Végétaux Fossiles, ou Recherches Botaniques et Géologiques sur les Végétaux Renfermés dans les Diverses Couches du Globe. G. Dufour & E. d'Ocagne, Paris, Vol. 1, 488 p., Vol. 2, 72 p.Google Scholar
Casey, R. 1961. The stratigraphical palaeontology of the Lower Greensand. Palaeontology, 3:487621.Google Scholar
Chamberlain, C. K. 1971. Morphology and ethology of trace fossils from the Ouachita Mountains, southeast Oklahoma. Journal of Paleontology, 45:212246.Google Scholar
Chamberlain, C. K. 1985. The tidal complex of the Muddy Formation at Alameda Parkway, p. 113130. In Chamberlain, C. K., Kauffman, E. G., Kiteley, L. M. W., and Lockley, M. G. (eds.), A Field Guide to Environments of Deposition (and Trace Fossils) of Cretaceous Sandstones of the Western Interior. Society of Economic Paleontologists and Mineralogists, 1985 Midyear Meeting, 3, Golden, Colorado.Google Scholar
Chisholm, J. I. 1970. Teichichnus and related trace-fossils in the Lower Carboniferous of St. Monace, Scotland. Great Britain Geological Survey Bulletin, 32:2151.Google Scholar
Chisholm, J. I. 1985. Xiphosurid burrows from the lower Coal Measures (Westphalian A) of West Yorkshire. Palaeontology, 28:619628.Google Scholar
Chronic, B. J., and Williams, C. A. 1978. The Glen Eyrie Formation (Carboniferous) near Colorado Springs, p. 199206. In Pruitt, J. D. and Coffin, P. E. (eds.), Energy Resources of the Denver Basin. Rocky Mountain Association of Geologists Field Conference Guidebook.Google Scholar
Clausen, C. K., and Vilhjálmsson, M. 1986. Substrate control of Lower Cambrian trace fossils from Bornholm, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology, 56:5168.CrossRefGoogle Scholar
Clifton, H. E. 1969. Beach cementation: nature and origin. Marine Geology, 7:553559.CrossRefGoogle Scholar
Clifton, H. E. 1981. Progradational sequences in Miocene shoreline deposits, southeastern Caliente Range, California. Journal of Sedimentary Petrology, 51:165184.Google Scholar
Clifton, H. E., and Thompson, J. K. 1978. Macaronichnus segregatis—a feeding structure of shallow marine polychaetes. Journal of Sedimentary Petrology, 48:12931301.Google Scholar
Crimes, T. P., and Anderson, M. M. 1985. Trace fossils from Late Precambrian-Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. Journal of Paleontology, 59:310343.Google Scholar
Curran, H. A. 1985. The trace fossil assemblage of a Cretaceous nearshore environment: Englishtown Formation of Delaware, U.S.A., p. 261276. In Curran, H. A. (ed.), Biogenic Structures: Their Use in Interpreting Depositional Environments. Society of Economic Paleontologists and Mineralogists Special Publication 35.CrossRefGoogle Scholar
D'Alessandro, A., and Bromley, R. G. 1986. Trace fossils in Pleistocene sandy deposits from Gravina area southern Italy. Rivista Italiana di Paleontologia e Stratigrafia, 92:67102.Google Scholar
D'Alessandro, A., and Bromley, R. G. 1987. Meniscate trace fossils and the Muensteria-Taenidium problem. Palaeontology, 30:743763.Google Scholar
D'Alessandro, A., Ekdale, A. A., and Sonnino, M. 1986. Sedimentologic significance of turbidite ichnofacies in the Saraceno Formation (Eocene), southern Italy. Journal of Sedimentary Petrology, 56:294306.Google Scholar
DeCelles, P. G. 1986. Middle Tertiary depositional systems of the San Emigdio Range, southern California. Field Guide, Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles, California, 32 p.Google Scholar
