Skip to main content Accessibility help
×
  • Cited by 50
  • David L. Price, Centre National de la Recherche Scientifique (CNRS), Paris
Publisher:
Cambridge University Press
Online publication date:
April 2010
Print publication year:
2010
Online ISBN:
9780511730306

Book description

One of the major experimental difficulties in studying materials at extreme temperatures is unwanted contamination of the sample through contact with the container. This can be avoided by suspending the sample through levitation. This technique also makes metastable states of matter accessible, opening up new avenues of scientific enquiry, as well as possible new materials for technological applications. This book describes several methods of levitation, the most important being aerodynamic, electromagnetic and electrostatic. It summarizes the state-of-the-art of the measurement of structural, dynamic and physical properties with levitation techniques, the considerable progress made in this field in the past two decades, and prospects for the future. It also explores the concepts behind the experiments and associated theoretical ideas. Aimed at researchers in physics, physical chemistry and materials science, the book is also of interest to professionals working in high-temperature materials processing and the aerospace industry.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Aasland, S. and McMillan, P. F. (1994). Density-driven liquid–liquid phase-separation in the system Al2O3–Y2O3. Nature 369, 633.
Alatas, A., Said, A. H., Sinn, H.et al. (2005). Elastic modulus of supercooled liquid and hot solid silicon measured by inelastic X-ray scattering. J. Phys. Chem. Solids 66, 2230.
Aldebert, P., Dianoux, A. J. and Traverse, J. P. (1979). Neutron scattering evidence for fast ionic oxygen diffusion in the high temperature phases of La2O3. J. Phys. Paris 40, 1005.
Allen, C. H. and Rudnick, I. (1947). A powerful high frequency siren. J. Acoust. Soc. Am. 19, 857.
Angell, C. A. (1985). Spectroscopy simulation and scattering, and the medium-range order problem in glass. J. Non-Cryst. Solids 73, 1.
Angell, C. A. (1991). Relaxation in liquids, polymers and plastic crystals – strong/fragile patterns and problems. J. Non-Cryst. Solids 131–133, 13.
Angell, C. A. and Borick, S. S. (1999). Comment on ‘Structure of supercooled liquid silicon’ by Ansell et al. J. Phys.: Condens. Matt. 11, 8163.
Angell, C. A., Shao, J. and Grabow, M. (1996). Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, ed. Giordano, M., Leporini, D. and Tosi, M. P. (World Scientific, Singapore), p. 50.
Ansell, S., Krishnan, S., Felten, J. J. and Price, D. L. (1998). Structure of supercooled liquid silicon. J. Phys.: Condens. Matt. 10, L73, 11.
Ansell, S., Krishnan, S., Felten, J. J. and Price, D. L. (1999). Reply to the comment of Angell and Borick. J. Phys.: Condens. Matt. 11, 8163.
Ansell, S., Krishnan, S., Weber, J. K. R.et al. (1997). Structure of liquid aluminum oxide. Phys. Rev. Lett. 78, 464.
Aptekar, L. (1979). Phase transitions in non-crystalline germanium and silicon. Sov. Phys.–Dokl. 24, 993.
Ashcroft, N. W. and Langreth, D. C. (1967). Structure of binary liquid mixtures II. Resistivity of alloys and the ion–ion interaction. Phys. Rev. 159, 500.
Ashkin, A. and Dziedzic, J. M. (1975). Optical levitation of liquid drops by radiation pressure. Science 187, 1073.
Badyal, Y. S., Saboungi, M.-L., Price, D. L., Haeffner, D. R. and Shastri, S. D. (1997). Atomic and electronic structure of liquid iron trichloride. Europhys. Lett. 39, 19.
Beard, K. V. and Pruppacher, H. R. (1969). A determination of the terminal velocity and drag of small water drops by means of a wind tunnel. J. Atmos. Sci. 26, 1066.
Beaucage, P. and Mousseau, N. (2005). Liquid–liquid phase transition in Stillinger–Weber silicon. J. Phys.: Condens. Matter 17, 2269.
Bengtzelius, U., Götze, W. and Sjolander, A. (1984). Dynamics of supercooled liquids and the glass transition. J. Phys. C 17, 5915.
Benmore, C. J., Weber, J. K. R., Sampath, S.et al. (2003). A neutron and X-ray diffraction study of calcium aluminate glasses. J. Phys.: Condens. Mat. 15, S2413.
Benmore, C. J., Hart, R. T., Mei, Q.et al. (2005). Intermediate range chemical ordering in amorphous and liquid water, Si and Ge. Phys. Rev. B 72, 132201.
Benoit, M., Ispas, S. and Tuckerman, M. E. (2001). Structural properties of molten silicates from ab initio molecular-dynamics simulations: comparison between CaO–Al2O3–SiO2 and SiO2. Phys. Rev. B 64, 224205.
Bermejo, F. J., Saboungi, M.-L., Price, D. L.et al. (2000). Persistence of well-defined collective excitations in a molten transition metal. Phys. Rev. Lett. 85, 106.
Berne, C. (2000). Solidification hors équilibre et apparition de phases métastables dans les séries de transition 4d et 5d. Ph. D. Thesis, Institut National Polytechnique de Grenoble, France.
Berne, C., Pasturel, A., Sluiter, M. and Vinet, B. (1999). Ab initio study of metastability in refractory metal based systems. Phys. Rev. Lett. 83, 1621.
Berne, C., Pasturel, A., Sluiter, M. and Vinet, B. (2000). Ab initio study of transitory metastable phases solidified by drop-tube processing. Modelling Simul. Mater. Sci. Eng. 8, 233.
Berry, M. V. (1996). The Levitron®: an adiabatic trap for spins. Proc. R. Soc. Lond. A 452, 1207.
Berry, M. V. and Geim, A. (1997). Of flying frogs and levitrons. Eur. J. Phys. 18, 307.
Berry, M. V. and Geim, A. (2000). IgNobel Prize for Michael Berry and Andrey Geim. University of Bristol press release, 5 October 2000: http://www.phy.bris.ac.uk/people/berry_mv/igberry.html
Bhat, M. H., Molinero, V., Soignard, E.et al. (2007). Vitrification of a monatomic metallic liquid. Nature 448, 787.
Bhatia, A. B. and Thornton, D. E. (1970). Structural aspects of the electrical resistivity of binary alloys. Phys. Rev. B 2, 3004.
Bolsaitis, P., Spjut, R. E. and Elliot, J. F. (1989). High-temperature pulses in small alumina particles. High Temp. High Press. 21, 601.
Brandt, E. H. (1989). Levitation in physics. Science 243, 349.
Bratz, A. and Egry, I. (1995). Surface oscillations of electromagnetically levitated viscous metal droplets. J. Fluid Mech. 298, 341.
Brillo, J., Bytchkov, A., Egry, I.et al. (2006). Local structure in liquid binary Al–Cu and Al–Ni alloys. J. Non-Cryst. Solids 352, 4008.
Bührer, C., Beckmann, M., Fähnle, M., Grünewald, U. and Maier, K. (2000). The liquid ferromagnet Co80Pd20 and its critical exponent γ. J. Magnetism Mag. Mat. 212, 211.
Burkel, E. (1991). Inelastic Scattering of X-rays with Very High Energy Resolution (Springer, Berlin).
Cagran, C., Hüpf, T., Pottlacher, G. and Lohöfer, G. (2007). High-temperature metallic melts – resistivity intercomparison for space applications. Int. J. Thermophys. 28, 2176.
Capron, M., Florian, P., Fayon, F.et al. (2001). Local structure and dynamics of high temperature SrO–Al2O3 liquids studied by 27Al NMR and Sr K-edge XAS spectroscopy. J. Non-Cryst. Solids 293–295, 496.
Car, R. and Parrinello, M. (1985). Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471.
Casimir, H. B. G. (1948). On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793.
Cazzato, S., Scopigno, T., Hosokawa, S.et al. (2008). High frequency dynamics in liquid nickel: an inelastic X-ray scattering study. J. Chem. Phys. 128, 234502.
Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability, 2nd edn (Dover Press, New York).
Chathoth, S. M., Damaschke, B., Samwer, K. and Schneider, S. (2008). Thermophysical properties of Si, Ge, and Si–Ge alloy melts measured under microgravity. Appl. Phys. Lett. 93, 071902.
Cohen, E. G. D., Westerhuijs, P. and Schepper, I. M. (1987). Half width of neutron spectra. Phys. Rev. Lett. 59, 2872.
