Skip to main content Accessibility help
×
  • Cited by 160
Publisher:
Cambridge University Press
Online publication date:
April 2014
Print publication year:
2014
Online ISBN:
9780511843655

Book description

This book provides an accessible guide to using the rock physics-based forward modeling approach for mapping the subsurface, systematically linking rock properties to seismic amplitude. Providing practical workflows, the book shows how to methodically vary lithology, porosity, rock type, and pore fluids and reservoir geometry, calculate the corresponding elastic properties, and then generate synthetic seismic traces. These synthetic traces can then be compared to actual seismic traces from the field: a similar actual seismic response implies similar rock properties in the subsurface. The book catalogs various cases, including clastic sediments, carbonates, and time-lapse seismic monitoring, and discusses the effect of attenuation on seismic reflections. It shows how to build earth models (pseudo-wells) using deterministic and statistical approaches, and includes case studies based on real well data. A vital guide for researchers and petroleum geologists, in industry and academia, providing sample catalogs of synthetic seismic reflections from a variety of realistic reservoir models.

Reviews

'This invaluable companion to Mavko et al.’s popular Rock Physics Handbook describes the deterministic and stochastic forward modeling tools a geophysicist needs to find reservoir parameter combinations whose seismic responses fit the data. The authors illustrate key concepts with simple applets, and cover the latest developments in digital rock physics and gas hydrates.'

Sven Treitel - President, TriDekon, Inc.

'The authors superbly introduce readers to the field of rock physics and also educate practitioners on applying rock physics in seismic interpretation for hydrocarbon reservoirs. Systematically designed using templates and catalogues, this guide to exploration for and production mapping of hydrocarbons is honestly explained, including warnings for interpretation pitfalls. Supported by excellent figures, it is enjoyable to read and hard to resist turning to the next page.'

Ivar Brevik - Specialist in Geophysics, Statoil

'Reading [this book] gave me a better appreciation for seismic-reflection characteristics of rock properties, and I am glad to have it on my bookshelf. I will surely reach for it during future seismic analyses.'

Seth S. Haines Source: The Leading Edge

'… provides a rich resource of theory, experimental data, thoughtful methodological considerations, and numerous examples. … As a seismologist, I recommend this book to anyone interested in seismic exploration and rock physics.'

Yu Chen Source: Pure and Applied Geophysics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
Aki, K. and Richards, P. G. (1980). Quantitative Seismology: Theory and Methods. W.H. Freeman and Co.
Anselmetti, F. S. and Eberly, G. P. (1997). Sonic velocity in carbonate sediments and rocks. In Palaz, I. and Marfurt, K. J., eds, Carbonate Seismology, Geophysical Developments. Tulsa, OK, USA: SEG, 53–74.
Arns, C. H., Knackstedt, M. A., Pinczewski, W. V. and Garboczi, E. J. (2002). Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment, Geophysics, 67, 1396–1405, doi: .
Athy, L. F. (1930). Density, porosity, and compaction of sedimentary rocks, AAPG Bulletin, 14, 1–24.
Avseth, P. (2000). Combining rock physics and sedimentology for seismic reservoir characterization of North Sea turbidite systems. Ph.D. thesis, Stanford University.
Avseth, P., Mukerji, T., and Mavko, G. (2005). Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge University Press.
Avseth, P., Dvorkin, J., Mavko, G. and Rykkje, J. (2000). Rock physics diagnostic of North Sea sands: link between microstructure and seismic properties, Geophysical Research Letters, 27, 2761–2764, doi: .
Bachrach, R. and Avseth, P. (2008). Rock physics modeling of unconsolidated sands: accounting for nonuniform contacts and heterogeneous stress fields in the effective media approximation with applications to hydrocarbon exploration, Geophysics, 73, E197–E209.
Backus, G. F. (1962). Long-wave elastic anisotropy produced by horizontal layering, Journal of Geophysical Research, 67, 4427–4441, doi: .
Baldwin, B. and Butler, C. O. (1985). Compaction curves, AAPG Bulletin, April, 69, 622–626.
Bangs, N. L., Sawyer, D. S. and Golovchenko, X. (1993). Free gas at the base of the gas hydrate zone in the vicinity of the Chile triple junction, Geology, 21, 905–908.
Batzle, M. and Wang, Z. (1992). Seismic properties of pore fluids, Geophysics, 57, 1396–1408, doi: .
Batzle, M. L., Han, D.-H., and Hofmann, R. (2006). Fluid mobility and frequency-dependent seismic velocity – direct measurements, Geophysics, 71, N1–N9, doi: .
Berryman, J. G. (1992). Single-scattering approximations for coefficients in Biot’s equations of poroelasticity, The Journal of the Acoustical Society of America, 91, 551–571, doi: .
Blangy, J. P. (1992). Integrated seismic lithologic interpretation: The petrophysical basis. Ph.D. thesis, Stanford University.
Blatt, H., Middleton, G. and Murray, R. (1980). Origin of Sedimentary Rocks. Prentice-Hall, Inc.
Boggs, S. (1995). Principles of Sedimentology and Stratigraphy. Prentice-Hall, Inc.
Bosl, W., Dvorkin, J. and Nur, A. (1998). A study of porosity and permeability using a lattice Boltzmann simulation. Geophysical Research Letters, 25, 1475–1478, doi: .
