Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-01T13:34:09.333Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  07 September 2023

Piet Van Mieghem
Affiliation:
Technische Universiteit Delft, The Netherlands
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, I. A. (1968). Handbook of Mathematical Functions. (Dover Publications, Inc., New York).Google Scholar
Aigner, M. and Ziegler, G. M. (2003). Proofs from THE BOOK, third edn. (Springer-Verlag, Berlin).Google Scholar
Akritas, A. G. (1989). Elements of Computer Algebra with Applications. (John Wiley & Sons, New York).Google Scholar
Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics 74, 4797.Google Scholar
Alon, N. (1986). Eigenvalues and expanders. Combinatorica 6, 2, 8396.CrossRefGoogle Scholar
Alon, N. and Milman, V. D. (1985). λ1, isoperimetric inequalities for graphs and supercontractors. Journal of Combinatorial Theory, Series B 38, 7388.Google Scholar
Anderson, G. W., Guionnet, A., and Zeitouni, O. (2010). An Introduction to Random Matrices. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Anderson, W. N. and Morley, T. D. (1985). Eigenvalues of the Laplacian of a graph. Linear and Multilinear Algebra 18, 141145.CrossRefGoogle Scholar
Aouchiche, M. and Hansen, P. (2014). Distance spectra of graphs: A survey. Linear Algebra and its Applications 458, 301386.Google Scholar
Aziz, A. and Zargar, B. A. (2012). Bounds for the zeros of a polynomial with restricted coefficients. Applied Mathematics 3, 3033.Google Scholar
Bapat, R. B. (2004). Resistance matrix of a weighted graph. Match, Communications in Mathematical and in Computer Chemistry 50, 7382.Google Scholar
Bapat, R. B. (2013). On the adjacency matrix of a threshold graph. Linear Algebra and its Applications 439, 30083015.Google Scholar
Barabási, A. L. (2002). Linked, The New Science of Networks. (Perseus, Cambridge, MA).Google Scholar
Barabási, A. L. (2016). Network Science. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Barabási, A. L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509512.Google Scholar
Barrat, A., Bartelemy, M., and Vespignani, A. (2008). Dynamical Processes on Complex Networks. (Cambridge University Press, Cambridge, U.K.).CrossRefGoogle Scholar
Batson, J., Spielman, D. A., Srivastava, N., and Teng, S.-H. (2013). Spectral sparsification of graphs: Theory and algorithms. Communications of the ACM 56, 8 (August), 8794.Google Scholar
Behzad, M. and Chartrand, G. (1967). No graph is perfect. The American Mathematical Monthly 74, 8, 962963.Google Scholar
Biggs, N. (1996). Algebraic Graph Theory, 2nd edn. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Bollobás, B. (1998). Modern Graph Theory. Graduate Texts in Mathematics, (Springer-Verlag, New York).Google Scholar
Bollobás, B. (2001). Random Graphs, 2nd edn. (Cambridge University Press, Cambridge).Google Scholar
Bollobás, B. (2004). Extremal Graph Theory. (Courier Dover Publishers, New York).Google Scholar
Borghs, G., Bhattacharyya, K., Deneffe, K., Van Mieghem, P., and Mertens, R. (1989). Band-gap narrowing in highly doped n- and p-type GaAs studied by photoluminescence spectroscopy. Journal of Applied Physics 66, 9, 43814386.Google Scholar
Borwein, P. and Erdélyi, T. (1995). Polynomials and Polynomial Inequalities. (Springer-Verlag, New York).CrossRefGoogle Scholar
Brankov, V., Hansen, P., and Stevanović, D. (2006). Automated conjectures on upper bounds for the largest Laplacian eigenvalue of graphs. Linear Algebra and its Applications 414, 407424.Google Scholar
Brouwer, A. E. and Haemers, W. H. (2008). A lower bound for the Laplacian eigenvalues of a graph: Proof of a conjecture by Guo. Linear Algebra and its Applications 429, 21312135.CrossRefGoogle Scholar
Brouwer, A. E. and Haemers, W. H. (2012). Spectra of Graphs. Universitext, (Springer, New York).Google Scholar