DeCelles, P. G. 1987. Variable preservation of Middle Tertiary, coarse-grained, nearshore to outer-shelf storm deposits in southern California. Journal of Sedimentary Petrology, 57:250264.Google Scholar
Dokken, K. 1987. Trace fossils from Middle Ordovician Platteville Formation, p. 191196. In Sloan, R. E. (ed.), Middle and Late Ordovician Lithostratigraphy and Biostratigraphy of the Upper Mississippi Valley. Minnesota Geological Survey, Report of Investigations 35.Google Scholar
D'Orbigny, A. 1842. Voyage dan l'Amérique méridionale (le Brésil, la République Oriental de l'Uruguay, la République Argentine, la Patagonie, la République du Chili, la République de Bolivia, la République du Péron) exécuté pendant les annees 1826, 1827, 1829, 1830, 1831, 1832, et 1833. Paléontologie, 3(4):1188. Pitois-Levrault, Paris.Google Scholar
Dott, R. H. Jr., and Bourgeois, J. 1982. Hummocky stratification significance of its variable bedding sequences. Geological Society of America Bulletin, 93:663680.2.0.CO;2>CrossRefGoogle Scholar
Eagar, R. M. C., Baines, J. G., Collinson, J. D., Hardy, P. G., Okolo, S. A., and Pollard, J. E. 1985. Trace fossil assemblages and their occurrence in Silesian (Mid-Carboniferous) deltaic sediments of the Central Pennine Basin, England, p. 99149. In Curran, H. A. (ed.), Biogenic Structures: Their Use in Interpreting Depositional Environments. Society of Economic Paleontologists and Mineralogists Special Publication 35.CrossRefGoogle Scholar
Ehrenberg, K. 1944. Ergänzende Bemerkungen zu den seinerzeit aus dem Miozän von Burgschleintz bescruiebenen Gangkernen und Bauten dekapoder Krebse. Paläontologische Zeitschrift, 23:354359.CrossRefGoogle Scholar
Ekdale, A. A., and Mason, T. R. 1987. Ichnologic signature of oxygen-depleted deposits. American Association of Petroleum Geologists Bulletin, 71:552.Google Scholar
El-Asa'ad, G. M. A. 1987. Mesozoic trace fossils from central Saudi Arabia. Arab Gulf Journal of Scientific Research, A, Mathematical and Physical Sciences, 5:205224.Google Scholar
Fenton, C. L., and Fenton, M. A. 1937a. Olivellites, a Pennsylvanian snail burrow. American Midland Naturalist, 18:452453.CrossRefGoogle Scholar
Fenton, C. L., and Fenton, M. A. 1937b. Burrows and trails from Pennsylvanian rocks of Texas. American Midland Naturalist, 18:10791084.CrossRefGoogle Scholar
Fillion, D., and Pickerill, R. K. 1984. Systematic ichnology of the Middle Ordovician Trenton Group, St. Lawrence Lowland, eastern Canada. Maritime Sediments and Atlantic Geology, 20:141.Google Scholar
Fischer, P., and Paulus, B. 1969. Spurenfossilien aus den oberen Nohn-Schichten der Blankenheimer Mulde (Eifelium, Eifel). Senckenbergiana Lethaea, 50:81101.Google Scholar
Fishbaugh, D. A. 1980. Depositional model for the lower Fountain Formation in the Manitou embayment, Colorado. Unpubl. M.A. thesis, Indiana University, Bloomington, 136 p.Google Scholar
Fliche, P. 1906. Flore fossile du Trias en Lorraine et en Franche-Comté. Bulletin des Seances de la Societé des Sciences de Nancy, Série 3, 6[1905]:166.Google Scholar
Fredrickson, J. A. 1978. Petrology and depositional environments of the Fountain and Ingleside formations, Owl Canyon, Colorado. Unpubl. M.S. thesis, University of Wyoming, Laramie, 100 p.Google Scholar
Frey, R. W., and Howard, J. D. 1982. Trace fossils from the Upper Cretaceous of the Western Interior: potential criteria for facies models. The Mountain Geologist, 19:110.CrossRefGoogle Scholar