Cornier-Quiquandon, M., Quivy, A., Lefebvre, S.et al. (1991). Neutron-diffraction study of icosahedral Al–Cu–Fe single quasicrystals. Phys. Rev. B 44, 2071.
Cortella, L., Vinet, B., Desré, P.et al. (1993). Evidences of transitory metastable phases in refractory metals solidified from highly undercooled liquids in a drop tube. Phys. Rev. Lett. 70, 1469.
Coté, B., Massiot, D., Taulelle, F. and Coutures, J.-P. (1992). 27Al NMR spectroscopy of aluminosilicate melts and glasses. Chem. Geol. 96, 367.
Coutures, J.-P.Coutures, J., Renard, R. and Benezech, G. (1972). Vaporization in controlled atmosphere of liquid lanthanide oxides – study on phases obtained by vapor tempering. C. R. Acad. Sci. Paris 275, 1203.
Coutures, J.-P., Massiot, D., Bessada, C., Echegut, P., Rifflet, J. C. and Taulelle, F. (1990). An 27Al NMR study of liquid aluminates in the 1,600–2,100 °C temperature range. C. R. Acad. Sci. (Paris) 310, 1041.
Coutures, J.-P., Rifflet, J.-C l., Florian, P. and Massiot, D. (1994). Etude par analyse thermique et par RMN très haute temperature de 27Al de la solidification de Al2O3 en l'absence de nucléation hétérogène: effets de la temperature du liquide et de la pression partielle d'oxygène. Rev. Int. Hautes Tempér. Réfract., Fr., 29, 123.
Cristiglio, V., Hennet, L., Cuello, G. J.et al. (2007a). Structural study of levitated liquid Y2O3 using neutron scattering. J. Non-Cryst. Solids 353, 993.
Cristiglio, V., Hennet, L., Cuello, G. J.et al. (2007b). Ab-initio molecular dynamics simulations of the structure of liquid aluminates. J. Non-Cryst. Solids 353, 1789.
Cristiglio, V., Hennet, L., Cuello, G. J.et al. (2007c). Structure of molten yttrium aluminates: a neutron diffraction study. J. Phys.: Condens. Matter 19, 415105.
Cristiglio, V., Hennet, L., Cuello, G. J.et al. (2008). Local structure of liquid CaAl2O4 from ab initio molecular dynamics simulations. J. Non-Cryst. Solids 354, 5337.
Cummings, D. L. and Blackburn, D. A. (1991). Oscillations of magnetically levitated aspherical droplets. J. Fluid Mech. 224, 395.
Daisenberger, D., Wilson, M., McMillan, P. F. and Quesada Cabrera, R. (2007). High-pressure X-ray scattering and computer simulation studies of density-induced polyamorphism in silicon. Phys. Rev. B 75, 224118.
D'Angelo, P., Di Nola, A., Filipponi, A., Pavel, N. V. and Roccatano, D. (1994). An extended X-ray absorption fine structure study of aqueous solutions by employing molecular dynamics simulations. J. Chem. Phys. 100, 985.
Davis, L. C., Logothetis, E. M. and Soltis, R. E. (1988). Stability of magnets levitated above superconductors. J. Appl. Phys. 64, 4212.
Deb, S. K., Wilding, M., Somayazulu, M. and McMillan, P. F. (2001). Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon. Nature 414, 528.
Gennes, P. G. (1959). Liquid dynamics and inelastic scattering of neutrons. Physica 25, 825.
Delaplane, R. G., Lundstrom, T., Dahlborg, U. and Howells, W. S. (1991). A neutron diffraction study of amorphous boron. Boron-Rich Solids, ed. Emin, D., Aselage, T. L., Switendick, A. C., Morosin, B. and Beckel, C. L., AIP Conf. Proc. No. 231 (AIP, New York), p. 241.
Delisle, A., Gonzàlez, D. J. and Stott, M. J. (2006). Pressure-induced structural and dynamical changes in liquid Si – an ab initio study. J. Phys.: Condens. Matter 18, 3591.
Del Valle, N., Sanchez, A., Pardo, E., Chen, D.-X. and Navau, C. (2007). Optimizing levitation force and stability in superconducting levitation with translational symmetry. Appl. Phys. Lett. 90, 042503.
Schepper, I. M., Verkerk, P., Well, A. A. and Graaf, L. A. (1983). Short-wavelength sound modes in liquid argon. Phys. Rev. Lett. 50, 974.
Devanathan, R., Lam, N. Q., Okamoto, P. R. and Meshii, M. (1993). Molecular-dynamics simulation of electron-irradiation-induced amorphization of NiZr2. Phys. Rev. B 48, 42.
Di Cicco, A., Congeduti, A., Coppari, F.et al. (2008). Interplay between morphology and metallization in amorphous–amorphous transitions. Phys. Rev. B 78, 033309.
Di Cicco, A., Trapananti, A., Faggioni, S. and Filipponi, A. (2003). Is there icosahedral ordering in liquid and undercooled metals?Phys. Rev. Lett. 91, 135505.
Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M. and Jacobson, D. C. (1985). Calorimetric studies of crystallization and relaxation of amorphous silicon and germanium prepared by ion implantation. J. Appl. Phys. 57, 1795.
Durandurdu, M. and Drabold, D. A. (2002). Ab initio simulation of first-order amorphous-to-amorphous phase transition of silicon. Phys. Rev. B 65, 104208.
Dzyaloshinskii, I. E., Lifshitz, E. M. and Pitaevskii, L. P. (1961). The general theory of van der Waals forces. Adv. Phys. 10, 165.
Earnshaw, S. (1842). On the nature of the molecular forces which regulate the constitution of the luminiferous ether. Trans. Camb. Phil. Soc. 7, 97.
Egelstaff, P. A. (1992). An Introduction to the Liquid State, 2nd edn (Clarendon, Oxford).
Egry, I. (2005). The surface tension of binary alloys: simple models for complex phenomena. Int. J. Thermophys. 26, 931.
Egry, I., Hennet, L., Kehr, M.et al. (2008). Chemical short-range order in liquid Al–Ni alloys. J. Chem. Phys. 129, 064508.
Egry, I., Lohoefer, G. and Jacobs, G. (1995). Surface tension of liquid metals: results from measurements on ground and in space. Phys. Rev. Lett. 75, 4043.
Egry, I., Lohoefer, G., Gorges, E. and Jacobs, G. (1996). Structure and properties of undercooled liquid metals. J. Phys.: Condens. Matter 8, 9363.
Egry, I., Jacobs, G. and Holland-Moritz, D. (1999). EXAFS investigations on quasi-crystal-forming melts. J. Non-Cryst. Solids 250–252, 820.
Enderby, J. E., Ansell, S., Krishnan, S., Price, D. L. and Saboungi, M.-L. (1997). The electrical conductivity of levitated liquids. Appl. Phys. Lett. 71, 116.
Enderby, J. E., North, D. and Egelstaff, P. A. (1966). The partial structure factors of liquid Cu–Sn. Phil. Mag. 14, 961.
Eremets, M. I., Struzhkin, V. V., Mao, H.-K. and Hemley, R. J. (2001). Superconductivity in boron. Science 293, 272.
Faber, T. E. and Ziman, J. M. (1965). A theory of the electrical properties of liquid metals III. The resistivity of binary alloys. Phil. Mag. 11, 153.
Falk, H. and Gehring, G. A. (1975). Correlation function and transition temperature bounds for bond-disordered Ising systems. J. Phys. C 8, L298.
Faux, D. A. and Ross, D. K. (1987). Tracer and chemical diffusion of hydrogen in BCC metals. J. Phys. C 20, 1441.
Fecht, H. and Johnson, W. L. (1991). A conceptual approach for noncontact calorimetry in space. Rev. Sci. Instrum. 62, 1299.
Filipponi, A. and Di Cicco, A. (1995). Shot-range order in crystalline, liquid and supercooled germanium probed by X-ray-absorption spectroscopy. Phys. Rev. B 51, 12322.
Filipponi, A., Di Cicco, A. and Natoli, C. R. (1995). X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. I. Theory. Phys. Rev. B 52, 15122.
Fischer, H. E., Hennet, L., Cristiglio, V.et al. (2007). Magnetic critical scattering in solid Co80Pd20. J. Phys.: Condens. Matter 19, 415106.
Foex, M. (1977). Recherche sur le point de fusion de l'oxyde d'yttrium. High Temp. High Press. 9, 269.
Frank, F. C. (1952). Supercooling of liquids. Proc. R. Soc. Lond. A 215, 43.
Frank, F. C. and Kaspar, J. S. (1958). Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Crystallogr. 11, 184.