Buck, R. C. (1978). Advanced Calculus. (McGraw-Hill Book Company, New York).Google Scholar
Budel, G. and Van Mieghem, P. (2021). Detecting the number of clusters in a network. Journal of Complex Networks 8, 6 (December), cnaa047.Google Scholar
Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., and Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature Letters 464, 10251028.CrossRefGoogle ScholarPubMed
Chandra, A. K., Raghavan, P., Ruzzo, W. L., and Smolensky, R. (1997). The electrical resistance of a graph captures its commute and cover times. Computational Complexity 6, 312340.Google Scholar
Chihara, T. S. (1978). An Introduction to Orthogonal Polynomials. (Gordon and Breath, New York).Google Scholar
Chu, T., Gao, Y., Peng, R., Sachdeva, S., Sawlani, S., and Wang, J. (2020). Graph sparsification, spectral sketches, and faster resistance computation via short cycle decomposition. SIAM Journal on Computing 0, 0, FOCS18—85—FOCS18—157.Google Scholar
Chung, F. R. K. (1989). Diameters and eigenvalues. Journal of the American Mathematical Society 2, 2 (April), 187196.CrossRefGoogle Scholar
Chung, F. R. K., Faber, V., and Manteuffel, T. A. (1994). An upper bound on the diameter of a graph from eigenvalues associated with its Laplacian. SIAM Journal of Discrete Mathematics 7, 3 (August), 443457.Google Scholar
Cioaba˘, S. M. (2006). Sums of powers of the degrees of a graph. Discrete Mathematics 306, 19591964.Google Scholar
Cioaba˘, S. M. (2007). The spectral radius and the maximum degree of irregular graphs. Electronic Journal of Combinatorics 14, R38.Google Scholar
Cioaba˘, S. M., van Dam, E. R., Koolen, J. H., and Lee, J.-H. (2010). A lower bound for the spectral radius of graphs with fixed diameter. European Journal of Combinatorics 31, 6, 15601566.Google Scholar
Cohen-Tannoudji, C., Diu, B., and Laloë, F. (1977). Mécanique Quantique. Vol. I and II. (Hermann, Paris).Google Scholar
Comtet, L. (1974). Advanced Combinatorics, revised and enlarged edn. (D. Riedel Publishing Company, Dordrecht, Holland).Google Scholar
Coppersmith, D., Feige, U., and Shearer, J. (1996). Random walks on regular and irregular graphs. SIAM Journal of Discrete Mathematics 9, 2 (May), 301308.Google Scholar
Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1991). An Introduction to Algorithms. (MIT Press, Boston).Google Scholar
Courant, R. and Hilbert, D. (1953). Methods of Mathematical Physics, first English edition, translated and revised from the German original of Springer in 1937 edn. Wiley Classic Library, vol. I. (Interscience, New York).Google Scholar
Cvetković, D., Rowlinson, P., and Simić, S. (1997). Eigenspaces of graphs. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Cvetković, D., Rowlinson, P., and Simić, S. (2004). Spectral Generalizations of Line Graphs. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Cvetković, D., Rowlinson, P., and Simić, S. (2007). Signless Laplacian of finite graphs. Linear Algebra and its Applications 432, 155171.CrossRefGoogle Scholar
Cvetković, D., Rowlinson, P., and Simić, S. (2009). An Introduction to the Theory of Graph Spectra. (Cambridge University Press, Cambridge, U.K.).CrossRefGoogle Scholar
Cvetković, D. M., Doob, M., and Sachs, H. (1995). Spectra of Graphs, Theory and Applications, third edn. (Johann Ambrosius Barth Verlag, Heidelberg).Google Scholar
Das, K. C. (2004). The Laplacian spectrum of a graph. Computers and Mathematics with Applications 48, 715724.Google Scholar
Das, K. C. and Kumar, P. (2004). Some new bounds on the spectral radius of graphs. Discrete Mathematics 281, 149161.Google Scholar
de Abreu, N. M. M. (2007). Old and new results on algebraic connectivity of graphs. Linear Algebra and its Applications 423, 5373.Google Scholar
