Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T21:40:53.033Z Has data issue: false hasContentIssue false

Postemergence Weed Control in Acetolactate Synthase–Resistant Grain Sorghum

Published online by Cambridge University Press:  20 January 2017

D. Shane Hennigh
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Kassim Al-Khatib*
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Mitchell R. Tuinstra
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
*
Corresponding author's E-mail: khatib@ksu.edu.

Abstract

Postemergence herbicides to control grass weeds in grain sorghum are limited. Acetolactate synthase (ALS) –inhibiting herbicides are very effective at controlling many grass species in many crops; unfortunately, use of ALS-inhibiting herbicides is not an option in conventional grain sorghum because of its susceptibility to these herbicides. With the development of ALS-resistant grain sorghum, several POST ALS-inhibiting herbicides can be used to control weeds in grain sorghum. Field experiments were conducted in 2007 and 2008 to evaluate the efficacy of tank mixtures of nicosulfuron + rimsulfuron applied alone or in combination with bromoxynil, carfentrazone–ethyl, halosulfuron + dicamba, prosulfuron, 2,4-D, or metsulfuron methyl + 2,4-D. In addition, these treatments were applied with and without atrazine. Nicosulfuron + rimsulfuron controlled barnyardgrass, green foxtail, and giant foxtail 99, 86, and 91% 6 wk after treatment (WAT), respectively. A decrease in annual grass control was observed when nicosulfuron + rimsulfuron was tank mixed with some broadleaf herbicides, although the differences were not always significant. In addition, nicosulfuron + rimsulfuron controlled velvetleaf and ivyleaf moringglory 64 and 78% 6 WAT, respectively. Control of velvetleaf was improved when nicosulfuron + rimsulfuron was tank mixed with all broadleaf herbicides included in this study with the exception of atrazine, bromoxynil, and prosulfuron + atrazine. Control of ivyleaf morningglory was improved when nicosulfuron + rimsulfuron was tank mixed with all of the herbicides included in this study with the exception of metsulfuron methyl + 2,4-D. Weed populations and biomass were lower when nicosulfuron + rimsulfuron were applied with various broadleaf herbicides than when it was applied alone. Grain sorghum yield was greater in all herbicide treatments than in the weedy check, with the highest grain yield from nicosulfuron + rimsulfuron + prosulfuron. This research showed that postemergence application of nicosulfuron + rimsulfuron effectively controls grass weeds, including barnyardgrass, green foxtail, and giant foxtail. The research also showed that velvetleaf and ivyleaf morningglory control was more effective when nicosulfuron + rimsulfuron were applied with other broadleaf herbicides.