Frank, F. C. and Kaspar, J. S. (1959). Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystallogr. 12, 483.
Franzese, G., Malescio, G., Skibinsky, A., Buldyrev, S. V. and Stanley, H. E. (2001). Generic mechanism for generating a liquid–liquid phase transition. Nature 409, 692.
Fratello, V. J. and Brandle, C. D. (1993). Physical properties of a Y3Al5O12 melt. J. Cryst. Growth 128, 1006.
Fujii, H., Matsumoto, T., Izutani, S., Kiguchi, S. and Nogi, K. (2006). Surface tension of molten silicon measured by microgravity oscillating drop method and improved sessile drop method. Acta Mater. 54, 1221.
Fukunaga, T., Hayashi, N., Watanabe, N. and Suzuki, K. (1985). The structure of Cu–Zr and Ni–Zr metallic glasses. Rapidly Quenched Metals, ed. Steeb, S. and Warlimont, V. (Elsevier, New York), vol. 1, p. 475.
Funamori, N. and Tsuji, K. (2002). Pressure-induced structural change of liquid silicon. Phys. Rev. Lett. 88, 255508.
Gagnoud, A., Etay, J. and Garnier, M. (1986). Le problème de frontière libreen lévitation électromagnétique. J. Méc. Théor. Appl. 5, 911.
Ganesh, P. and Widom, M. (2009). Liquid–liquid transition in supercooled silicon determined by first-principles simulation. Phys. Rev. Lett. 102, 075701.
Gerlich, D. and Slack, G. A. (1985). Elastic properties of β-boron. J. Mat. Sci. Lett. 4, 639.
Glorieux, B., Millot, F., Rifflet, J.-C. and Coutures, J.-P. (1999). Density of superheated and undercooled liquid alumina by a contactless method. Int. J. Thermophys. 20, 1085.
Glorieux, B., Millot, F. and Rifflet, J.-C. (2002). Surface tension of liquid alumina from contactless techniques. Int. J. Thermophys. 23, 1249.
Glorieux, B., Saboungi, M.-L. and Enderby, J. E. (2001). Electronic conduction in liquid boron. Europhys. Lett. 56, 81.
Glyde, H. R. (1994). Excitations in Liquid and Solid Helium (Clarendon, Oxford).
Gor'kov, L. P. (1962). On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov. Phys. Dokl. 6, 773.
Götze, W. and Lücke, M. (1975). Dynamical current correlation functions of simple classical liquids for intermediate wave numbers. Phys. Rev. A 11, 2173.
Götze, W. and Lücke, M. (1976). Self-consistent second-order approximation for the liquid-helium-II excitation spectrum. Phys. Rev. B 13, 3822.
Granier, B. and Heurtault, S. (1983). Méthode de mesure de la densité de réfractaires liquides. Application à l'alumine et à l'oxyde d'yttrium. Rev. Int. Hautes Tempér. Fr. 20, 61.
Granier, J. and Potard, C. (1987). Containerless processing and molding materials by the gas film technique: early demonstration and modelling. European Space Agency Symposium Proceedings 256, 421.
Greaves, G. N., Wilding, M. C., Fearn, S.et al. (2008). Detection of first-order liquid/liquid phase transitions in yttrium oxide–aluminum oxide melts. Science 322, 566.
Greer, A. L. (1994). Nucleation and solidification studies using drop-tubes. Mat. Sci. Eng. A 178, 113.
Groh, B. and Dietrich, S. (1997). Spatial structures of dipolar ferromagnetic liquids. Phys. Rev. Lett. 79, 749.
Haumesser, P. H., Garandet, J. P., Bancillon, J.et al. (2002). High-temperature viscosity measurements by the gas film levitation technique: application to various types of materials. Int. J. Thermophys. 23, 1217.
Hausleitner, Ch. and Hafner, J. (1992). Hybridized nearly free-electron tight-binding-bond approach to interatomic forces in disordered transition-metal alloys. II. Modeling of metallic glasses. Phys. Rev. B 45, 128.
Hedler, A., Klaumünzer, S. L. and Wesch, W. (2004). Amorphous silicon exhibits a glass transition. Nature Mater. 3, 804.
Hemmati, M., Wilson, M. and Madden, P. A. (1999). Structure of liquid Al2O3 from a computer simulation model. J. Phys. Chem. B 103, 4023.
Hennet, L., Pozdnyakova, I., Bytchkov, A.et al. (2006). Levitation apparatus for neutron diffraction investigations on high temperature liquids. Rev. Sci. Instrum. 77, 053903.
Hennet, L., Pozdnyakova, I., Bytchkov, A.et al. (2007a). Development of structural order during supercooling of a fragile oxide melt. J. Chem. Phys. 126, 074906.
Hennet, L., Pozdnyakova, I., Cristiglio, V.et al. (2007b). Structure and dynamics of levitated liquid aluminates. J. Non-Cryst. Solids 353, 1705.
Hennet, L., Pozdnyakova, I., Cristiglio, V.et al. (2007c). Short- and intermediate-range order in levitated liquid aluminates. J. Phys.: Condens. Matter 19, 455210.
Hennet, L., Thiaudière, D., Gailhanou, M.et al. (2002). Fast X-ray scattering measurements on molten alumina using a 120° curved position sensitive detector. Rev. Sci. Instrum. 73, 124.
Hennet, L., Thiaudière, D., Landron, C.et al. (2003). Melting behavior of levitated Y2O3. Appl. Phys. Lett. 83, 3305.
Herlach, D., Bührer, C., Herlach, D. M.et al. (1998). Magnetic ordering in a supercooled Co–Pd melt studied by muon-spin rotation. Europhys. Lett. 44, 98.
Herlach, D. M., Feuerbacher, B. and Schleip, E. (1991). Phase seeding in the solidification of an undercooled melt. Mater. Sci. Eng. A133, 795.
Higuchi, K., Kimura, K., Mizuno, A.et al. (2005). Precise measurement of density and structure of undercooled molten silicon by using synchrotron radiation combined with electromagnetic levitation technique. Meas. Sci. Technol. 16, 381.
Hippert, F., Audier, M., Klein, H., Bellissent, R. and Boursier, D. (1996). Localized magnetism in molten icosahedral and approximant AlPdMn phases. Phys. Rev. Lett. 76, 54.
Hoekstra, H. R. (1966). Phase relationships in the rare earth sesquioxides at high pressure. Inorg. Chem. 5, 754.
Hohenberg, P. and Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev. 136, B864.
Holland-Moritz, D. (1998). Short-range order and solid–liquid interfaces in undercooled melts. Int. J. Non-Equilib. Process. 11, 169.
Holland-Moritz, D., Herlach, D. M. and Urban, K. (1993). Observation of the undercoolability of quasicrystal-forming alloys by electromagnetic levitation. Phys. Rev. Lett. 71, 1196.
Holland-Moritz, D., Schenk, T., Bellissent, R.et al. (2002a). Short-range order in undercooled Co melts. J. Non-Cryst. Solids 312–314, 47.
Holland-Moritz, D., Schenk, T., Simonet, V.et al. (2002b). Short-range order in undercooled melts forming quasicrystals and approximants. J. Alloys Compounds 342, 77.
Holland-Moritz, D., Schenk, T., Convert, P., Hansen, T. and Herlach, D. M. (2005). Electromagnetic levitation apparatus for diffraction investigations on the short-range order of undercooled metallic melts. Meas. Sci. Technol. 16, 372.
Holland-Moritz, D., Stüber, S., Hartmann, H.et al. (2009). Structure and dynamics of liquid Ni36Zr64 studied by neutron scattering. Phys. Rev. B 79, 064204.
Honeycutt, J. D. and Andersen, H. C. (1987). Molecular dynamics study of melting and freezing of small Lennard–Jones clusters. J. Phys. Chem. 91, 4950.
Horbach, J., Das, S. K., Griesche, A.et al. (2007). Self-diffusion and interdiffusion in Al80Ni20 melts: simulation and experiment. Phys. Rev. B 75, 174304.
Hosokawa, S., Pilgrim, W.-C., Kawakita, Y.et al. (2003). Sub-picosecond dynamics in liquid Si. J. Phys.: Condens. Matter 15, L623.
Hull, J. R. (2004). Levitation applications of high-temperature superconductors. High Temperature Superconductivity 2: Engineering Applications, ed. Narlikar, A. V. (Springer, Heidelberg & New York), p. 91.
