Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T14:53:46.315Z Has data issue: false hasContentIssue false

2 - A Theory of Inferred Causation

Published online by Cambridge University Press:  05 March 2013

Judea Pearl
Affiliation:
University of California, Los Angeles
Get access

Summary

I would rather discover one causal law than be King of Persia.

Democritus (460–370 B.C.)

Preface

The possibility of learning causal relationships from raw data has been on philosophers’ dream lists since the time of Hume (1711–1776). That possibility entered the realm of formal treatment and feasible computation in the mid-1980s, when the mathematical relationships between graphs and probabilistic dependencies came to light. The approach described herein is an outgrowth of Rebane and Pearl (1987) and Pearl (1988b, Chap. 8), which describes how causal relationships can be inferred from nontemporal statistical data if one makes certain assumptions about the underlying process of data generation (e.g., that it has a tree structure). The prospect of inferring causal relationships from weaker structural assumptions (e.g., general directed acyclic graphs) has motivated parallel research efforts at three universities: UCLA, Carnegie Mellon University (CMU), and Stanford. The UCLA and CMU teams pursued an approach based on searching the data for patterns of conditional independencies that reveal fragments of the underlying structure and then piecing those fragments together to form a coherent causal model (or a set of such models). The Stanford group pursued a Bayesian approach, where data are used to update prior probabilities assigned to candidate causal structures (Cooper and Herskovits 1991). The UCLA and CMU efforts have led to similar theories and almost identical discovery algorithms, which were implemented in the TETRAD II program (Spirtes et al. 1993). The Bayesian approach has since been pursued by a number of research teams (Singh and Valtorta 1995; Heckerman et al. 1994) and now serves as the basis for several graph-based learning methods (Jordan 1998). This chapter describes the approach pursued by Tom Verma and me in the period 1988–1992, and it briefly summarizes related extensions, refinements, and improvements that have been advanced by the CMU team and others. Some of the philosophical rationale behind this development, primarily the assumption of minimality, are implicit in the Bayesian approach as well (Section 2.9.1).

The basic idea of automating the discovery of causes – and the specific implementation of this idea in computer programs – came under fierce debate in a number of forums (Cartwright 1995a; Humphreys and Freedman 1996; Cartwright 1999; Korb and Wallace 1997; McKim and Turner 1997; Robins and Wasserman 1999). Selected aspects of this debate will be addressed in the discussion section at the end of this chapter (Section 2.9.1).

Type
Chapter
Information
Causality
Models, Reasoning, and Inference
, pp. 41 - 64
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×