Frey, R. W., and Howard, J. D. 1985a. Trace fossils from the Panther Member, Star Point Formation (Upper Cretaceous), Coal Creek Canyon, Utah. Journal of Paleontology, 59:370404.Google Scholar
Frey, R. W., and Howard, J. D. 1985b. Upper Cretaceous trace fossils, Book Cliffs of Utah: a field guide, p. 115152. In Komola, D. L., Pfaff, B. J., Newman, S. L., Frey, R. W., and Howard, J. D. (eds.), depositional Facies of the Castlegate and Blackhawk Formations, Book Cliffs, Eastern Utah. Society of Economic Paleontologists and Mineralogists, Midyear Meeting Guidebook 10.Google Scholar
Frey, R. W., Howard, J. D.Pryor, W. A. 1978. Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 23:199229.CrossRefGoogle Scholar
Frey, R. W., and Pemberton, S. G. 1985. Biogenic structures in outcrops and cores. I. Approaches to ichnology. Bulletin of Canadian Petroleum Geology, 33:72115.Google Scholar
Frey, R. W., Pemberton., S. G., and Saunders, T. D. A. 1990. Ichnofacies and bathymetry: a passive relationship. Journal of Paleontology, 64:155158.CrossRefGoogle Scholar
Frey, R. W., and Seilacher, A. 1980. Uniformity in marine invertebrate ichnology. Lethaia, 13:183207.CrossRefGoogle Scholar
Fritsch, A. 1908. Problematica Silurica, p. 128. In Barrande, J., Système Silurien du Centre de la Bohême. Privately published, Prague.Google Scholar
Fürsich, F. T. 1974a. Ichnogenus Rhizocorallium. Paläontologische Zeitschrift, 48:1628.CrossRefGoogle Scholar
Fürsich, F. T. 1974b. Corallian (Upper Jurassic) trace fossils from England and Normandy. Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie), 13:151.Google Scholar
Fürsich, F. T. 1981. Invertebrate trace fossils from the Upper Jurassic of Portugal. Comunicações dos Serviçoes Geológicos de Portugal, 67:153168.Google Scholar
Fürsich, F. T., and Heinberg, C. 1983. Sedimentology, biostratinomy, and palaeoecology of an Upper Jurassic offshore sand bar complex. Bulletin of the Geological Society of Denmark, 32:6795.CrossRefGoogle Scholar
Fürsich, F. T., and Schmidt-Kittler, N. 1980. Biofacies analysis of Upper Jurassic marginally marine environments of Portugal, I. The carbonate-dominated facies at Cabo Sepichel, Estremadura. Geologische Rundschau, 69:943981.CrossRefGoogle Scholar
Geinitz, H. B. 1846. Grundriss der Versteinerungskunde. Arnold, Dresden and Leipzig, 815 p.Google Scholar
Ghare, M. A., and Kulkarni, K. G. 1986. Jurassic ichnofauna of Kutch—II. Wagad Region. Biovigyanam, 12:4462.Google Scholar
Gibson, G. C. 1989. Trace fossils from Late Precambrian Carolina slate belt, south-central North Carolina. Journal of Paleontology, 63:110.CrossRefGoogle Scholar
Greenwood, B., and Sherman, D. J. 1986. Hummocky cross-stratification in the surf zone; flow parameters and bedding genesis. Sedimentology, 33:3345.CrossRefGoogle Scholar
Gutschick, R. C., and Rodriguez, J. 1977. Late Devonian-Early Mississippian trace fossils and environments along the Cordilleran Miogeocline, western United States, p. 195208. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal Special Issue, No. 9.Google Scholar
Haldemann, S. S. 1840. Supplement to number one of “A monograph of the Limniades, and other freshwater univalve shells of North America,” containing descriptions of apparently new animals in different classes, and the names and characters of the subgenera in Paludina and Anculosa. Philadelphia, 3 p.CrossRefGoogle Scholar
Hall, J. 1847. Palaeontology of New York. State of New York, Albany, New York, 1:1338. (C. Van Benthuysen.)Google Scholar