Bourbie, T. and Zinszner, B. (1985). Hydraulic and acoustic properties as a function of porosity in Fountainebleau sandstone. Journal of Geophysical Research, 90, 11524–11532, doi: .
Bowers, G. L. (1995). Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides undercompaction. SPE Drilling and Completion, SPE 27488, 515–530, doi: .
Bowers, G. L. (2002). Detecting high overpressure. The Leading Edge, 21, 174–177, doi: .
Box, G. E. P. and Draper, N. R. (1987). Empirical Model-Building and Response Surfaces, Wiley.
Box, R. and Lowrey, P. (2003). Reconciling sonic logs with check-shot surveys: stretching synthetic seismograms. The Leading Edge, 22, 510, doi: .
Brie, A., Pampuri, F., Marsala, A. F. and Meazza, O., O. (1995). Shear sonic interpretation in gas bearing sands. Proceedings of SPE Annual Technical Conference and Exhibition, SPE 30595, 701–710, doi: .
Brown, A. (2011). Interpretation of Three-Dimensional Seismic Data. SEG.
Cadoret, T. (1993). Effet de la saturation eau/gas sur les proprietes acoustiques des roches, Ph.D. thesis, University of Paris, VII.
Calvert, R. (2005). Insights and Methods for 4D Reservoir Monitoring and Characterization. SEG and EAGE.
Castagna, J. P., Batzle, M. L. and Eastwood, R. L. (1985). Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks, Geophysics, 50, 571–581, doi: .
Castagna, J. P., Batzle, M. L. and Kan, T. K. (1993). Rock physics – The link between rock properties and AVO response, in Offset-dependent reflectivity – Theory and practice of AVO analysis. In, Castagna, J. P. and M. Backus, eds, Investigations in Geophysics, 8. SEG, pp. 135–171.
Castagna, J. P., Swan, H. W. and Foster, D. J. (1998). Framework for AVO gradient and intercept interpretation, Geophysics, 63, 948–956, doi: .
Castagna, J. P., Sun, S. and Siegfried, R. W. (2003). Instantaneous spectral analysis: detection of low-frequency shadows associated with hydrocarbons, The Leading Edge, 22, 120–127, doi: .
Chatenever, A. and Calhoun, J. C. (1952). Visual examinations of fluid behavior in porous media – Part 1, AIME Petroleum Transactions, 195, 149–195, doi: .
Chen, G., Matteucci, G., Fahmy, B. and Finn, C. (2008). Spectral-decomposition response to reservoir fluids from a deepwater West Africa reservoir, Geophysics, 73, 23–30, doi: .
Connolly, P. (1999). Elastic impedance, The Leading Edge, 19, 438–452, doi: .
Cordon, I., Dvorkin, J. and Mavko, G. (2006). Seismic reflections of gas hydrate from perturbational forward modeling, Geophysics, 71, F165–F171, doi: .
Dai, J., Xu, H., Shyder, F. and Dutta, N. (2004). Detection and estimation of gas hydrates using rock physics and seismic inversion: examples from the northern deepwater Gulf of Mexico, The Leading Edge, 23, 60–66.
De Jager, J. (2012). Prospect evaluation and risk and volume assessment, Lecture notes, upublished.
Deutsch, C.V. and Journel, A. G, (1996). GSLIB: Geostatistical software library and user’s guide, 2nd edn. Oxford University Press.
Dickey, P. (1992). La Cira-Infantas Field, Middle Magdalena Basin. In E. A. Beaumont and N. H. Foster, eds, Structural Traps VII, AAPG Treatise of Petroleum Geology, Atlas for Oil and Gas Field. AAPG, pp. 323–347.
Domenico, S.N. (1977). Elastic properties of unconsolidated porous sand reservoirs, Geophysics, 42, 1339–1368, doi: .
Dutta, N. C. (1987). Fluid flow in low permeable porous media, in Migration of hydrocarbons in sedimentary basins. In B. Doligez, ed., 2nd IFP Exploration Research Conference, Carcans, France, June 15–19. Editions Technip.
Dutta, N., Utech, R. and Shelander, D. (2010). Role of 3D seismic for quantitative shallow hazard assessment in deepwater sediments, The Leading Edge, 29, 930–942, doi: .
Dvorkin, J. (2007). Self-similarity in rock physics, The Leading Edge, 26, 946–950, doi: .
Dvorkin, J. (2008a). Yet another Vs equation, Geophysics, 73, E35–E39, doi: .
Dvorkin, J. (2008b). The physics of 4D seismic, Fort Worth Basin Oil and Gas Magazine, October 2008, 33–36.
Dvorkin, J. (2008c). Can gas sand have a large Poisson’s ratio?, Geophysics, 73, E51–E57, doi: .
Dvorkin, J. (2008d). Seismic-scale rock physics of methane hydrates, Fire in the Ice, DOE/NETL Methane Hydrate Newsletter, Summer 2008, 13–17.
Dvorkin, J. (2009). Digital rock physics bridges scales of measurement, E&P, 82, 9, 31–35.
Dvorkin, J. and Alkhater, S. (2004). Pore fluid and porosity mapping from seismic, First Break, 22, 53–57, doi: .
Dvorkin, J. and Brevik, I. (1999). Diagnosing high-porosity sandstones: strength and permeability from porosity and velocity, Geophysics, 64, 795–799, doi: .
Dvorkin, J. and Cooper, R. (2005). The caveat of scale, E&P, 78, 10, 83–86.