Los herbicidas de post-emergencia para el control de malezas en el cultivo de sorgo de grano son limitados. Los herbicidas inhibidores como el acetolactate synthase son muy efectivos para controlar muchas especies de zacate en muchos cultivos, Desafortunadamente; el uso de herbicidas inhibidores de ALS no es una opción en el cultivo convencional de sorgo de grano por la susceptibilidad de esta gramínea a estos herbicidas. Con el desarrollo del sorgo de grano resistente a ALS, muchos herbicidas inhibidores ALS post-aplicados pueden ser usados para controlar malezas en este cultivo. Estudios de campo fueron llevados al cabo en 2007 y 2008 para evaluar la eficiencia de combinaciones de nicosulfuron + rimsulfuron aplicados solo o en combinación con bromoxyl, canfentrazone–ethyl + dicamba, prosulfuron, 2, 4-D o metsulfuron methyl + 2,4-D. Además, estos tratamientos fueron aplicados con o sin atrazine. La combinación de nicosulfuron + rimsulfuron controló la barnyardgrass (echinochloa cruz-galli), la green foxtail (setaria viridis) y la giant foxtail (setaria faberi) en un 99, un 86 y un 91% WAT (SDT), respectivamente. Una disminución en el control anual de malezas se observó cuando el nicosulfuron + rimsulfuron se mezclaron con algún herbicida de hoja ancha aunque las diferencias no fueron siempre significativas. Además el nicosulfuron + rimsulfuron controlaron la velvetleaf (abuitilon theophrasti) y la ivyleaf morninggglory (abuitilon theophrasti- ipomonea) en un 64 y un 78% a las 6 WAT, respectivamente. Hubo un mejor control de la velvetleaf (abuitilon theophrasti) cuando se mezcló nicosulfuron + rimsulfuron con todo tipo de herbicidas de hoja ancha incluidos en este estudio con la excepción de atrazine, bromoxynil y prosulfuron + atrazine. El control de mornigglory (ipomonea) mejoró cuando se mezclaron nicosulfuron + rimsulfuron con todos los herbicidas incluidos en este estudio con excepción de metsulfuron methyl + 2,4-D. La población de malezas y la biomasa fueron menores cuando se aplicó nicosulfuron + rimsulfuron mezclados con varios herbicidas de hoja ancha en comparación a cuando se aplicó solo. El rendimiento del sorgo de grano fue mucho mayor con todos los tratamientos de herbicida que en la parcela testigo con malezas, obteniendo el mayor rendimiento de grano a partir del nicosulfuron + rimsulfuron + prosulfuron. Este estudio mostró que la aplicación de nicosulfuron + rimsulfuron en post emergencia controla efectivamente las malezas incluyendo la barnyardgrass, green foxtail y giant foxtail El estudio también mostró que el control de velvetleaf e ivyleaf morningglory fue más efectivo cuando se aplicó nicosulfuron + rimsulfuron en combinación con otros herbicidas de hoja ancha.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K. and Peterson, D. E. 1999. Soybean (Glycine max) response to simulated drift from selected sulfonylurea herbicides, dicamba, glyphosate, and glufosinate. Weed Technol 13:264270.Google Scholar
Al-Khatib, K. and Tamhane, A. 1999. Dry pea (Pisum sativum) response to low rates of selected foliar- and soil-applied sulfonylurea and growth regulator herbicides. Weed Technol 13:753758.Google Scholar
Anonymous 2009. Kansas State University Weather Data Library. http://www.oznet.ksu.edu/wdl/wdl/pmaps.htm. Accessed: June 29, 2009.Google Scholar
Bennett, W. F., Tucker, B. B., and Maunder, A. B. 1990. Modern Grain Sorghum Production. Ames: Iowa State University Press, Ames. 327.Google Scholar
Bridges, D. C. 1994. Impact of weeds on human endeavors. Weed Technol 8:392395.Google Scholar
Burnside, O. C. and Wicks, G. A. 1969. Influence of weed competition on sorghum growth. Weed Sci 17:332334.CrossRefGoogle Scholar
Carey, J. B. and DeFelice, M. S. 1991. Timing of chlorimuron and imazaquin application for weed control in no-till soybeans (Glycine max). Weed Sci 39:232237.Google Scholar
Damalas, C. A. and Eleftherohorinos, I. G. 2001. Dicamba and atrazine antagonism on sulfonylurea herbicides used for johnsongrass (Sorghum halepense) control in corn (Zea mays). Weed Technol 15:6267.Google Scholar
Dobbels, A. F. and Kapusta, G. 1993. Postemergence weed control in corn (Zea mays) with nicosulfuron combinations. Weed Technol 7:844850.Google Scholar