Hall, J. 1852. Palaeontology of New York. State of New York, Albany, New York, 2:1362. (C. Van Benthuysen.)Google Scholar
Hanford, C. R. 1986. Facies and bedding sequences in shelf-storm-deposited carbonates—Fayetteville Shale and Pitkin Limestone (Mississippian), Arkansas. Journal of Sedimentary Petrology, 56:123137.CrossRefGoogle Scholar
Häntzschel, W. 1962. Trace fossils and problematica, p. W177W245. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. W, Miscellanea, Conodonts, Conoidal Shells of Uncertain Affinities, Worms, Trace Fossils and Problematica. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Häntzschel, W. 1975. Trace fossils and problematica, p. W1W269. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Pt. W, Miscellanea (Supplement 1), Trace Fossils and Problematica, 2nd ed., (revised and enlarged). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Harms, J. C., Southard, J. B., and Sporing, D. R. 1975. Depositional environments as interpreted from primary sedimentary structures and stratification sequences. Society of Economic Paleontologists an Mineralogists, Short Course #2, 161 p.Google Scholar
Heer, O. 1864-1865. Die Urwelt der Schweiz. F. Schulthess, Zürich, 622 p.Google Scholar
Heer, O. 1876-1877. Flora Fossilis Helvetiae. Die vorweltliche Flora der Schwiez. J. Würster & Co., 182 p.Google Scholar
Heinberg, C. 1974. A dynamic model for a meniscus filled tunnel (Anchorichnus n. ichnogen.) from the Jurassic Pecten Sandstone of Milne Land, East Greenland. Grønlands Geologiske Undersøgelse Rapport, 62:120.CrossRefGoogle Scholar
Heinberg, C., and Birkelund, T. 1984. Trace-fossil assemblages and basin evolution of the Vardekløft Formation (Middle Jurassic, central, East Greenland). Journal of Paleontology, 58:362397.Google Scholar
Howard, J. D., and Frey, R. W. 1984. Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east-central Utah. Canadian Journal of Earth Sciences, 21:200219.CrossRefGoogle Scholar
Hunter, R. E., and Clifton, H. E. 1982. Cyclic deposits and hummocky cross-stratification of probable storm origin in Upper Cretaceous rocks of the Cape Sebastian area, southwestern Oregon. Journal of Sedimentary Petrology, 52:127143.Google Scholar
James, U. P. 1879. Description of new species of fossils and remarks on some others, from the Lower and Upper Silurian rocks of Ohio. The Paleontologist, 3:1724.Google Scholar
Jennings, J. R. 1980. Fossil plants from the Fountain Formation (Pennsylvanian) of Colorado. Journal of Paleontology, 54:149158.Google Scholar
Kairo, S., and Suttner, L. J. 1989. Cyclic sedimentation in an orogenic setting: the Fountain Formation (Pennsylvanian) near Colorado Springs. Geological Society of America, Abstracts with Programs, 21(4):1617.Google Scholar
Landing, E., and Brett, C. E. 1987. Trace fossils and regional significance of a Middle Devonian (Givetian) disconformity in southwestern Ontario. Journal of Paleontology, 61:205230.CrossRefGoogle Scholar
Langford, R. P. 1982. Depositional systems and geologic history of the lower part of the Fountain Formation, Manitou Embayment, Colorado. Unpubl. M.A. thesis, Indian University, Bloomington, 200 p.Google Scholar
Langford, R. P., and Fishbaugh, D. A. 1984. Sedimentology of the Fountain fan-delta complex near Manitou Springs, Colorado, p. 130. In Suttner, L. J., Langford, R. P., and Schultz, A. W. (eds.), Sedimentology of the Fountain Fan-delta Complex near Manitou Springs and Canon City, Colorado. Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists 1984 Spring Field Conference Guidebook.Google Scholar