Dvorkin, J. and Derzhi, N. (2013). Rules for upscaling for rock physics transforms: composites of randomly and independently drawn elements, Geophysics, 77, WA120–WA139, doi: .
Dvorkin, J. and Gutierrez, M. (2001). Textural Sorting Effect on Elastic Velocities, Part II: Elasticity of a Bimodal Grain Mixture. SEG Technical Program Expanded Abstracts 2001, 1764–1767. Read more: .
Dvorkin, J. and Gutierrez, M., 2002, Grain sorting, porosity, and elasticity, Petrophysics, 43, 3, 185–196.
Dvorkin, J. and Mavko, G. (2006). Modeling attenuation in reservoir and non-reservoir rock, The Leading Edge, 25, 194–197, doi: .
Dvorkin, J. and Nur, A. (1996). Elasticity of high-porosity sandstones: theory for two North Sea datasets, Geophysics, 61, 1363–1370, doi: .
Dvorkin, J. and Nur, A. (1998). Time-average equation revisited, Geophysics, 63, 460–464, doi: .
Dvorkin, J. and Nur, A. (2009). Scale of experiment and rock physics trends, The Leading Edge, 28, 110–115, doi: .
Dvorkin, J. and Uden, R. (2004). Seismic wave attenuation in a methane hydrate reservoir, The Leading Edge, 23, 730–734, doi: .
Dvorkin, J. and Uden, R. (2006). The challenge of scale in seismic mapping of hydrate and solutions, The Leading Edge, 25, 637–642, doi: .
Dvorkin, J., Mavko, G. and Nur, A. (1999). Overpressure detection from compressional- and shear-wave data, Geophysical Research Letters, 26, 3417–3420, doi: .
Dvorkin, J., Gutierrez, M. and Nur, A. (2002). On the universality of diagenetic trends, The Leading Edge, 21, 40–43.
Dvorkin, J., Nur, A., Uden, R. and Taner, T. (2003). Rock physics of a gas hydrate reservoir, The Leading Edge, 22, 842–847, doi: .
Dvorkin, J., Walls, J., Uden, R., Carr, M., Smith, M. and Derzhi, N. (2004). Lithology substitution in fluvial sand, The Leading Edge, 23, 108–114, doi: .
Dvorkin, J., Mavko, G. and Gurevich, B. (2007). Fluid substitution in shaley sediment using effective porosity, Geophysics, 72, O1–O8, doi: .
Dvorkin, J., Armbruster, M., Baldwin, C., Fang, Q., Derzhi, N., Gomez, C., Nur, A. and Mu, Y. (2008). The future of rock physics: computational methods versus lab testing, First Break, 26, 63–68, doi: .
Dvorkin, J., Derzhi, N., Fang, Q., Nur, A., Grader, A., Baldwin, C., Tono, H. and Diaz, E. (2009). From micro to reservoir scale: Permeability from digital experiments, The Leading Edge, 28, 1446–1453, doi: .
Dvorkin, J., Derzhi, N., Diaz, E. and Fang, Q. (2011). Relevance of computational rock physics, Geophysics, 76, E141–E153.
Eastwood, J., Lebel, P., Dilay, A. and Blakeslee, S. (1994). Seismic monitoring of steam-based recovery of bitumen, The Leading Edge, 13, 242–251, doi: .
Eaton, B. A. (1975). The equation for geopressured prediction from well logs, Proceedings of Fall Meeting of the Society of Petroleum Engineers of AIME, SPE 5544, doi: .
Ebaid, H., Tura, A., Nasser, M., Hatchell, P., Smit, F., Payne, N., Herron, D., Stanley, D., Kaldy, J. and Barousse, C. (2008). First dual-vessel high-repeat GoM 4D shows development options at Holstein field, SEG Expanded Abstracts, doi: .
Eberli, G. P., Baechle, G. T., Anselmetti, F. S. and Incze, M. L. (2003). Factors controlling elastic properties in carbonate sediments and rocks, The Leading Edge, 22, 654–660, doi: .
Ebrom, D. (2004). The low-frequency gas shadow on seismic sections, The Leading Edge, 23, 772, doi: .
Ecker, C., Dvorkin, J. and Nur, A. (2000). Estimating the amount of gas hydrate and free gas from marine seismic data, Geophysics, 65, 565–573.
Einsele, G., Ricken, W., and Seilacher, A., eds. (1991). Cycles and Events in Stratigraphy. Springer-Verlag.
Evejen, H. M. (1967). Outline of a system of refraction interpretation for monotonic increase of velocity with depth. In Musgrave, A. W., ed., Seismic Refraction Prospecting. SEG, p. 290.
Fabricius, I. L., Mavko, G., Mogensen, C. and Japsen, P. (2002). Elastic moduli of chalk as a reflection of porosity, sorting, and irreducible water saturation, SEG Expanded Abstracts, 1903–1906, doi: .
Fabricius, I. L., Baechle, G. T. and Eberli, G. P. (2010). Elastic moduli of dry and water-saturated carbonates – effect of depositional texture porosity and permeability, Geophysics, 75, 65–78, doi: .
Fahmy, W. (2006). DHI/AVO Best Practices Methodology and Application, SEG/AAPG 2006 Fall Distinguished Lecture.
Fahmy, W. A., Matteucci, G., Parks, J., Matheney, M. and Zhang, J. (2008). Extending the Limits of Technology to Explore Below the DHI Floor; Successful Application of Spectral Decomposition to Delineate DHI’s Previously Unseen on Seismic Data. SEG Technical Program Expanded Abstracts 2008, 408–412.