de Bruijn, N. G. (1960). Opgave 12. Wiskundige Opgaven met de oplossingen, edited by Het wiskundig genootschap, Amsterdam and published by Noordhoff, Groningen Deel 21, 1, 1214.Google Scholar
Dehmer, M. and Emmert-Streib, F. (2009). Analysis of Complex Networks. (Wiley-VCH Verlag GmbH& Co., Weinheim).Google Scholar
Deutsch, E. (1970). Matricial norms and the zeros of polynomials. Linear Algebra and its Applications 3, 483489.CrossRefGoogle Scholar
Devriendt, K. (2022a). Effective resistance is more than distance: Laplacians, Simplices and the Schur complement. Linear Algebra and its Applications 639, 2449.Google Scholar
Devriendt, K. (2022b). Graph geometry from effective resistances. (PhD thesis, Mansfield College, University of Oxford).Google Scholar
Devriendt, K. and Lambiotte, R. (2022). Discrete curvature on graphs from the effective resistance. Journal of Physics: Complexity 3, 2 (June), 025008.Google Scholar
Devriendt, K. and Van Mieghem, P. (2019a). The Simplex Geometry of Graphs. Journal of Complex Networks 7, 4 (August), 469490.Google Scholar
Devriendt, K. and Van Mieghem, P. (2019b). Tighter spectral bounds for the cut-set based on Laplacian eigenvectors. Linear Algebra and its Applications 572, 6891.CrossRefGoogle Scholar
Diestel, R. (2010). Graph Theory, fourth edn. (Springer-Verlag, Heidelberg).Google Scholar
Dorogovtsev, S. N., Goltsev, A. V., Mendes, J. F. F., and Samukhin, A. N. (2003). Spectra of complex networks. Physical Review E 68, 046109.Google Scholar
Dorogovtsev, S. N. and Mendes, J. F. F. (2003). Evolution of Networks, From Biological Nets to the Internet and WWW. (Oxford University Press, Oxford).Google Scholar
Doyle, P. G. and Snell, J. L. (1984). Random Walks and Electric Networks. Carus mathematical monographs; updated in arXiv:math/0001057, Jan. 2000, (Mathematical Association of America, Washington).Google Scholar
Edelman, A. and Raj Rao, N. (2005). Random matrix theory. Acta Numerica, 165.Google Scholar
Ellens, W., Spieksma, F. A., Van Mieghem, P., Jamakovic, A., and Kooij, R. E. (2011). Effective graph resistance. Linear Algebra and its Applications 435, 24912506.Google Scholar
Erdős, P. (1961). Problems and results on the theory of interpolation. ii. Acta Mathematica Hungarica 12, 1-2 (March), 235244.Google Scholar
Erdős, P. and Turán, P. (1950). On the distribution of roots of polynomials. Annals of Mathematics 51, 1 (January), 105119.Google Scholar
Estrada, E. (2012). Path Laplacian matrices: Introduction and applications to the analysis of consensus in networks. Linear Algebra and its Applications 436, 33733391.Google Scholar
Feller, W. (1970). An Introduction to Probability Theory and Its Applications, 3rd edn. Vol. 1. (John Wiley & Sons, New York).Google Scholar
Feynman, R. P., Leighton, R. B., and Sands, M. (1963). The Feynman Lectures on Physics. Vol. 2. (Addison-Wesley, Massachusetts).Google Scholar
Fiedler, M. (1972). Bounds for eigenvalues of doubly stochastic matrices. Linear Algebra and its Applications 5, 299310.Google Scholar
Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal 23, 2, 298305.Google Scholar
Fiedler, M. (1975). A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslovak Mathematical Journal 25, 4, 619633.Google Scholar
Fiedler, M. (2009). Matrices and Graphs in Geometry. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Fiedler, M. and Pták, V. (1962). On matrices with non-positive off-diagonal elements and positive principal minors. Czechoslovak Mathematical Journal 12, 3, 382400.Google Scholar
Fiol, M. A. and Garriga, E. (2009). Number of walks and degree powers in a graph. Discrete Mathematics 309, 26132614.CrossRefGoogle Scholar
Foster, R. M. (1949). The average impedance of an electrical network. Contributions to Applied Mechanics (Reissner Anniversary Volume), Edwards Brothers, Ann Arbor, Michigan, 333— 340.Google Scholar