Lesquereux, L. 1876. Species of fossil marine plants from Carboniferous measures. Indiana State Geologist Annual Report, 7:134145.Google Scholar
Lesquereux, L. 1880-1884. Description of the coal flora of the Carboniferous Formation in Pennsylvania and throughout the United States. Pennsylvania Geological Survey, Report of Progress, 1-3:1977.Google Scholar
Lockley, M. G., Rindsberg, A. K., and Zeiler, R. M. 1987. The paleoenvironmental significance of the nearshore Curvolithus Ichnofacies. Palaios, 2:255262.CrossRefGoogle Scholar
Maples, C. G. 1986. Enhanced paleoecological and paleoenvironmental interpretations result from analysis of early diagenetic concretions in Pennsylvanian shales. Palaios, 1:512516.CrossRefGoogle Scholar
Maples, C. G., and Archer, A. W. 1989. The potential of Paleozoic nonmarine trace fossils for paleoecological interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology, 73:185195.CrossRefGoogle Scholar
Maples, C. G., Archer., A. W., Suttner, L. J., Brown, M., and Feldman, H. R. 1989. Recurring ichnoassemblages and sedimentary processes: comparison of Carboniferous siliciclastic- and carbonate-dominated units from North America. 28th International Geological Congress, Abstracts, 2:366367.Google Scholar
Maples, C. G., and West, R. R. 1989. Lockeia, not Pelecypodichnus. Journal of Paleontology, 63:694696.CrossRefGoogle Scholar
Marintsch, E. J., and Finks, R. M. 1982. Lower Devonian ichnofacies at Highland Mills, New York and their gradual replacement across environmental gradients. Journal of Paleontology, 56:10501078.Google Scholar
Martino, R. L. 1989. Trace fossils from marginal marine facies of the Kanawha Formation (Middle Pennsylvanian), West Virginia. Journal of Paleontology, 63:389403.CrossRefGoogle Scholar
Massalongo, A. 1855. Zoophycos, Novum Genus Plantorum Fossilium. Antonelli, Verona, 52 p.Google Scholar
Mayer, G. 1954. Ein neues Rhizocorallium aus dem mittleren Haupt-muschelkalk von Bruchsal. Beiträge zur naturkundlichen Forschung in Südwestdeutschland, 13:8083.Google Scholar
McCann, T., and Pickerill, R. K. 1986. The trace fossil Yakutatia emersoni from the Cretaceous Kodiak Formation of Alaska. Canadian Journal of Earth Sciences, 23:262269.CrossRefGoogle Scholar
McCann, T., and Pickerill, R. K. 1988. Flysch trace fossils from the Cretaceous Kodiak Formation of Alaska. Journal of Paleontology, 62:330348.CrossRefGoogle Scholar
M'Coy, F. 1851-1855. A systematic description of the British Palaeozoic fossils in the Geological Museum of the University of Cambridge, p. 1661. In Sedgwick, A., A Synopsis of the Classification of the British Palaeozoic Rocks. J. W. Parker, London.Google Scholar
McPherson, J. G., Shanmugam, G., and Moiola, R. J. 1987. Fan-deltas and braid deltas: varieties of coarse-grained deltas. Geological Society of America Bulletin, 99:331340.2.0.CO;2>CrossRefGoogle Scholar
Miller, M. F., and Knox, L. W. 1985. Biogenic structures and depositional environments of a Lower Pennsylvanian coal-bearing sequence, northern Cumberland Plateau, Tennessee, U.S.A., p. 6797. In Curran, H. A. (ed.), Biogenic Structures: Their Use in Interpreting Depositional Environments. Society of Economic Paleontologists and Mineralogists Special Publication 35.CrossRefGoogle Scholar