Faust, L. Y. (1951). Seismic velocity as function of depth and geological time, Geophysics, 16, 192–206, doi: .
Faust, L. Y. (1953). A velocity function including lithologic variation, Geophysics, 18, 271–288, doi: .
Forrest, M., Roden, R. and Holeywell, R. (2010). Risking seismic amplitude anomaly prospects based on database trends, The Leading Edge, 29, 936–930, doi: .
Fournier, F. and Borgomano, J. (2007). Geological significance of seismic reflections and imaging of reservoir architecture in the Malampaya gas field (Philippines), AAPG Bulletin, 92, 235–258, doi: .
Gal, D., Dvorkin, J. and Nur, A. (1998). A physical model for porosity reduction in sandstones, Geophysics, 63, 454–459, doi: .
Gal, D., Dvorkin, J. and Nur, A. (1999). Elastic-wave velocities in sandstones with non-load-bearing clay, GRL, 26, 939–942.
Garboczi, E. J. and Day, A. R. (1995). An algorithm for computing the effective linear elastic properties of heterogeneous materials: three dimensional results for composites with equal phase Poisson’s ratios, Journal of the Mechanics and Physics of Solids, 43, 1349–1362, doi: .
Gassmann, F. (1951). Elasticity of porous media: Uber die elastizitat poroser medien: Vierteljahrsschrift der Naturforschenden, Gesellschaft, 96, 1–23.
Ghaderi, A. and Landrø, M. (2009). Estimation of thickness and velocity changes of injected carbon dioxide layers from prestack time-lapse seismic data, Geophysics, 74, O17–O28, doi: .
Ghosh, R. and Sen., M. (2012). Predicting subsurface CO2 movement: from laboratory to field scale, Geophysics, 77, M27–M37, doi: .
Giles, M. (1997). Diagenesis: A Quantitative Perspective and Implications for Basin Modeling and Rock Property Prediction. Kluwer Academic Publishers, p. 526.
Gommesen, L., Dons, T., Hansen, H. P., Jan Stammeijer, J. and Hatchell, P. (2007). 4D seismic signatures of North Sea chalk – the Dan field, SEG Expanded Abstracts, 2847–2851, doi: .
Grana, D. and Della Rossa, E. (2010). Probabilistic petrophysical properties estimation integrating statistical rock physics with seismic inversion, Geophysics, 75, O21–O37, doi: .
Grana, D., Mukerji, T., Dvorkin, J. and Mavko, G. (2012). Stochastic inversion of facies from seismic data based on sequential simulations and probability perturbation method, Geophysics, 77, M53–M72, doi: .
Greenberg, M. L. and Castagna, J. P. (1992). Shear-wave velocity estimation in porous rocks: theoretical formulation, preliminary verification and applications, Geophysical Prospecting, 40, 195–209, doi: .
Grotsch, J. and Mercadier, C. (1999). Integrated 3-D reservoir modelling based on 3-D seismic: the Tertiary Malampaya and Camago buildups, offshore Palawan, Philippines. AAPG Bulletin, 83, 1703–1728.
Grude, S., Dvorkin, J. and Landro, M. (2013). Rock physics estimation of cement type and impact on the permeability for the Snohvit Field, the Barents Sea, SEG Expanded Abstract.
Guerin, G. and Goldberg, D. (2002). Sonic waveform attenuation in gas-hydrate-bearing sediments from the Mallik 2L-38 research well, Mackenzie Delta, Canada, Journal of Geophysical Research, 107, 1029–1085, doi: .
Guerin, G., Goldberg, D. and Meltzer, A. (1999). Characterization of in-situ elastic properties of gas-hydrate-bearing sediments on the Blake Ridge, JGR, 104, 17781–17796.
Gutierrez, M. A. (2001). Rock physics and 3-D seismic characterization of reservoir heterogeneities to improve recovery efficiency. Ph.D. thesis, Stanford University.
Gutierrez, M. A. and Dvorkin, J. (2010). Rock physics workflows for exploration in frontier basins, SEG Expanded Abstracts, 2441–2446, doi: .
Gutierrez, M. A., Braunsdorf, N. R. and Couzens, B. A. (2006). Calibration and ranking of pore-pressure prediction models, The Leading Edge 25, 1458–1460, doi: .
Hackert, C. L. and Parra, J. O. (2004). Improving Q estimates from seismic reflection data using well-log-based localized spectral correction, Geophysics, 69, 1521–1529, doi: .
Hamilton, E. L. (1972). Compressional-wave attenuation in marine sediments, Geophysics, 37, 620–646, doi: .
Han, D.-H. (1986). Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments. Ph.D. thesis, Stanford University.
Hardage, B. A. (1985). Vertical Seismic Profiling, Part A, Principles, 2nd edn. Elsevier.
Hardage, B., Levey, R., Pendleton, V., Simmons, J. and Edson, R. (1994). A 3-D seismic case history evaluating fluvially deposited thin-bed reservoirs in a gas-producing property, Geophysics, 59, 1650–1665, doi: .
Hashin, Z. and Shtrikman, S. (1963). A variational approach to the elastic behavior of multiphase materials, Journal of Mechanics and Physics of Solids, 33, 3125–3131, doi: .