Hüpf, T., Cagran, C., Lohöfer, G. and Pottlacher, G. (2008a). Electrical resistivity of high temperature metallic melts – Hf−3%Zr, Re, Fe, Co, and Ni. High Temp. High Press. 37, 239.
Hüpf, T., Cagran, C., Lohöfer, G. and Pottlacher, G. (2008b). Electrical resistivity of high melting metals up into the liquid phase (V, Nb, Ta, Mo, W). J. Phys.: Conf. Ser. 98, 062002.
Ikezoe, Y., Hirota, N., Nakagawa, J. and Kitazawa, K. (1998). Making water levitate. Nature 393, 749.
Inatomi, Y., Onishi, F., Nagashio, K. and Kuribayashi, K. (2007). Density and thermal conductivity measurements for silicon melt by electromagnetic levitation under a static magnetic field. Int. J. Thermophys. 28, 44.
Ishikawa, T., Paradis, P.-F. and Yoda, S. (2001). New sample levitation initiation and imaging techniques for the processing of refractory metals with an electrostatic levitator furnace. Rev. Sci. Instrum. 72, 2490.
Ito, K., Moynihan, C. T. and Angell, C. A. (1999). Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492.
Jacobs, G. and Egry, I. (1999). EXAFS studies on undercooled liquid Co80Pd20 alloy. Phys. Rev. B 59, 3961.
Jacobs, G., Egry, I., Gorges, E. and Langen, M. (1998). Measurement of density and structural short-range order of levitated liquid metals. Int. J. Thermophys. 19, 895.
Jacobs, G., Egry, I., Maier, K., Platzek, D., Reske, J. and Frahm, R. (1996). Extended X-ray-absorption fine structure studies of levitated undercooled metallic melts. Rev. Sci. Instrum. 67, 3683.
Jahn, S., Madden, P. A. and Wilson, M. (2004). Dynamic simulation of pressure driven phase transformations in crystalline Al2O3. Phys. Rev. B 69, 020106.
Jahn, S. and Madden, P. A. (2007). Structure and dynamics in liquid alumina: simulations with an ab initio interaction potential. J. Non-Cryst. Solids 353, 3500.
Jahn, S. and Madden, P. A. (2008). Atomic dynamics of alumina melt: a molecular dynamics simulation study. Condensed Matter Phys. (Lviv) 11, 169.
Jakse, N. and Pasturel, A. (2003). Local order of liquid and supercooled zirconium by ab initio molecular dynamics. Phys. Rev. Lett. 91, 195501.
Jakse, N. and Pasturel, A. (2005). Molecular-dynamics study of liquid nickel above and below the melting point. J. Chem. Phys. 123, 244512.
Jakse, N. and Pasturel, A. (2007a). Modeling the structural, dynamical, and magnetic properties of liquid Al1−xMnx (x = 0.14, 0.2, and 0.4): a first-principles investigation. Phys. Rev. B 76, 024207.
Jakse, N. and Pasturel, A. (2007b). Liquid–liquid phase transformation in silicon: evidence from first-principles molecular dynamics simulations. Phys. Rev. Lett. 99, 205702.
Jakse, N., Hennet, L., Price, D. L.et al. (2003). Structural changes on supercooling liquid silicon. Appl. Phys. Lett. 83, 4734.
Jakse, N., Becq, O. and Pasturel, A. (2004a). Prediction of the local structure of liquid and supercooled tantalum. Phys. Rev. B 70, 174203.
Jakse, N., Becq, O. and Pasturel, A. (2004b). Ab initio molecular-dynamics simulations of short-range order in liquid Al80Mn20 and Al80Ni20. Phys. Rev. Lett, 93, 207801.
Johnson, S. L., Heimann, P. A., MacPhee, A. G.et al. (2005). Bonding in liquid carbon studied by time-resolved X-ray absorption spectroscopy. Phys. Rev. Lett. 94, 057407.
Jones, T. B. (1979). A necessary condition for magnetic levitation. J. Appl. Phys. 50, 5057.
Kawamura, H., Fukuyama, H., Watanabe, M. and Hibiya, T. (2005). Normal spectral emissivity of undercooled liquid silicon. Meas. Sci. Technol. 16, 386.
Kelton, K. F., Kim, W. J. and Stroud, R. M. (1997). A stable Ti-based quasicrystal. Appl. Phys. Lett. 70, 3230.
Kelton, K. F., Gangopadhyay, A. K., Lee, G. W.et al. (2002). X-ray and electrostatic levitation undercooling studies in Ti–Zr–Ni quasicrystal forming alloys. J. Non-Cryst. Solids 312–314, 305.
Kelton, K. F., Lee, G. W., Gangopadhyay, A. K.et al. (2003). First X-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. Phys. Rev. Lett. 90, 195504.
Kim, T. H., Lee, G. W., Gangopadhyay, A. K.et al. (2007). Structural studies of a Ti–Zr–Ni quasicrystal-forming liquid. J. Phys.: Condens. Matter 19, 455212.
Kim, T. H., Lee, G. W., Sieve, B.et al. (2005). In situ high-energy X-ray diffraction study of the local structure of supercooled liquid Si. Phys. Rev. Lett. 95, 085501.
Kimura, H., Watanabe, M., Izumi, K.et al. (2001). X-ray diffraction study of undercooled molten silicon. Appl. Phys. Lett. 78, 604.
Kitamura, N., Makihara, M., Hamai, M.et al. (2000). Containerless melting of glass by magnetic levitation method. Jpn J. Appl. Phys. 39, L324.
Kobatake, H., Fukuyama, H., Minato, I., Tsukada, T. and Awaji, S. (2007). Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field. Appl. Phys. Lett. 90, 094102.
Kohara, S., Suzuya, K., Takeuchi, K.et al. (2004). Glass formation at the limit of insufficient network formers. Science 303, 1649.
Kohn, W. and Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133.
Kouvel, J. S. and Fisher, M. E. (1964). Detailed magnetic behavior of nickel near its Curie point. Phys. Rev. 136, A1626.
Krishnan, S. and Nordine, P. C. (1993). Optical properties of liquid aluminum in the energy range 1.2–3.5 eV. Phys. Rev. B 47, 11780.
Krishnan, S. and Nordine, P. C. (1996). Spectral emissivities in the visible and infrared of liquid Zr, Ni and nickel-based binary alloys. J. Appl. Phys. 80, 1735.
Krishnan, S. and Price, D. L. (2000). X-ray diffraction from levitated liquids. J. Phys.: Condens. Matter 12, R145.
Krishnan, S., Anderson, C. D., Weber, J. K. R.et al. (1993). Optical properties and spectral emissivities at 632.8 nm in the titanium–aluminum system. Met. Trans. A 24, 67.
Krishnan, S., Ansell, S., Felten, J. J., Volin, K. J. and Price, D. L. (1998a). The structure of liquid boron. Phys. Rev. Lett. 81, 586.
Krishnan, S., Ansell, S. and Price, D. L. (1998b). X-ray diffraction from levitated liquid yttrium oxide. J. Am. Ceram. Soc. 81, 1967.
Krishnan, S., Ansell, S. and Price, D. L. (1999). X-ray diffraction on levitated liquids: application to liquid 80%Co–20%Pd alloy. J. Non-Cryst. Solids 250–252, 286.
Krishnan, S., Hennet, L., Jahn, S.et al. (2005). Structure of normal and supercooled liquid aluminum oxide. Chem. Mater. 17, 2662.
Krishnan, S., Hennet, L., Key, T.et al. (2007). The structures of normal and supercooled liquid silicon metal and SiGe alloy. J. Non-Cryst. Solids 353, 2975.
Krishnan, S., Weber, J. K. R., Ansell, S., Hixson, A. D. and Nordine, P. C. (2000). Structure of liquid Al6Si2O13 (3:2 mullite). J. Am. Ceram. Soc. 83, 2777.
Krishnan, S., Weber, J. K. R., Nordine, P. C.et al. (1991a). Spectral emissivities and optical properties of liquid silicon, aluminum, titanium and niobium. High Temp. Sci. 30, 137.
Krishnan, S., Weber, J. K. R., Schiffman, R. A. and Nordine, P. C. (1991b). Refractive index of liquid aluminum oxide at 0.6328 μm. J. Am. Ceram. Soc. 74, 881.
Krishnan, S., Yugawa, K. J. and Nordine, P. C. (1997). Optical properties of liquid nickel and iron. Phys. Rev. B 55, 8201.
Lacks, D. J. (2000). First-order amorphous–amorphous transition in silica. Phys. Rev. Lett. 84, 4629.