Füredi, Z. and Komlós, J. (1981). The eigenvalues of random symmetric matrices. Combinatorica 1, 3, 233241.Google Scholar
Gama, F., Isufi, E., Leus, G., and Ribeiro, A. (2020). Graphs, convolutions and neural networks.Google Scholar
IEEE Signal Processing Magazine, 128138.Google Scholar
Gantmacher, F. R. (1959a). The Theory of Matrices. Vol. I. (Chelsea Publishing Company, New York).Google Scholar
Gantmacher, F. R. (1959b). The Theory of Matrices. Vol. II. (Chelsea Publishing Company, New York).Google Scholar
Gauss, C. F. (1801). Disquisitiones Arithmeticae. (translated in English by A. A. Clark (1966), Yale University Press, New Haven and London).Google Scholar
Gautschi, W. (2004). Orthogonal Polynomials. Computation and Approximation. (Oxford University Press, Oxford, U.K.).Google Scholar
Ghosh, A., Boyd, S., and Saberi, A. (2008). Minimizing effective resistance of a graph. SIAM Review 50, 1 (February), 3766.Google Scholar
Gilbert, W. J. and Nicholson, W. K. (2004). Modern Algebra with Applications, 2nd edn. (John Wiley & Sons, Hoboken, New Jersey).Google Scholar
Godsil, C. D. and McKay, B. D. (1982). Constructing cospectral graphs. Aequationes Mathematicae 25, 257268.Google Scholar
Godsil, C. D. and Royle, G. (2001). Algebraic Graph Theory. (Springer, New York).Google Scholar
Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations, 3rd edn. (The John Hopkins University Press, Baltimore).Google Scholar
Goulden, I. P. and Jackson, D. M. (1983). Combinatorial Enumeration. (John Wiley & Sons, New York).Google Scholar
Govers, T., Barrow-Green, J., and Leader, I. (2008). The Princeton Companion to Mathematics. (Princeton University Press, Princeton and Oxford).Google Scholar
Grone, R. and Merris, R. (1994). The Laplacian spectrum of a graph π. SIAM Journal on Discrete Mathematics 7, 2 (May), 221229.Google Scholar
Gvishiani, A. D. and Gurvich, V. A. (1987). Metric and ultrametric spaces of resistances. Uspekhi Mat. Nauk 2, 6, 187188.Google Scholar
Haemers, W. H. (1995). Interlacing eigenvalues and graphs. Linear Algebra and its Applications 227-228, 593616.Google Scholar
Haemers, W. H. and Spence, E. (2004). Enumeration of cospectral graphs. European Journal of Combinatorics 25, 199211.Google Scholar
Hammer, P. L. and Kelmans, A. K. (1996). Laplacian spectra and spanning trees of threshold graphs. Discrete Applied Mathematics 65, 255273.Google Scholar
Harary, F. (1962). The determinant of the adjacency matrix of a graph. SIAM Review 4, 3 (July), 202210.Google Scholar
Harary, F., King, C., Mowshowitz, A., and Read, R. C. (1971). Cospectral graphs and digraphs. Bulletin of the London Mathematical Society 3, 321328.Google Scholar
Harary, F. and Nash-Williams, C. S. J. A. (1965). On Eulerian and Hamiltonian graphs and line graphs. Canadian Mathematical Bulletin 8, 6, 701709.Google Scholar
Harary, F. and Palmer, E. M. (1973). Graphical Enumeration. (Academic Press, New York and London).Google Scholar
Hardy, G. H. (2006). A Course of Pure Mathematics, 10th edn. (Cambridge University Press).Google Scholar
Hardy, G. H., Littlewood, J. E., and Polya, G. (1999). Inequalities, 2nd edn. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Hardy, G. H. and Wright, E. M. (2008). An Introduction to the Theory of Numbers, 6th edn. (Oxford University Press, London).Google Scholar
Heilbronner, E. (1953). Das Kompositions-Prinzip: Eine anschauliche Methode zur elektronentheoretischen Behandlung nicht oder niedrig symmetrischer Molekuln im Rahmen der MOTheorie. Helvetica Chimica Acta 36, 170188.Google Scholar
Henrici, P. (1974). Applied and Computational Complex Analysis. Vol. 1. (John Wiley & Sons, New York).Google Scholar
Hermite, C., Poincaré, H., and Rouché, E. (1972). Œuvres de Laguerre, 2nd edn. Vol. I. (Chelsea Publishing Company, Bronx, New York).Google Scholar