Helgerud, M. (2001). Wave speeds in gas hydrate and sediments containing gas hydrate: a laboratory and modeling study, Ph.D. thesis, Stanford University.
Helgerud, M., Dvorkin, J., Nur, A., Sakai, A. and Collett, T. (1999). Elastic-wave velocity in marine sediments with gas hydrates: effective medium modeling, GRL, 26, 2021–2024.
Hill, R. (1952). The elastic behavior of crystalline aggregate, Proceedings of the Physical Society, London, A65, 349–354, doi: .
Hilterman, F. (1989). Is AVO the seismic signature of rock properties?, SEG Expanded Abstracts, 559–562, doi: .
Hilterman, F. (2001). Seismic amplitude interpretation, SEG distinguished instructor short course.
Hilterman, F. and Zhou, Z. (2009). Pore-fluid quantification: Unconsolidated versus consolidated sediments, SEG Expanded Abstracts, 331–335, doi: .
Holbrook, W. S., Hoskins, H., Wood, W. T., Stephen, R. A. and Lizarralde, D. (1996). Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling, Science, 273, 1840–1843.
Hyndman, R. D. and Spence, G. D. (1992). A seismic study of methane hydrate marine bottom simulating reflectors, JGR, 97, 6683–6698.
Japsen, P. (1993). Influence of lithology and Neogene uplift on seismic velocities in Denmark; implications for depth conversion of maps, AAPG Bulletin, 77, 194–211.
Japsen, P. (1998). Regional velocity-depth anomalies, North Sea Chalk: a record of overpressure and Neogene uplift and erosion, AAPG Bulletin, 82, 2031–2074
Japsen, P., Mukerji, T. and Mavko, G. (2007). Constraints on velocity-depth trends from rock physics models, Geophysical Prospecting, 55, 135–154, doi: .
Jizba, D. L. (1991). Mechanical and acoustic properties of sandstones and shales. Ph.D. dissertation, Stanford University.
Johnson, D. L. (2001). Theory of frequency dependent acoustics in patchy-saturated porous media, The Journal of the Acoustical Society of America, 110, 682–694, doi: .
Kameda, A. and Dvorkin, J. (2004). To see a rock in a grain of sand, The Leading Edge, 23, 790–794, doi: .
Katahara, K. (2003). Analysis of overpressure on the Gulf of Mexico Shelf, Proceedings of Offshore Technology Conference, OTC 15293, doi: .
Keehm, Y., Mukerji, T. and Nur, A. (2001). Computational rock physics at the pore scale: Transport properties and diagenesis in realistic pore geometries, The Leading Edge, 20, 180–183, doi: .
Kenter, J., Podladchikov, F., Reinders, M., Van der Gaast, S., Fouke, B. and Sonnenfeld, M. (1997). Parameters controlling sonic velocities in a mixed carbonate-siliciclastic Permian shelf-margin (upper San Andres formation, Last Chance Canyon, New Mexico), Geophysics, 64, 505–520, doi: .
Klimentos, T. (1995). Attenuation of P- and S-waves as a method of distinguishing gas and condensate from oil and water, Geophysics, 60, 447–458, doi: .
Klimentos, T. and McCann, C. (1990). Relationships among compressional wave attenuation, porosity, clay content, and permeability in sandstones, Geophysics, 55, 998–1014, doi: .
Knackstedt, M. A., Arns, C. H. and Pinczewski, W. V. (2003). Velocity-porosity relationships, 1: Accurate velocity model for clean consolidated sandstones, Geophysics, 68, 1822–1834, doi: .
Knight, R., Dvorkin, J. and Nur, A. (1998). Seismic signatures of partial saturation, Geophysics, 63, 132–138, doi: .
Koesoemadinata, A.P. and McMechan, G.A. (2001). Empirical estimation of viscoelastic seismic parameters from petrophysical properties of sandstone, Geophysics, 66, 1457–1470, doi: .
Krief, M., Garat, J., Stellingwerff, J. and Ventre, J. (1990). A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic), The Log Analyst, 31, 355–369.
Krumbein, W. C. and Dacey, M. F. (1969). Markov chains and embedded Markov chains in geology: Mathematical Geology, 1 (1), 79–96, doi: .
Kvamme, L. and Havskov, J. (1989). Q in southern Norway, Bulletin of the Seismological Society of America, 79, 1575–1588.
Kvenvolden, K. A. (1993). Gas hydrates as a potential energy resource – a review of their methane content. In The Future of Energy Gases – U.S.G.S. Professional Paper 1570, pp. 555–561.
Lancaster, A. and Whitcombe, D. (2000). Fast-track ‘colored’ inversion, SEG Expanded Abstracts, 1572–1575, doi: .
Lander, R. H. and Walderhaug, O. (1999). Reservoir quality predictions through simulation of sandstones compaction and quartz cementation, AAPG Bulletin, 83, 433–449.
Latimer, R. B. (2011). Inversion and interpretation of impedance data. In Brown, A.R., ed., Interpretation of Three-Dimensional Seismic. SEG and AAPG.
Laverde, F. (1996). Estratigrafia de alta resolucion de la seccion corazonada en el campo, La Cira: Ecopetrol, Technical report, 37 p.
Leary, P., Henyey, T. and Li, Y. (1988). Fracture related reflectors in basement rock from vertical seismic profiling at Cajon Pass, Geophysical Research Letters, 15, 1057–1060, doi: .