Landron, C., Hennet, L., Jenkins, T. E.et al. (2001). Liquid alumina: detailed atomic coordination determined from neutron diffraction data using empirical potential structure refinement. Phys. Rev. Lett. 86, 4839.
Langen, L., Hibiya, T., Eguchi, M. and Egry, I. (1998). Measurement of the density and thermal expansion coefficient of molten silicon using electromagnetic levitation. J. Crystal Growth 186, 550.
Lee, G. W., Gangopadhyay, A. K., Kelton, K. F.et al. (2004). Difference in icosahedral short-range order in early and late transition metal liquids. Phys. Rev. Lett. 93, 037802.
Leung, P. K. and Wright, J. G. (1974). Structural investigations of amorphous transition element films I. Scanning electron diffraction study of cobalt. Phil. Mag. 30, 185.
Levi, C. G., Jayaram, V., Valencia, J. J. and Mehrabian, R. (1988). Phase selection in electrohydrodynamic atomization of alumina. J. Mater. Res. 3, 969.
Li, D. and Herlach, D. M. (1997). Containerless solidification of germanium by electromagnetic levitation and in a drop-tube. J. Mater. Sci. 32, 1437.
Lipton, J., Kurz, W. and Trivedi, R. (1987). Rapid dendrite growth in undercooled alloys. Acta Metall. 35, 957.
Liu, L., Chen, S. H., Faraone, A., Yen, C.-W. and Mou, C.-Y. (2005). Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys. Rev. Lett. 95, 117802.
Lohöfer, G. (1994). Magnetization and impedance of an inductively coupled metal sphere. Int. J. Eng. Sci. 32, 107.
Lohöfer, G. (2005). Electrical resistivity measurement of liquid metals. Meas. Sci. Technol. 16, 417.
Lohöfer, G., Schneider, S. and Egry, I. (2001). Thermophysical properties of undercooled liquid Co80Pd20. Int. J. Thermophys. 22, 593.
Lovesey, S. W. (1986). Theory of Neutron Scattering from Condensed Matter (Oxford Science Publications, Oxford), p. 214.
Luedtke, W. D. and Landman, U. (1988). Preparation and melting of amorphous silicon by molecular dynamics simulations. Phys. Rev. B 37, 4656.
Luedtke, W. D. and Landman, U. (1989). Preparation, structure, dynamics and energetics of amorphous silicon: a molecular dynamics study. Phys. Rev. B 40, 1164.
March, N. H. and Tosi, M. (1992). Atomic Dynamics in Liquids (Dover, New York).
Maret, M., Pasturel, A., Senillou, C., Dubois, J. M. and Chieux, P. (1989). Partial structure factors of liquid Al80(Mnx(FeCr)1−x)20 alloys. J. Phys. (Paris) 50, 295.
Maret, M., Pomme, T., Pasturel, A. and Chieux, P. (1990). Structure of liquid Al80Ni20 alloy. Phys. Rev. B 42, 1598.
Maret, M., Chieux, P., Dubois, J. M. and Pasturel, A. (1991). Composition dependence of topological and chemical orders in liquid Al1−x(Mny(FeCr)1−y)x alloys by neutron diffraction. J. Phys.: Condens. Matter 3, 2801.
Martinez, L.-M. and Angell, C. A. (2001). A thermodynamic connection to the fragility of glass-forming liquids. Nature 410, 663.
Masago, A., Shirai, K. and Katayama-Yoshida, H. (2006). Crystal stability of α- and β-boron. Phys. Rev. B 73, 104102.
Massiot, D., Trumeau, D., Touzo, B.et al. (1995). Structure and dynamics of CaA12O4 from liquid to glass: a high-temperature 27Al NMR time-resolved study. J. Phys. Chem. 99, 16455.
Massiot, D., Fayon, F., Montouillout, V.et al. (2008). Structure and dynamics of oxide melts and glasses: a view from multinuclear and high temperature NMR. J. Non-Cryst. Solids 354, 249.
Mathiak, G., Egry, I., Hennet, L.et al. (2005). Aerodynamic levitation and inductive heating – a new concept for structural investigations of undercooled melts. Int. J. Thermophys. 26, 1151.
Mathiak, G., Brillo, J., Egry, I.et al. (2006). Versatile levitation facility for structural investigations of liquid metals. Microgravity Sci. Technol. 18, 67.
Matsumoto, T., Fujii, H., Ueda, T., Kamai, M. and Nogi, K. (2005). Measurement of surface tension of molten copper using the free-fall oscillating drop method. Meas. Sci. Technol. 16, 432.
McMillan, P. F. (2004). Polyamorphic transformations in liquids and glasses. J. Mater. Chem. 14, 1506.
McMillan, P. F., Wilson, M., Daisenberger, D. and Machon, D. (2005). A density-driven phase transition between semiconducting and metallic polyamorphs of silicon. Nature Mater. 4, 680.
McMillan, P. F., Wilson, M. and Wilding, M. C. (2003). Polyamorphism in aluminate liquids. J. Phys.: Condens. Matter 15, 6105.
McMillan, P. F., Wilson, M., Wilding, M. C.et al. (2007). Polyamorphism and liquid–liquid phase transitions: challenges for experiment and theory. J. Phys.: Condens. Matter 19, 415101.
Mei, Q., Benmore, C. J. and Weber, J. K. R. (2007). Structure of liquid SiO2: a measurement by high-energy X-ray diffraction. Phys. Rev. Lett. 98, 057802.
Meyer, A., Stüber, S., Holland-Moritz, D., Heinen, O. and Unruh, T. (2008). Determination of self-diffusion coefficients by quasielastic neutron scattering measurements of levitated Ni droplets. Phys. Rev. B 77, 092201.
Mezei, F. (1972). Neutron spin echo: a new concept in polarized thermal neutron techniques. Z. Phys. 255, 146.
Miller, J. (2009). Casimir forces between solids can be repulsive. Phys. Today 62, no. 2, 19.
Millot, F., Rifflet, J.-C., Sarou-Kanian, V. and Wille, G. (2002a). High temperature properties of liquid boron from contactless techniques. Int. J. Thermophys. 23, 1185.
Millot, F., Rifflet, J.-C., Wille, G., Sarou-Kanian, V. and Glorieux, B. (2002b). Analysis of surface tension from aerodynamic levitation of liquids. J. Am. Ceram. Soc. 85, 187.
Millot, F., Sarou-Kanian, V., Rifflet, J.-C. and Vinet, B. (2008). The surface tension of liquid silicon at high temperature. Mater. Sci. Eng. A 495, 8.
Miranda, C. R. and Antonelli, A. (2004). Transitions between disordered phases in supercooled liquid silicon. J. Chem. Phys. 120, 11672.
Mito, M., Tsukada, T., Hozawa, M.et al. (2005). Sensitivity analyses of the thermophysical properties of silicon melt and crystal. Meas. Sci. Technol. 16, 457.
Molinero, V., Sastry, S. and Angell, C. A. (2006). Tuning of tetrahedrality in a silicon potential yields a series of monatomic (metal-like) glass formers of very high fragility. Phys. Rev. Lett. 97, 075701.
Morishita, T. (2005). Anomalous diffusivity in supercooled liquid silicon under pressure. Phys. Rev. E 72, 021201.
Morishita, T. (2006). How does tetrahedral structure grow in liquid silicon upon supercooling?Phys. Rev. Lett. 97, 165502.
Moss, S. C. and Price, D. L. (1985). Random packing of structural units and the first sharp diffraction peak in glasses. Physics of Disordered Materials, ed. Adler, D., Fritzsche, H. and Ovshinsky, S. R. (Plenum, New York), p. 77.
Mountain, R. D. (1966). Spectral distribution of scattered light in a simple fluid. Rev. Mod. Phys. 38, 205.
Muck, O. (1923). German Patent 42204.
Mukai, K., Yuan, Z., Nogi, K. and Hibiya, T. (2000). Effect of the oxygen partial pressure on the surface molten silicon and its temperature coefficient. ISIJ Int. Suppl. 40, S148.
Munday, J. N., Capasso, F. and Parsegian, V. A. (2009). Measured long-range repulsive Casimir–Lifshitz forces. Nature 457, 170.
Nagashio, K. and Kuribayashi, K. (2002a). Spherical yttrium aluminum garnet embedded in a glass matrix. J. Am. Ceram. Soc. 85, 2353.
Nagashio, K. and Kuribayashi, K. (2002b). Metastable phase formation from an undercooled rare-earth orthoferrite melt. J. Am. Ceram. Soc. 85, 2550.