Mukherjee, K. K., Das, S., and Chakrabarti, A. 1987. Common physical sedimentary structures in a beach-related open-sea siliciclastic tropical tidal flat at Chandipur, Orissa, India, and evaluation of the weather conditions through discriminant analysis. Senckenbergiana Maritima, 19:261293.Google Scholar
Nicholson, H. A. 1873. Contributions to the study of the errant annelides of the older Paleozoic rocks. Proceedings of the Royal Society of London, 21:288290(also Geological Magazine, 10:309-310).Google Scholar
Nicholson, H. A., and Hinde, G. J. 1875. Notes on the fossils of the Clinton, Niagaoa, and Guelph Formations of Ontario, with descriptions of new species. Canadian Journal of Science, Literature, and History, Series 2, 14:137160(p. 153-160 = p. 137-144).Google Scholar
O'Connell, A. F. 1981. Origin of the Glen Eyrie Member of the Fountain Formation. Unpubl. A.M. thesis, Indiana University, Bloomington, 174 p.Google Scholar
Osgood, R. G. Jr. 1970. Trace fossils of the Cincinnati area. Paleontographica Americana, 6(41):277444.Google Scholar
Pemberton, S. G., and Frey, R. W. 1982. Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. Journal of Paleontology, 56:843881.Google Scholar
Pemberton, S. G., Frey., R. W., and Bromley, R. G. 1988. The ichnotaxonomy of Conostichus and other plug-shaped ichnofossils. Canadian Journal of Earth Sciences, 25:866892.CrossRefGoogle Scholar
Pemberton, S. G., and Jones, B. 1988. Ichnology of the Pleistocene Ironshore Formation, Grand Cayman Island, British West Indies. Journal of Paleontology, 62:495505.Google Scholar
Pickerill, R. K., and Forbes, W. H. 1979. Ichnology of the Trenton Group in the Quebec City area. Canadian Journal of Earth Sciences, 16:20222039.CrossRefGoogle Scholar
Pickerill, R. K., Fillion, D., and Harland, T. L. 1984. Middle Ordovician trace fossils in carbonates of the Trenton Group between Montreal and Quebec City, St. Lawrence Lowland, eastern Canada. Journal of Paleontology, 58:416439.Google Scholar
Pickerill, R. K., Romano, M., and Meléndez, B. 1984. Arenig trace fossils from the Salamanca area, western Spain. Geological Journal, 19:249269.CrossRefGoogle Scholar
Pienkowski, G. 1985. Early Liassic trace fossil assemblages from the Holy Cross Mountains, Poland: their distribution in continental and marginal marine environments, p. 3751. In Curran, H. A. (ed.), Biogenic Structures: Their Use in Interpreting Depositional Environments. Society of Economic Paleontologists and Mineralogists Special Publication 35.CrossRefGoogle Scholar
Plaziat, J.-C., and Mahmoudi, M. 1988. Trace fossils attributed to burrowing echinoids: a revision including new ichnogenus and ichnospecies. Geobios, 21:209233.CrossRefGoogle Scholar
Plicka, M. 1987. Fossil traces in the Inner-Carpathian Paleogene of Slovakia, Czechoslovakia. Západné Karpaty, série paleontológia, GUDS, Bratislava, 12:125196.Google Scholar
Pollard, J. E. 1981. A comparison between the Triassic trace fossils of Cheshire and south Germany. Palaeontology, 24:555588.Google Scholar
Pollard, J. E. 1986. Trace fossils from Carboniferous deltaic sediments of the Pennines, p. 333341. In Nebitt, R. W. and Nicol, I. (eds.), Geology in the Real World—the Kingsley Dunham Volume. The Institute of Mining and Metallurgy, London.Google Scholar
Pollard, J. E. 1988. Trace fossils in coal-bearing sequences. Journal of the Geological Society, London, 145:339350.CrossRefGoogle Scholar