Lebedev, M., Toms-Stewart, J., Clennell, B., Pervukhina, M., Shulakova, V., Paterson, L., Müller, T.M., Gurevich, B. and Wenzlau, F. (2009). Direct laboratory observation of patchy saturation and its effects on ultrasonic velocities, The Leading Edge, 28, 24–27, doi: .
Lee, M. W. (2002). Biot-Gassmann theory for velocities of gas hydrate-bearing sediments, Geophysics, 67, 1711–1719.
Lee, M. W. (2006). A simple method of predicting S-wave velocity, Geophysics, 71, F161–F164, doi: .
Li, J. and Dvorkin, J. (2012). Effects of fluid changes on seismic reflections: predicting amplitudes at gas reservoir directly from amplitudes at wet reservoir, Geophysics, 77, D129–D140, doi: .
Lilwall, R. (1988). Regional mb:Ms, Lg/Pg amplitude ratios and Lg spectral ratios as criteria for distinguishing between earthquakes and explosions: A theoretical study, Geophysical Journal, 93, 137–147, doi: .
Lucet, N. (1989). Vitesse et attenuation des ondes elastiques soniques et ultrasoniques dans ler roches sous pression de confinement (Velocity and attenuation of elastic sonic and ultrasonic waves in rocks under confining pressure). Ph.D. thesis, University of Paris.
Lucia, F. J. (2007). Carbonate Reservoir Characterization, 2nd edn. Springer.
Marion, D. and Jizba, D. (1997). Acoustic properties of carbonate rocks: use in quantitative interpretation of sonic and seismic measurements. In Palaz, I. and Marfurt, K. J., eds, Carbonate Seismology, Geophysical Developments. SEG, pp. 75–94.
Marion, D., Mukerji, T. and Mavko, G. (1994). Scale effects on velocity dispersion: from ray to effective medium theories in stratified media, Geophysics, 59, 1613–1619, doi: .
Marsden, D., Bush, M. D. and Sik Johng, D. (1995). Analytic velocity functions, The Leading Edge, 14, 775–782, doi: .
Mavko, G. and Jizba, D. (1991). Estimating grain-scale fluid effects on velocity dispersion in rocks, Geophysics, 56, 1940–1949, doi: .
Mavko, G., Chan, C. and Mukerji, T. (1995). Fluid substitution: Estimating changes in Vp without knowing Vs, Geophysics, 60, 1750–1755, doi: .
Mavko, G., Mukerji, T. and Dvorkin, J. (2009). The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media, Cambridge University Press.
Menezes, C. and Gosselin, O. (2006). From logs scale to reservoir scale: upscaling of the petroelastic model, Proceedings of SPE Europec/EAGE Annual Conference and Exhibition, SPE 100233, doi: .
Miall, A. D. (1996). The Geology of Fluvial Deposits: Sedimentary facies, basin analysis and petroleum geology. Springer-Verlag.
Miall, A. D. (1997). The Geology of Stratigraphic Sequences. Springer-Verlag.
Miller, J. J., Lee, M. W. and von Huene, R. (1991). An analysis of a seismic reflection from the base of a gas hydrate zone, offshore Peru, AAPG Bull., 75, 910–924.
Mindlin, R.D. (1949). Compliance of elastic bodies in contact, Transactions ASME, 71, A–259, doi: .
Minshull, T. A., Singh, S. C. and Westbrook, G. K. (1994). Seismic velocity structure at a gas hydrate reflector, offshore western Colombia, from full waveform inversion, JGR, 99, 4715–4734.
Morales, L. G., Podesta, D. J., Hatfield, W. C., Tanner, H., Jones, S. H., Barker, M. H., O’Donoghue, D. J., Mohler, C. E., Dubois, E. P., Jacobs, C. and Goss, C. R. (1958). General Geology and Oil Occurrences of the Middle Magdalena Valley, Colombia: Habitat of Oil Symposium. American Association of Petroleum Geologists, pp. 641–695.
Mukerji, T., Jorstad, A., Avseth, P., Mavko, G. and Granli, J. R. (2001). Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: seismic inversions and statistical rock physics, Geophysics, 66, 988–1001, di: 10.1190/1.1487078.
Murphy, W. F. (1982). Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials. Ph.D. thesis, Stanford University.
Nur, A. (1969). Effects of stress and fluid inclusions on wave propagation in rock. Ph.D. thesis, MIT.
O’Brien, J. (2004). Seismic amplitudes from low gas saturation sands, The Leading Edge, 23, 1236–1243, doi: .
Øren, P. E. and Bakke, S. (2003). Reconstruction of Berea sandstone and pore-scale modeling of wettability effects, Journal of Petroleum Science and Engineering, 39, 177–199, doi: .
Osdal, B., Husby, O., Aronsen, H. A., Chen, N. and Alsos, T. (2006). Mapping the fluid front and pressure buildup using 4D data on Norne Field, The Leading Edge, 25, 1134–1141, doi: .
Ostrander, W.J. (1984). Plane-wave reflection coefficients for gas sands at non-normal angles of incidence, Geophysics, 49, 1637–164, doi: .
Paillet, F., Cheng, C. and Pennington, W. (1992). Acoustic waveform logging: advances in theory and application, Log Analyst, 33, 239–258.
Palaz, I. and Marfurt, K. J., eds, (1997). Carbonate Seismology, Geophysical Developments. SEG.