Nagashio, K. and Kuribayashi, K. (2005). Growth mechanism of twin-related and twin-free facet Si dendrites. Acta Mater. 53, 3021.
Nagashio, K., Adachi, M., Higuchi, K.et al. (2006a). Real-time X-ray observation of solidification from undercooled Si melt. J. Appl. Phys. 100, 033524.
Nagashio, K., Kuribayashi, K., Vijaya Kumar, M. S.et al. (2006b). In situ identification of the metastable phase during solidification from the undercooled YFeO3 melt by fast X-ray diffractometry at 250 Hz. Appl. Phys. Lett. 89, 241923.
Nagashio, K., Nozaki, K. and Kuribayashi, K. (2007). Dynamic process of dendrite fragmentation in solidification from undercooled Si melt using time-resolved X-ray diffraction. Appl. Phys. Lett. 91, 061916.
Nasch, P. (1996). Elastic and anelastic properties of liquid iron and iron alloys: applications to the earth's core. Ph. D. Dissertation, University of Hawaii, USA.
Neuville, D. R., Cormier, L. and Massiot, D. (2004). Al environment in tectosilicate and peraluminous glasses: a 27Al MQ-MAS NMR, Raman, and XANES investigation. Geochim. Cosmochim. Acta 68, 5071.
Nordine, P. C., Weber, J. K. R. and Abadie, J. G. (2000). Properties of high-temperature melts using levitation. Pure Appl. Chem. 72, 2127.
Oganov, A. R., Chen, J., Gatti, C.et al. (2009). Ionic high-pressure form of elemental boron. Nature 457, 863–867.
Ohsaka, K., Chung, S. K. and Rhim, W. K. (1998). Specific volumes and viscosities of the Ni–Zr alloys and their correlation with the glass formability of the alloys. Acta Mater. 46, 4535.
Okress, E. C., Wroughton, D. M., Comenetz, G., Bruce, P. H. and Kelly, J. C. R. (1952). Electromagnetic levitation of molten and solid metals. J. Appl. Phys. 23, 545.
Oran, W. A., Berge, L. H. and Parker, H. W. (1980). Parametric study of an acoustic levitation system. Rev. Sci. Instrum. 51, 626.
Panofen, C. and Herlach, D. M. (2006). Rapid solidification of highly undercooled Si and Si–Co melts. Appl. Phys. Lett. 88, 171913.
Paradis, P.-F., Babin, F. and Gagné, J.-M. (1996). Study of the aerodynamic trap for containerless laser materials processing. Rev. Sci. Instrum. 67, 262.
Paradis, P.-F., Ishikawa, T. and Yoda, S. (2001a). Non-contact measurements of thermophysical properties of niobium at high temperature. J. Mat. Sci. 36, 5125.
Paradis, P.-F., Ishikawa, T. and Yoda, S. (2005a). Noncontact density measurements of liquid, undercooled, and high temperature solid boron. Appl. Phys. Lett. 86, 151901.
Paradis, P.-F., Ishikawa, T. and Yoda, S. (2005b). Non-contact property measurements of liquid and supercooled ceramics with a hybrid electrostatic-aerodynamic levitation furnace. Meas. Sci. Technol. 16, 452.
Paradis, P.-F., Ishikawa, T. and Yoda, S. (2005c). Electrostatic levitation research and development at JAXA: past and present activities in thermophysics. Int. J. Thermophys. 26, 1031.
Paradis, P.-F., Ishikawa, T., Yu, J. and Yoda, S. (2001b). Hybrid electrostatic–aerodynamic levitation furnace for the high-temperature processing of oxide materials on the ground. Rev. Sci. Instrum. 72, 2811.
Parry, D. L. and Brewster, M. Q. (1991). Optical constants of Al2O3 smoke in propellant flames. J. Thermophys. Heat Transfer 5, 142.
Perkowitz, S. (2009). Castles in the air. Phys. World 22, no. 1, 30.
Petkov, V., Gerber, Th. and Himmel, B. (1998). Atomic ordering in Cax/2AlxSi1−xO2 glasses (x = 0, 0.34, 0.5, 0.68) by energy-dispersive X-ray diffraction. Phys. Rev. B 58, 11982.
Pettifor, D. G. (1986). The structures of binary compounds. I. Phenomenological structure maps. J. Phys. C 19, 285.
Piluso, P., Monerris, J., Journeau, C. and Cognet, G. (2002). Viscosity measurements of ceramic oxides by aerodynamic levitation. Int. J. Thermophys. 23, 1229.
Platzek, D., Notthoff, C., Herlach, D. M.et al. (1994). Liquid metal undercooled below its Curie temperature. Appl. Phys. Lett. 65, 1723.
Podkletnov, E. and Nieminen, R. (1992). A possibility of gravitational force shielding by bulk YBa2Cu3O7−x superconductor. Physica C: Superconductivity 203, 441.
Poe, B. T., McMillan, P. F., Coté, B., Massiot, D. and Coutures, J.-P. (1992). In situ study by high-temperature 27Al NMR spectroscopy and molecular dynamics simulation. J. Phys. Chem. 96, 8220.
Poe, B. T., McMillan, P. F., Coté, B., Massiot, D. and Coutures, J. P. (1993). Magnesium and calcium aluminate liquids: in situ high-temperature 27Al NMR spectroscopy. Science 259, 768.
Poe, B. T., McMillan, P. F., Coté, B., Massiot, D. and Coutures, J. P. (1994). Structure and dynamics in calcium aluminate liquids: high-temperature 27Al NMR and Raman spectroscopy. J. Am. Ceram. Soc. 77, 1832.
Poole, P. H., Grande, T., Angell, C. A. and McMillan, P. F. (1997). Polymorphic phase transitions in liquids and glasses. Science 275, 322.
Pozdnyakova, I., Hennet, L., Brun, J.-F.et al. (2007). Longitudinal excitations in Mg–Al–O refractory oxide melts studied by inelastic X-ray scattering. J. Chem. Phys. 126, 114505.
Pozdnyakova, I., Hennet, L., Mathiak, G.et al. (2006). Structural properties of molten dilute aluminium–transition metal alloys. J. Phys.: Condens. Matter 18, 6469.
Pozdnyakova, I., Sadiki, N., Hennet, L.et al. (2008). Structures of lanthanum and yttrium aluminosilicate glasses determined by X-ray and neutron diffraction. J. Non-Cryst. Solids 354, 2038.
Price, D. L. and Pasquarello, A. (1999). Number of independent partial structure factors of a disordered n-component system. Phys. Rev. B 59, 5.
Price, D. L. and Saboungi, M.-L. (1998). Anomalous X-ray scattering from disordered materials. Local Structure from Diffraction, ed. Billinge, S. J. L. and Thorpe, M. F. (Plenum, New York), p. 23.
Price, D. L. and Sköld, K. (1986). Introduction to neutron scattering. Neutron Scattering, Methods of Experimental Physics Vol. 23, ed. Sköld, K. and Price, D. L. (Academic, New York), Part A, p. 1.
Price, D. L., Moss, S. C., Reijers, R., Saboungi, M.-L. and Susman, S. (1989). Intermediate-range order in glasses and liquids. J. Phys.: Condens. Matter 1, 1005.
Price, D. L., Saboungi, M.-L., Reijers, R., Kearley, G. and White, R. (1991). Two-stage melting in cesium-lead. Phys. Rev. Lett. 66, 1894.
Price, D. L., Saboungi, M.-L. and Barnes, A. C. (1998). Structure of vitreous germania. Phys. Rev. Lett. 81, 3207.
Price, D. L., Saboungi, M.-L. and Bermejo, F. J. (2003). Dynamical aspects of disorder in condensed matter. Rep. Prog. Phys. 66, 407.
Price, D. L., Alatas, A., Hennet, L.et al. (2009). Liquid boron: X-ray measurements and ab initio molecular dynamics simulations. Phys. Rev. B 79, 134201.
Principi, E., Di Cicco, A., Decremps, F.et al. (2004). Polyamorphic transition of germanium under pressure. Phys. Rev. B 69, 201201.
Przyborowski, M., Hibiya, T., Eguchi, M. and Egry, I. (1995). Surface tension measurement of molten silicon by the oscillating drop method using electromagnetic levitation. J. Crystal Growth 151, 60.
Qin, J., Bian, X., Sliusarenkoyz, S. I. and Wang, W. (1998). Pre-peak in the structure factor of liquid Al–Fe alloy. J. Phys.: Condens. Matter 10, 1211.
Rahman, A. (1967). Collective coordinates in classical systems. Phys. Rev. Lett. 19, 420.