Ranger, M. J., Pemberton, S. G., and Sharpe, R. J. 1988. Lower Cretaceous example of a shoreface-attached marine bar complex: the Wabiskaw ‘C’ sand of northeastern Alberta, p. 451462. In James, D. P. and Leckie, D. A. (eds.), Sequences, Stratigraphy, Sedimentology: Surface and Subsurface. Canadian Society of Petroleum Geologists, Memoir 15.Google Scholar
Richter, R. 1924. Flachseebeobachtungen zur paläontologie und geologie. VII-XI. Senckenbergiana, 6:119165.Google Scholar
Romano, M., and Meléndez, B. 1985. An arthropod (Merostome) ichnocoenosis from the Carboniferous of northwest Spain. Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère 5:317325.Google Scholar
Ross, C. A., and Ross, J. R. P. 1985. Late Paleozoic depositional sequences are synchronous and worldwide. Geology 13:194197.2.0.CO;2>CrossRefGoogle Scholar
Ross, C. A., and Ross, J. R. P. 1987. Late Paleozoic sea levels and depositional sequences, p. 137149. In Ross, C. A. and Haman, D. (eds.), Timing and Depositional History of Eustatic Sequences: Constraints on Seismic Stratigraphy. Cushman Foundation for Foraminiferal Research, Special Publication No. 24.Google Scholar
Salter, J. W. 1857. On annelide-burrows and surface markings from the Cambrian rocks of the Longmynd. Geological Society of London, Quarterly Journal, 13:199206.CrossRefGoogle Scholar
Saporta, G. de. 1872-1873. Paléontologie francaise ou description des fossiles de la France. 2 sér. Végétaux. Plantes Jurassiques. G. Masson, Paris, Vol. 1, 506 p.Google Scholar
Saunders, T., and Pemberton, S. G. 1986. Trace fossils and sedimentology of the Appaloosa Sandstone: Bearpaw-Horseshoe Canyon Formation transition, Dorothy, Alberta. Canadian Society of Petroleum Geologists Field Trip Guidebook, 116 p.Google Scholar
Savrda, C. E., and Bottjer, D. J. 1987. Limitations of ichnofossil approach for evaluating paleo-bottom-water redox conditions. American Association of Petroleum Geologists Bulletin, 71:610.Google Scholar
Seilacher, A. 1955. Spuren und fazies im Unterkambrium, p. 11143. In Schindewolf, O. H. and Seilacher, A., Beiträge zur Kenntnis de Kambriums in der Salt Range (Pakistan). Akademie der Wissenschaften und der Literatur zu Mainz, mathematisch-naturwissenschaftliche Klasse, Abhandlungen, No. 10.Google Scholar
Sellwood, B. W. 1970. The relation of trace fossils to small sedimentary cycles in the British Lias, p. 489504. In Crime, T. P. and Harper, J. C. (eds.), Trace Fossils. Geological Journal, Special Issue 3, Seel House Press, Liverpool.Google Scholar
Shah, S. K., and Sudan, C. S. 1983. Trace fossils from the Cambrain of Kashmir and their stratigraphic significance. Journal of the Geological Society of India, 24:194202.Google Scholar
Sheldon, R. W. 1968. Probable gastropod tracks from the Kinder-scout Grit of Soyland Moor, Yorkshire. Geological Magazine, 105:365366.CrossRefGoogle Scholar
Shultz, A. W. 1984. Provenance and sedimentology of the Fountain Formation near Canon City, Colorado, p. 6285. In Suttner, L. J., Langford, R. P., and Schultz, A. W. (eds.), Sedimentology of the Fountain Fan-delta Complex near Manitou Springs and Canon City, Colorado. Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists 1984 Spring Field Conference Guidebook.Google Scholar
Sternberg, K. M. Von. 1833. Versuch Einer Geognostisch-Botanischen Darstellung der Flora der Vorwelt, Parts 5-6. Fleischer Fr., Leipzig, Prague, 80 p.Google Scholar
Suttner, L. J. 1984. Climatic influence on Fountain sedimentation in the Manitou Embayment, p. 8696. In Suttner, L. J., Langford, R. P., and Schultz, A. W. (eds.), Sedimentology of the Fountain Fan-delta Complex near Manitou Springs and Canon City, Colorado. Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists 1984 Spring Field Conference Guidebook.Google Scholar