Pearson, C., Murphy, J. and Hermes, R. (1986). Acoustic and resistivity measurements on rock samples containing tetrahydrofuran hydrates: laboratory analogues to natural gas hydrate deposits, JGR, 91, 14132–14138.
Pickett, G. R. (1963). Acoustic character logs and their applications in formation evaluation, Journal of Petroleum Technology, 15, 650–667, doi: .
Pratt, R. G., Bauer, K. and Weber, M. (2003). Cross-hole waveform tomography velocity and attenuation images of arctic gas hydrates, SEG Expanded Abstracts, 2255–2258, doi: .
Pride, S. R., Harris, J. M., Johnson, D. L., Mateeva, A., Nihei, K. T., Nowack, R. L., Rector, J. W., Spetzler, H., Wu, R., Yamamoto, T., Berryman, J. G. and Fehler, M. (2003). Permeability dependence of seismic amplitudes, The Leading Edge, 22, 518–525, doi: .
Quan, Y. and Harris, J. M. (1997). Seismic attenuation tomography using the frequency shift method, Geophysics, 62, 895–905, doi: .
Ramm, M. and Bjørlykke, K. (1994). Porosity/depth trends in reservoir sandstones; assessing the quantitative effects of varying pore-pressure, temperature history and mineralogy, Norwegian shelf data, Clay Minerals, 29, 475–490, doi: .
Raymer, L. L., Hunt, E. R. and Gardner, J. S. (1980). An improved sonic transit time-to-porosity transform, Transactions of the Society of Professional Well Log Analysts, 21st Annual Logging Symposium, Paper P.
Ren, H., Hilterman, F., Zhou, Z. and Dunn, M. (2006). AVO equation without velocity and density, SEG Expanded Abstracts, 239–243, doi: .
Rider, M. (2002). The Geological Interpretation of Well Logs, 2nd edn. Whittles Publishing.
Rio, P., Mukerji, T., Mavko, G. and Marion, D. (1996). Velocity dispersion and upscaling in a laboratory-simulated VSP, Geophysics, 61, 584–593, doi: .
Roden, R., Forrest, M., and Holeywell, R., 2005, The impact of seismic amplitudes on prospect risk analysis, The Leading Edge, 24, 706–711, doi: .
Roden, R., Forrest, M. and Holeywell, R. (2012). Relating seismic interpretation to reserve/resource calculations: insights from a DHI consortium, The Leading Edge, 31, 1066– 1074, doi: .
Rose, P. (2001). Risk analysis and management of petroleum exploration ventures, AAPG Methods in Exploration Series, No. 12.
Ruiz, F. J. (2009). Porous grain model and equivalent elastic medium approach for predicting effective elastic properties of sedimentary rocks. Ph.D. thesis, Stanford University.
Russell, B. (1998). Introduction to Seismic Inversion Methods. SEG.
Rutherford, S. R. and Williams, R. H. (1989). Amplitude versus offset variations in gas sands, Geophysics, 54, 680–688, doi: .
Sain, R. (2010). Numerical simulation of pore-scale heterogeneity and its effects on elastic, electrical, and transport properties. Ph.D. thesis, Stanford University.
Sakai, A. (1999). Velocity analysis of vertical seismic profiling (VSP) survey at Japex/JNOC/GSC Mallik 2L-38 gas hydrate research well, and related problems for estimating gas hydrate concentration, GSC Bulletin, 544, 323–340.
Sams, M. S. and Williamson, P. R. (1993). Backus averaging, scattering and drift, Geophysical Prospecting, 42, 541–564, doi: .
Sayers, C. M. (2002). Stress-dependent elastic anisotropy of sandstones, Geophysical Prospecting, 50, 85–95, doi: .
Scholl, D. W. and Hart, P. E. (1993), Velocity and Amplitude Structures on Seismic-Reflection Profiles–Possible Massive Gas-Hydrate Deposits and Underlying Gas in The Future of Energy Gases, ed. D. G. Howell, pp. 331–351.
Schon, J. H. (2004). Physical Properties of Rocks: Fundamentals and Principles of Petrophysics, Elsevier.
Scotellaro, C., Vanorio, T. and Mavko, G. (2008). The effect of mineral composition and pressure on carbonate rocks, SEG Expanded Abstracts, 1684–1689, doi: .
Sen, M. and Stoffa, P. L. (2013). Global Optimization Methods in Geophysical Inversion, 2nd edn. Elsevier.
Sharp, B., DesAutels, D., Powers, G., Young, R., Foster, S., Diaz, E. and Dvorkin, J. (2009). Capturing digital rock properties for reservoir modeling, World Oil, 230, 10, 67–68.
Sheriff, R. and Geldart, L. (1995). Exploration Seismology. Cambridge University Press.
Shuey, R. T. (1985). A simplification of the Zoeppritz equations, Geophysics, 50, 619–624, doi: .
Slotnick, M. M. (1936). On seismic computations with applications, Geophysics, 1, 9–22, doi: .
Spencer, J. W., Cates, M. E. and Thompson, D. D. (1994). Frame moduli of unconsolidated sands and sandstones, Geophysics, 59, 1352–1361, doi: .
Strandenes, S. (1991). Rock physics analysis of the Brent Group Reservoir in the Oseberg Field: Stanford Rock Physics and Borehole Geophysics Project, special volume.
Su, Y., Tao, Y., Wang, T., Chen, G. and Li, J. (2010). AVO attributes interpretation and identification of lithological traps by prestack elastic parameters inversion – a case study in K Block, South Turgay Basin, SEG Expanded Abstract, 439–443, doi: .