Raoux, D. (1993). Differential and partial structure factors by X-ray anomalous wide angle scattering. Methods in the Determination of Partial Structure Factors of Disordered Matter by Neutron and Anomalous X-ray Diffraction, ed. Suck, J. B., Raoux, D., Chieux, P. and Riekel, C. (World Scientific, Singapore), p. 130.
Rapoport, E. (1967). Polymorphic phase transitions in liquids and glasses. J. Chem. Phys. 46, 2891.
Rayleigh, Lord (1879). On the capillary phenomena of jets. Proc. R. Soc. (London) 29, 71.
Reske, J., Herlach, D. M., Keuser, F., Maier, K. and Platzek, D. (1995). Evidence for the existence of long-range magnetic ordering in a liquid undercooled metal. Phys. Rev. Lett. 75, 737.
Rhim, W.-K. and Ishikawa, T. (1998). Noncontact electrical resistivity measurement technique for molten metals. Rev. Sci. Instrum. 69, 3628.
Rhim, K. and Ohsaka, K. (2000). Thermophysical properties measurement of molten silicon by high-temperature electrostatic levitator: density, volume expansion, specific heat capacity, emissivity, surface tension and viscosity. J. Crystal Growth 208, 313.
Rhim, W.-K., Collender, M., Hyson, M. T., Simms, W. T. and Elleman, D. D. (1985). Development of an electrostatic positioner for space material processing. Rev. Sci. Instrum. 56, 307.
Rhim, W.-K., Chung, S. K., Barber, D.et al. (1993). An electrostatic levitator for high-temperature containerless materials processing in l-g. Rev. Sci. Instrum. 64, 2961.
Rhim, W.-K., Ohsaka, K., Paradis, P.-F. and Spjut, R. E. (1999). Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation. Rev. Sci. Instrum. 70, 2796.
Rogers, J. R., Hyers, R. W., Rathz, T., Savage, L. and Robinson, M. B. (2001). Thermophysical property measurement and materials research in the NASA/MSFC electrostatic levitator. Space Technology and Applications International Forum – 2001, ed. El-Genk, M. S. (American Institute of Physics), p. 332.
Ruiz-Alonso, D., Coombs, T. A. and Campbell, A. M. (2005). Numerical solutions to the critical state in a magnet–high temperature superconductor interaction. Supercond. Sci. Technol. 18, S209.
Ruiz-Martín, M. D., Jiménez-Ruiz, M., Plazanet, M.et al. (2007). Microscopic dynamics in molten Ni: experimental scrutiny of embedded-atom-potential simulations. Phys. Rev. B 75, 224202.
Rulison, A. J. and Rhim, W.-K. (1994). A noncontact measurement technique for the specific heat and total hemispherical emissivity of undercooled refractory materials. Rev. Sci. Instrum. 65, 695.
Saboungi, M.-L. and Glorieux, B. (2005). Method for synthesizing extremely high-temperature melting materials. US Patent 6, 967,011B1, 22 November, 2005.
Saboungi, M.-L., Fortner, J., Howells, W. S. and Price, D. L. (1993). Dynamic enhancement of cation migration in a zintl alloy by polyanion rotation. Nature 365, 237.
Saboungi, M. L., Enderby, J., Glorieux, B.et al. (2002). What is new on the levitation front?J. Non-Cryst. Solids 312–314, 294.
Sachdev, S. and Nelson, D. R. (1984). Theory of the structure factor of metallic glasses. Phys. Rev. Lett. 53, 1947.
Said, A. H., Sinn, H., Alatas, A.et al. (2006). Collective excitations in an early molten transition metal. Phys. Rev. B 74, 172202.
San Miguel, M. A., Sanz, J. F., Alvarez, L. J. and Odriozola, J. A. (1998). Molecular-dynamics simulations of liquid aluminum oxide. Phys. Rev. B 58, 2369.
Sarou-Kanian, V., Rifflet, J.-C. and Millot, F. (2005). IR radiative properties of solid and liquid alumina: effects of temperature and gaseous environment. Int. J. Thermophys. 26, 1263.
Sasaki, H., Tokizaki, E., Huang, X. M., Terashima, K. and Kimura, S. (1995). Temperature dependence of the viscosity of molten silicon measured by the oscillating cup method. Jpn J. Appl. Phys. 34, 3432.
Sastry, S. and Angell, C. A. (2003). Liquid–liquid phase transition in supercooled silicon. Nature Mater. 2, 739.
Sato, Y., Kameda, Y., Nagasawa, T.et al. (2003). Viscosity of molten silicon and the factors affecting measurement. J. Crystal Growth 249, 404.
Schenk, T., Holland-Moritz, D., Simonet, V., Bellissent, R. and Herlach, D. M. (2002). Icosahedral short-range order in deeply undercooled metallic melts. Phys. Rev. Lett. 89, 075507.
Schenk, T., Simonet, V., Holland-Moritz, D.et al. (2004). Temperature dependence of the chemical short-range order in undercooled and stable Al–Fe–Co liquids. Europhys. Lett. 65, 34.
Schirmacher, W. and Sinn, H. (2008). Collective dynamics of simple liquids: a mode-coupling description. Condens. Matter Phys. (Kyiv) 11, 127.
Schneider, S. J. (1970). Cooperative determination of the melting point of alumina. Pure Appl. Chem. 21, 117.
Schnyders, H. S. and Zytveld, J. (1996). Electrical resistivity and thermopower of liquid Ge and Si. J. Phys.: Condens. Matter 8, 10875.
Schnyders, H. S., Saboungi, M.-L. and Enderby, J. E. (1999). Noninvasive simultaneous determination of conductivity and permeability. Appl. Phys. Lett. 75, 3213.
Schwarz, M., Karma, A., Eckler, K. and Herlach, D. M. (1994). Physical mechanism of grain refinement in solidification of undercooled melts. Phys. Rev. Lett. 73, 1380.
Scopigno, T., Ruocco, G. and Sette, F. (2005). Microscopic dynamics in liquid metals: the experimental point of view. Rev. Mod. Phys. 77, 881.
Shechtman, D., Blech, I., Gratias, D. and Cahn, J. W. (1984). Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951.
Shpil'rain, E. E., Kagan, D. N., Barkhatov, L. S and Zhmakin, L. I. (1976). The electrical conductivity of alumina near the melting point. High-Temp. High Press. 8, 177.
Simonet, V., Hippert, F., Audier, M. and Bellissent, R. (2001). Local order in liquids forming quasicrystals and approximant phases. Phys. Rev. B 65, 024203.
Sinn, H. (2001). Spectroscopy with meV energy resolution. J. Phys.: Condens. Matter 13, 7525.
Sinn, H., Glorieux, B., Hennet, L.et al. (2003). Microscopic dynamics of liquid aluminum oxide. Science 299, 2047.
Skinner, L. B., Barnes, A. C. and Crichton, W. A. (2006). Novel behaviour and structure of new glasses of the type Ba–Al–O and Ba–Al–Ti–O produced by aerodynamic levitation and laser heating. J. Phys.: Condens. Matter 18, L407.
Skinner, L. B., Barnes, A. C., Salmon, P. S. and Crichton, W. A. (2008). Phase separation, crystallization and polyamorphism in the Y2O3–Al2O3 system. J. Phys.: Condens. Matter 20, 205103.
Slichter, C. P. (1980). Principles of Magnetic Resonance (Springer-Verlag, Berlin).
Squires, G. L. (1978). Introduction to the Theory of Thermal Neutron Scattering (Cambridge University Press, Cambridge).
Steinberg, J., Lord, A E., Lacy, L. L. and Johnson, J. (1981). Production of bulk amorphous Pd77.5Si16.5Cu6 in a containerless low-gravity environment. Appl. Phys. Lett. 38, 135.
Steinhardt, P. H., Nelson, D. R. and Ronchetti, M. (1983). Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784.
Stich, I., Car, R. and Parrinello, M. (1989a). Bonding and disorder in liquid silicon. Phys. Rev. Lett. 63, 2240.
Stich, I., Car, R. and Parrinello, M. (1989b). Structural, bonding, dynamical, and electronic properties of liquid silicon: an ab initio molecular-dynamics study. Phys. Rev. B 44, 4262.
Stich, I., Parrinello, M. and Holender, J. M. (1996). Dynamics, spin fluctuations and bonding in liquid silicon. Phys. Rev. Lett. 76, 2077.
Stillinger, F. H. and Weber, T. A. (1982). Hidden structure in liquids. Phys. Rev. A 25, 978.