Suttner, L. J., and Dutta, P. K. 1986. Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Petrology, 56:329345.Google Scholar
Suttner, L. J., Hood, L. A., and Dutta, P. K. 1988. Influence of depositional processes on the composition of sandstone in a wave-dominated fan delta. American Association of Petroleum Geologists Bulletin, 72:252.Google Scholar
Suttner, L. J., Langford, R. P., and O'Connell, A. F. 1984. New interpretation of the stratigraphic relationship between the Fountain Formation and its Glen Eyrie Member, p. 3161. In Suttner, L. J., Langford, R. P., and Schultz, A. W. (eds.), Sedimentology of the Fountain Fan-delta Complex near Manitou Springs and Canon City, Colorado. Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists 1984 Spring Field Conference Guidebook.Google Scholar
Swift, D. J. D., Fiqueiredo, A. C., and Freeland, G. L. 1983. Hummocky cross-stratification and mega ripples: a geologic double standard? Journal of Sedimentary Petrology, 53:12951317.Google Scholar
Tate, G. 1859. The geology of Breadnell, in the county of Northumberland, with a description of some annelids of the Carboniferous formation. The Geologist, 1859:5970.CrossRefGoogle Scholar
Torell, O. M. 1868. Bidrag till Sparagmitetagens geognose och paleontologi. Acta Universitet Lundensis, Lunds Universitet, Årsskrift, 4(2):140.Google Scholar
Torell, O. M. 1870. Petrificata Suecana Formationis Cambricae. Lunds Universitet, Årsskrift, 6(8):114.Google Scholar
Ulrich, E. O. 1904. Fossils and age of the Yakutat Formation. Descriptions of collections made chiefly near Kodiak, Alaska. Harriman Alaska Expedition, 4:125146.Google Scholar
Voigt, E., and Hartmann, G. 1970. Über rezente vergipste Ostracodenfährten. Senckenbergiana Maritima, 2:103118.Google Scholar
Vossler, S. M., and Pemberton, S. G. 1988. Ichnology of the Cardium Formation (Pembina Oilfield): implications for depositional and sequence stratigraphic interpretations, p. 237254. In James, D. P. and Leckie, D. A. (eds.), Sequences, Stratigraphy, Sedimentology: Surface and Subsurface. Canadian Society of Petroleum Geologists, Memoir 15.Google Scholar
Walcott, C. D. 1899. Pre-Cambrian fossiliferous formations. Geological Society of America Bulletin, 10:199244.CrossRefGoogle Scholar
Wescott, W. A., and Ethridge, F. G. 1980. Fan-delta sedimentology and tectonic setting, Yallahs fan-delta, southeast Jamaica. American Association of Petroleum Geologists Bulletin, 64:374399.Google Scholar
Wescott, W. A., and Utgaard, J. E. 1987. An Upper Mississippian trace-fossil assemblage from the Tar Springs Sandstone, southern Illinois. Journal of Paleontology, 61:231241.CrossRefGoogle Scholar
Williamson, I. A., and Williamson, R. I. H. 1968. Trace fossils from Namurian sandstone, Yorkshire. Geological Magazine, 105:562.Google Scholar
Wilson, R. F. 1975. Paleotectonic investigations of the Pennsylvanian System in the U.S. U.S. Geological Survey Professional Paper 853:245264.Google Scholar
Yochelson, E. L., and Schindel, D. E. 1978. A reexamination of the Pennsylvanian trace fossil Olivellites. U.S. Geological Survey, Journal of Research, 6:789796.Google Scholar
Zenker, J. C. 1836. Historisch-topographisches Taschenbuch von Jena und seiner Umgebung besonders in naturwissenschaftlicher und medicinischer Beziehung. Wackenholder, Jena, 338 p.Google Scholar