Taner, M. T., Koehler, F. and Sheriff, R. E. (1979). Complex seismic trace analysis, Geophysics, 44, 1041–1063, doi: .
Tarantola, A. (2005). Inverse Problem Theory. SIAM.
Timur, A. (1968). An investigation of permeability, porosity, and residual water saturation relationships for sandstone reservoirs:The Log Analyst, 9, 4, 8–17.
Tolke, J., Baldwin, C., Mu, Y., Derzhi, N., Fang, Q., Grader, A. and Dvorkin, J. (2010). Computer simulations of fluid flow in sediment: From images to permeability, The Leading Edge, 29, 68–74, doi: .
Toms, J., Muller, T. M., Cizc, R. and Gurevich, B. (2006). Comparative review of theoretical models for elastic wave attenuation and dispersion in partially saturated rocks, Soil Dynamics and Earthquake Engineering, 26, 548–565, doi: .
Trani, M., Arts, R., Leeuwenburgh, O. and Brouwer, J. (2011). Estimation of changes in saturation and pressure from 4D seismic AVO and time-shift analysis, Geophysics, 76, C1–C17, doi: .
Vanorio, T. and Mavko, G. (2011). Laboratory measurements of the acoustic and transport properties of carbonate rocks and their link with the amount of microcrystalline matrix, Geophysics, 76, E105–E115. doi: .
Vanorio, T., Scotellaro, C. and Mavko, G. (2008). The effect of chemical processes and mineral composition on the acoustic properties of carbonate rocks, The Leading Edge, 27, 1040–1048, doi: .
Vanorio, T., Nur, A. and Ebert, Y. (2011). Rock physics analysis and time-lapse rock imaging of geochemical effects due to the injection of CO2 into reservoir rocks, Geophysics, 76, O23–O33, doi: .
Vasquez, G. F., Dillon, L. D., Varela, C. L., Neto, G. S., Velloso, R. Q. and Nunes, C. F. (2004). Elastic log editing and alternative invasion correction methods, The Leading Edge, 23, 20–25, doi: .
Vernik, L., Fisher, D. and Bahret, S. (2002). Estimation of net-to-gross from P and S impedance in deepwater turbidites, The Leading Edge, 21, 380–387, doi: .
Walls, J., Dvorkin, J. and Smith, B. (1998). Modeling seismic velocity in Ekofisk chalk, SEG Expanded Abstracts, 1016–1019, doi: .
Wang, Z. (1988). Wave velocities in hydrocarbons and hydrocarbon saturated rocks – with application to EOR monitoring. Ph.D. thesis, Stanford University.
Wang, Z. (1997). Seismic properties of carbonate rocks. In Carbonate Seismology, Geophysical Developments, Palaz, I. and Marfurt, K. J., eds. SEG, pp. 29–52.
Wang, Z. (2000). Velocity-density relationships in sedimentary rocks. In Wang, Z., Nur, A. and Ebrom, D. A., eds, Seismic and Acoustic Velocities in Reservoir Rocks, Recent Developments (Geophysics Reprint Series 19), SEG, pp. 256–268.
Waters, K. H. (1992). Reflection Seismology: A tool for energy resource exploration, 3rd edn. Krieger.
White, J. E. (1983). Underground Sound: Application of seismic waves. Elsevier.
Williams, D. M. (1990). The acoustic log hydrocarbon indicator, SPWLA 31st Logging Symposium, Paper W.
Winkler, K. (1979). The effects of pore fluids and frictional sliding on seismic attenuation. Ph.D. thesis, Stanford University.
Wood, A. W. (1955). A Textbook of Sound. MacMillan.
Wood, W. T., Stoffa, P. L. and Shipley, T. H. (1994). Quantitative detection of methane hydrate through high-resolution seismic velocity analysis, Journal of Geophysical Research, 99, 9681–9695.
Wood, W. T., Holbrook, W. S. and Hoskins, H. (2000). In situ measurements of P-wave attenuation in the methane hydrate- and gas-bearing sediments of the Blake Ridge. In Paull, C. K., Matsumoto, R., Wallace, P. J. and Dillon, W. P., eds, Proceedings of the Ocean Drilling Program, Scientific Results, 164, 265–272.
Wyllie, M. R. J., Gregory, A. R. and Gardner, G. H. F. (1956). Elastic wave velocities in heterogeneous and porous media. Geophysics, 21, 41–70.
Yilmaz, O. (2001), Seismic Data Analysis. SEG.
Yin, H. (1992). Acoustic velocity and attenuation of rocks: Isotropy, intrinsic anisotropy, and stress-induced anisotropy. Ph.D. thesis, Stanford University.
Zhou, Z. and Hilterman, F. (2010). A comparison between methods that discriminate fluid content in unconsolidated sandstone reservoirs, Geophysics, 75, B47–B58, doi: .
Zhou, Z., Hilterman, F. and Ren, H. (2006). Stringent assumptions necessary for pore-fluid estimation, SEG Expanded Abstracts, 244–248, doi: .
Zimmer, M. A. (2003). Seismic velocities in unconsolidated sands: measurements of pressure, sorting, and compaction effects. Ph.D. thesis, Stanford University.
Zoeppritz, K. (1919). Erdbebenwellen VIIIB, On the reflection and propagation of seismic waves, Gottinger Nachrichten, I, 66–84.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.