Stillinger, F. H. and Weber, T. A. (1985). Computer-simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262.
Tamaki, S. and Waseda, Y. (1976). Application of the hard-sphere model to thermodynamic properties of liquid 3d transition metals. J. Phys. F: Met. Phys. 6, L89.
Tangeman, J. A., Phillips, B. L. and Hart, R. (2007). Nucleation of perovskite nanocrystals in a levitating liquid. J. Am. Ceram. Soc. 90, 758.
Teichler, H. (1999). Melting transition in molecular-dynamics simulations of the Ni0.5Zr0.5 intermetallic compound. Phys. Rev. B 59, 8473.
Terashima, K. and Kanno, K. (2001). Silicon melt density – problems of Archimedean technique. Mater. Sci. Semicond. Process. 4, 249.
Thompson, M. O., Galvin, G. J., Mayer, J. W.et al. (1984). Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation. Phys. Rev. Lett. 52, 2360.
Trivedi, R. and Kurz, W. (1994). Solidification microstructures: a conceptual approach. Acta Metall. Mater. 42, 15.
Trivedi, R., Lipton, J. and Kurz, W. (1987). Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts. Acta Metall. 35, 965.
Turnbull, D. (1990). The gram-atomic volumes of alloys of transition metals with Al and Si. Acta Metall. Mater. 38, 243.
Urbain, G. (1983). Viscosités de liquides du système CaO–Al2O3. Rev. Int. Hautes Temp. Refract. (Paris) 20, 135.
Setten, M. J., Uijttewaal, M. A., Wijs, G. A. and Groot, R. A. (2007). Thermodynamic stability of boron: the role of defects and zero point motion. J. Am. Chem. Soc. 129, 2458.
Well, A. A., Verkerk, P., Graaf, L. A., Suck, J.-B. and Copley, J. R. D. (1985). Density fluctuations in liquid argon: coherent dynamic structure factor along the 120-K isotherm obtained by neutron scattering. Phys. Rev. A 31, 3391.
Vinet, B., Cortella, L., Favier, J. J. and Desré, P. (1991). Highly undercooled W and Re drops in an ultrahigh-vacuum drop tube. Appl. Phys. Lett. 58, 97.
Voigtmann, Th., Meyer, A., Holland-Moritz, D.et al. (2008). Atomic diffusion mechanisms in a binary metallic melt. EPL 82, 66001.
Volkmann, T., Wilde, G., Willnecker, R. and Herlach, D. M. (1998). Nonequilibrium solidification of hypercooled Co–Pd melts. J. Appl. Phys. 83, 3028.
Waltham, C., Bendall, S. and Kotlicki, A. (2003). Bernouilli levitation. Am. J. Phys. 71, 176.
Waseda, Y. (1980). The Structure of Non-Crystalline Materials (McGraw-Hill, New York).
Waseda, Y. and Suzuki, K. (1975). Structure of molten silicon and germanium by X-ray diffraction. Z. Physik 20, 339.
Waseda, Y., Shinoda, K., Sugiyama, K.et al. (1995). High temperature X-ray diffraction study of melt structure of silicon. Jpn. J. Appl. Phys., 34, 4124.
Weber, J. K. R. and Nordine, P. C. (1995). Containerless liquid-phase processing of ceramic materials. Microgravity Sci. Technol. 7, 279.
Weber, J. K. R., Hampton, D. S., Merkley, D. R.et al. (1994). Aero-acoustic levitation: a method for containerless liquid-phase processing at high temperatures. Rev. Sci. Instrum. 65, 456.
Weber, J. K. R., Krishnan, S., Anderson, C. D. and Nordine, P. C. (1995a). Spectral absorption coefficient of molten aluminum oxide from 0.385 to 0.780 μm. J. Am. Ceram. Soc. 78, 583.
Weber, J. K. R., Nordine, P. C. and Krishnan, S. (1995b). Effects of melt chemistry on the spectral absorption coefficient of molten aluminum oxide. J. Am. Ceram. Soc. 78, 3067.
Weber, J. K. R., Anderson, C. D., Merkley, D. R. and Nordine, P. C. (1995c). Solidification behavior of undercooled liquid aluminum oxide. J. Am. Ceram. Soc. 78, 577.
Weber, J. K. R., Felten, J. J., Cho, B. and Nordine, P. C. (1998). Glass fibres of pure and erbium- or neodymium-doped yttria–alumina compositions. Nature 393, 769.
Weber, J. K. R., Krishnan, S., Ansell, S., Hixson, A. D. and Nordine, P. C. (2000a). Structure of liquid Y3Al5O12 (YAG). Phys. Rev. Lett. 84, 3622.
Weber, J. K. R., Abadie, J. G., Hixson, A. D., Nordine, P. C. and Jerman, G. A. (2000b). Glass formation and polyamorphism in rare-earth oxide–aluminum oxide compositions. J. Am. Ceram. Soc. 83, 1868.
Weber, J. K. R., Abadie, J. G., Key, T. S.et al. (2002). Synthesis and optical properties of rare-earth–aluminum oxide glasses. J. Am. Ceram. Soc. 85, 1309.
Weber, J. K. R., Benmore, C. J., Tangeman, J. A., Siewenie, J. and Hiera, K. J. (2003). Structure of binary CaO–Al2O3 and SrO–Al2O3 liquids by combined levitation – neutron diffraction. J. Neutron Res. 11, 113.
Weber, R., Benmore, C. J., Siewenie, J., Urquidi, J. and Key, T. S. (2004). Structure and bonding in single- and two-phase alumina-based glasses. Phys. Chem. Chem. Phys. 6, 2480.
Whymark, R. R. (1975). Acoustic field positioning for containerless processing. Ultrasonics 13, 251.
Widom, M. and Mihalkovič, M. (2008). Symmetry-broken crystal structure of elemental boron at low temperature. Phys. Rev. B 77, 064113.
Wilde, G., Görler, G. P. and Willnecker, R. (1996a). Specific heat capacity of undercooled magnetic melts. Appl. Phys. Lett. 68, 2953.
Wilde, G., Görler, G. P. and Willnecker, R. (1996b). Hypercooling of completely miscible alloys. Appl. Phys. Lett. 69, 2995.
Wilding, M. C., Benmore, C. J. and McMillan, P. F. (2002a). A neutron diffraction study of yttrium- and lanthanum-aluminate glasses. J. Non-Cryst. Solids 297, 143.
Wilding, M. C., McMillan, P. F. and Navrotsky, A. (2002b). Thermodynamic and structural aspects of the polyamorphic transition in yttrium and other rare-earth aluminate liquids. Physica A 314, 379.
Wille, G., Millot, F. and Rifflet, J.-C. (2002). Thermophysical properties of containerless liquid iron up to 2500 K. Int. J. Thermophys. 23, 1197.
Willnecker, R., Herlach, D. M. and Feuerbacher, B. (1989). Evidence of nonequilibrium processes in rapid solidification of undercooled metals. Phys. Rev. Lett. 62, 2707.
Winborne, D. A., Nordine, P. C., Rosner, D. E. and Marley, N. F. (1976). Aerodynamic levitation technique for containerless high-temperature studies on liquid and solid samples. Metall. Trans. B 7, 711.
Wunderlich, R. K. and Fecht, H.-J. (2005). Modulated electromagnetic induction calorimetry of reactive metallic liquids. Meas. Sci. Technol. 16, 402.
Wunderlich, R. K., Lee, D. S., Johnson, W. L. and Fecht, H.-J. (1997). Noncontact modulation calorimetry of metallic liquids in low Earth orbit. Phys. Rev. B 55, 26.
Wyatt, P. J. and Phillips, D. T. (1972). A new instrument for the study of individual aerosol particles. J. Colloid. Interface Sci. 39, 125.
Xie, W. J. and Wei, B. (2001). Parametric study of single-axis acoustic levitation. Appl. Phys. Lett. 79, 88.
Xie, W. J., Cao, C. D., , Y. J. and Wei, B (2002). Levitation of iridium and liquid mercury by ultrasound. Phys. Rev. Lett. 89, 104304.
Xie, W. J., Cao, C. D., , Y. J., Hong, Z. Y. and Wei, B. (2006). Acoustic method for levitation of small living animals. Appl. Phys. Lett. 89, 214102.
Zallen, R. (1983). The Physics of Amorphous Solids (Wiley, New York).
Zhou, Z., Mukherjee, S. and Rhim, W.-K. (2003). Measurement of thermophysical properties of molten silicon using an upgraded electrostatic levitator. J. Crystal Growth 257, 350.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.