Hofmeister, M. (1988). Spectral radius and degree sequence. Mathematische Nachrichten 139, 3744.Google Scholar
Horn, A. (1962). Eigenvalues of sums of Hermitian matrices. Pacific Journal of Mathematics 12, 1, 225241.Google Scholar
Horn, R. A. and Johnson, C. R. (1991). Topics in Matrix Analysis. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Horn, R. A. and Johnson, C. R. (2013). Topics in Matrix Analysis, 2nd edn. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Kelmans, A. K. and Chelnokov, V. M. (1974). A certain polynomial of a graph and graphs with an extremal number of trees. Journal of Combinatorial Theory (B) 16, 197214.CrossRefGoogle Scholar
Kirchhoff, G. (1847). Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteheilung galvanischer Ströme gefürt wird. Annalen der Physik und Chemie 72, 12, 497508.Google Scholar
Klein, D. J. (2002). Resistance-distance sum rules. Croatica Chemica Acta 75, 2, 633649.Google Scholar
Klein, D. J. and Randić, M. (1993). Resistance distance. Journal of Mathematical Chemistry 12, 8195.Google Scholar
Knutson, A. and Tao, T. (2001). Honeycombs and sums of Hermitian matrices. Notices of the AMS 48, 2 (February), 175186.Google Scholar
Koekoek, R., Lesky, P. A., and Swarttouw, R. F. (2010). Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer Monographs in Mathematics, (Springer-Verlag, New York).Google Scholar
Kollár, A. J. and Sarnak, P. (2021). Gap sets for the spectra of cubic graphs. arXiv:2005.05379v4.Google Scholar
Kolokolnikov, T. (2015). Maximizing algebraic connectivity for certain families of graphs. Linear Algebra and its Applications 471, 122140.Google Scholar
Krivelevich, M., Sudakov, B., Vu, V. H., and Wormald, N. C. (2001). Random regular graphs of high degree. Random Structures and Algorithms 18, 4 (July), 346363.Google Scholar
Lanczos, C. (1988). Applied Analysis. (Dover Publications, Inc., New York).Google Scholar
Lehot, P. G. H. (1974). An optimal algorithm to detect a line graph and output its root graph. Journal of the Association for Computing Machinery 21, 4 (October), 569575.Google Scholar
Li, C., Wang, H., and Van Mieghem, P. (2012). Bounds for the spectral radius of a graph when nodes are removed. Linear Algebra and its Applications 437, 319323.Google Scholar
Li, L., Alderson, D., Doyle, J. C., and Willinger, W. (2006). Towards a theory of scale-free graphs: Definition, properties, and implications. Internet Mathematics 2, 4, 431523.Google Scholar
Liu, D., Trajanovski, S., and Van Mieghem, P. (2015). ILIGRA: An efficient inverse line graph algorithm. Journal of Mathematical Modelling and Algorithms in Operations Research 14, 1, 1333.Google Scholar
Liu, D., Wang, H., and Van Mieghem, P. (2010). Spectral perturbation and reconstructability of complex networks. Physical Review E 81, 1 (January), 016101.Google Scholar
Lovász, L. (1993). Random walks on graphs: A survey. Combinatorics 2, 146.Google Scholar
Lovász, L. (2003). Combinatorial Problems and Exercises, 2nd edn. (Elsevier, Amsterdam).Google Scholar
Lovász, L. and Pelikán, J. (1973). On the eigenvalues of trees. Periodica Mathematica Hungarica 3, 1-2, 175182.Google Scholar
Lubotzky, A., Philips, R., and Sarnak, P. (1988). Ramanujan graphs. Combinatorica 8, 261277.Google Scholar
Lyons, R. and Peres, Y. (2016). Probability on Trees and Networks. Cambridge Series in Statistical and Probabilistic Mathematics, (Cambridge University Press, Cambridge, U.K.).Google Scholar
Mahler, K. (1960). An application of Jensen’s formula to polynomials. Mathematika 7, 98100.Google Scholar
Mahler, K. (1964). An inequality for the discriminant of a polynomial. Michigan Mathematical Journal 11, 3, 257262.Google Scholar
