No CrossRef data available.
Published online by Cambridge University Press: 11 October 2023
Let  $l\in \mathbb {N}_{\ge 1}$ and
$l\in \mathbb {N}_{\ge 1}$ and  $\alpha : \mathbb {Z}^l\rightarrow \text {Aut}(\mathscr {N})$ be an action of
$\alpha : \mathbb {Z}^l\rightarrow \text {Aut}(\mathscr {N})$ be an action of  $\mathbb {Z}^l$ by automorphisms on a compact nilmanifold
$\mathbb {Z}^l$ by automorphisms on a compact nilmanifold  $\mathscr{N}$. We assume the action of every
$\mathscr{N}$. We assume the action of every  $\alpha (z)$ is ergodic for
$\alpha (z)$ is ergodic for  $z\in \mathbb {Z}^l\smallsetminus \{0\}$ and show that
$z\in \mathbb {Z}^l\smallsetminus \{0\}$ and show that  $\alpha $ satisfies exponential n-mixing for any integer
$\alpha $ satisfies exponential n-mixing for any integer  $n\geq 2$. This extends the results of Gorodnik and Spatzier [Mixing properties of commuting nilmanifold automorphisms. Acta Math. 215 (2015), 127–159].
$n\geq 2$. This extends the results of Gorodnik and Spatzier [Mixing properties of commuting nilmanifold automorphisms. Acta Math. 215 (2015), 127–159].
 $S$
-units and linear recurrences. Compos. Math. 53(2) (1984), 225–244.Google Scholar
$S$
-units and linear recurrences. Compos. Math. 53(2) (1984), 225–244.Google Scholar ${\pi}_1\mathrm{Diff}({S}^n)$
. Topology 17(3) (1978), 273–282.CrossRefGoogle Scholar
${\pi}_1\mathrm{Diff}({S}^n)$
. Topology 17(3) (1978), 273–282.CrossRefGoogle Scholar