Durner, J., Gailus, V., and Boger, P. 1990. New aspects of inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin. Plant Physiol 95:11441149.Google Scholar
Feltner, K. C., Hurst, H. R., and Anderson, L. E. 1969a. Yellow foxtail competition in grain sorghum. Weed Sci 17:211213.Google Scholar
Feltner, K. C., Hurst, H. R., and Anderson, L. E. 1969b. Tall waterhemp competition in grain sorghum. Weed Sci 17:214216.Google Scholar
Graham, P. L., Steiner, J. L., and Wiese, A. F. 1988. Light absorption and competition in mixed sorghum–pigweed communities. Agron. J. 80:415418.Google Scholar
Heap, I. 2008. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: April 10, 2008.Google Scholar
Knezevic, S. A., Horak, M. J., and Vanderlip, R. L. 1997. Relative time of redroot pigweed (Amaranthus retroflexus L.) emergence is critical in pigweed–sorghum [Sorghum bicolor (L.) Moench] competition. Weed Sci 45:502508.Google Scholar
Kuehl, R. O. 2000. Design of Experiments: Statistical Principles of Research Design and Analysis. 2nd ed. Pacific Grove, CA: Duxbury. 292298.Google Scholar
Moomaw, R. S. and Martin, A. R. 1985. Herbicide evaluations for no-till soybean (Glycine max) production in corn (Zea mays) residue. Weed Sci 33:679685.Google Scholar
NASS 2008a. 2008 Acreage Summary [Online]. National Agricultural Statistics Service. http://www.nass.usda.gov/QuickStats/indes2.jsp. Accessed: June 17, 2009.Google Scholar
NASS 2008b. Kansas 2008 Crop Production Summary [Online]. National Agriculture Statistics Service. http://www.nass.usda.gov/QuickStats/PullData_US,jsp. Accessed: June 17, 2009.Google Scholar
Ramsey, F. L. and Schafer, D. W. 1997. The Statistical Sleuth: A Course in Methods of Data Analysis. Belmont, CA: Duxbury. 29:566571.Google Scholar
Regehr, D. L., Peterson, D. E., Ohlenbusch, P. D., Fick, W. H., Stahlman, P. W., and Wolf, R. E. 2008. 2008 Chemical Weed Control for Field Crops, Pastures, Rangeland, and Noncropland. Report of Progress 994. Manhattan, KS: Kansas State University.Google Scholar
Schuster, C. L., Al-Khatib, K., and Dille, J. A. 2007. Mechanism of antagonism of mesotrione on sulfonylurea herbicides. Weed Sci 55:429434.CrossRefGoogle Scholar
Schuster, C. L., Al-Khatib, K., and Dille, J. A. 2008. Efficacy of sulfonylurea herbicides when tank mixed with mesotrione. Weed Technol 22:222230.Google Scholar
Smith, B. S., Murry, D. S., Green, J. D., Wanyahaya, W. M., and Weeks, D. L. 1990. Interference of three annual grasses with grain sorghum (Sorghum bicolor). Weed Technol 4:245249.Google Scholar
Stahlman, P. W. and Wicks, G. A. 2000. Weeds and their control in sorghum. Pages 535590. in Smith, C. W. and Fredricksen, R. A. eds. Sorghum: Origin, History, Technology, and Production. New York: John Wiley & Sons.Google Scholar
Swanton, C. J., Chandler, H., Elmes, M. J., Murphy, S. D., and Anderson, G. W. 1996. Postemergence control of annual grasses and corn (Zea mays) tolerance using DPX-79406. Weed Technol 10:288294.Google Scholar
Tuinstra, M. R. and Al-Khatib, K. 2007. New herbicide tolerance strains in sorghum. in. Proc. of the 2007 Corn, Sorghum, and Soybean Seed Research Conf. and Seed Expo. Chicago, IL: American Seed Trade Association.Google Scholar
Tuinstra, M. R., Soumana, S., Al-Khatib, K., Kapran, I., Toure, A., van Ast, A., Bastiaans, L., Ochanda, N. W., Salami, I., Kayentao, M., and Dembele, S. 2009. Efficacy of herbicide seed treatments for controlling Striga infestation of sorghum. Crop Sci 49:923929.Google Scholar
United States Department of Agriculture 2006. Agricultural Chemical Usage, Field Crops Summary. National Agricultural Statistics Service, Economics Research Service. http://usda.mannlib.cornell.edu/usda/nass.com. Accessed: June 29, 2009.Google Scholar
Vencill, W. K. ed. 2002. Herbicide Handbook. 8th ed. Lawrence, KS: Weed Science Society of America. 55392.Google Scholar
Westwood, J. H., Whaley, C. M., and Wilson, H. M. 2007. A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Sci 55:8390.Google Scholar
Zimdahl, R. L. 1999. Harmful aspects of weeds. Pages 1340. in. Fundamentals of Weed Science. San Diego, CA: Academic Press.Google Scholar