Marcus, A. W., Spielman, D. A., and Srivastava, N. (2015). Interlacing families i: Bipartite ramanujan graphs of all degrees. Annals of Mathematics 182, 307325.Google Scholar
Marcus, M. and Ming, H. (1964). A Survey of Matrix Theory and Matrix Inequalities. (Allyn and Bacon, Inc., Boston).Google Scholar
Markushevich, A. I. (1985). Theory of Functions of a Complex Variable. Vol. I — III. (Chelsea Publishing Company, New York).Google Scholar
Marshall, A. W., Olkin, I., and Arnold, B. C. (2011). Inequalities: Theory of Majorization and Its Applications, 2nd edn. (Springer, New York).Google Scholar
Martin-Hernandez, J., Li, Z., and Van Mieghem, P. (2014). Weighted betweenness and algebraic connectivity. Journal of Complex Networks 2, 3, 272287.Google Scholar
Marˇcenko, V. A. and Pastur, L. A. (1967). Distribution of eigenvalues for some sets of random matrices. Math. USSR Sbornik 1, 4, 457— 483.CrossRefGoogle Scholar
McKay, B. D. (1981). The expected eigenvalue distribution of a large regular graph. Linear Algebra and its Applications 40, 203216.Google Scholar
McKay, B. D. and Piperno, A. (2014). Practical graph isomorphism, II. Journal of Symbolic Computation 60, 94112.Google Scholar
McKay, B. D. and Wormald, N. C. (1990). Asymptotic enumeration by degree sequence of graphs of high degree. European Journal of Combinatorics 11, 565580.Google Scholar
McNamee, J. M. (2007). Numerical Methods for Roots of Polynomials, Part I. (Elsevier, Amsterdam).Google Scholar
Mehta, M. L. (1991). Random Matrices, 2nd edn. (Academic Press, Boston).Google Scholar
Merris, R. (1994). Laplacian matrices of graphs: A survey. Linear Algebra and its Applications 197-198, 143176.Google Scholar
Merris, R. (1999). Note: An upper bound for the diameter of a graph. SIAM Journal of Discrete Mathematics 12, 8, 412.Google Scholar
Meyer, C. D. (2000). Matrix Analysis and Applied Linear Algebra. (Society for Industrial and Applied Mathematics (SIAM), Philadelphia).Google Scholar
Micchelli, C. A. and Willoughby, R. A. (1979). On functions which preserve the class of Stieltjes matrices. Linear Algebra and its Applications 23, 141156.Google Scholar
Milovanović, G. V., Mitrinović, D. S., and Rassias, T. M. (1994). Topics in Polynomials: Extremal Problems, Inequalities and Zeros. (World Scientific Publishing, Singapore).Google Scholar
Minc, H. (1970). On the maximal eigenvector of a positive matrix. SIAM Journal on Numerical Analysis 7, 3 (September), 424427.Google Scholar
Mirsky, L. (1982). An Introduction to Linear Algebra. (Dover Publications, Inc., New York).Google Scholar
Mohar, B. (1989). Isoperimetric numbers of graphs. Journal of Combinatorial Theory, Series B 47, 274291.Google Scholar
Mohar, B. (1991). Eigenvalues, diameter and mean distance in graphs. Graphs and Combinatorics 7, 5364.Google Scholar
Morse, P. M. and Feshbach, H. (1978). Methods of Theoretical Physics. (McGraw-Hill Book Company, New York).Google Scholar
Motzkin, T. and Straus, E. G. (1965). Maxima for graphs and a new proof of a theorem of Turán. Canadian Journal of Mathematics 17, 533540.Google Scholar
Mowshowitz, A. (1972). The characteristic polynomial of a graph. Journal of Combinaotiral Theory (B) 12, 177193.Google Scholar
Muir, T. (1906-1911-1920-1923-1930). The Theory of Determinants in the Historical Order of Development. Vol. I-V. (MacMillan and co., London).Google Scholar
Myers, C. R. (2003). Software systems as complex networks: Structure, function, and evolvability of software collaboration graphs. Physical Review E 68, 4, 046116.Google Scholar
Nash-Williams, C. S. J. A. (1959). Random walk and electric currents in networks. Mathematical Proceedings of the Cambridge Philosophical Society 55, 2 (April), 181194.Google Scholar
Newman, M. E. J. (2003a). Mixing patterns in networks. Physical Review E 67, 026126.Google Scholar
Newman, M. E. J. (2003b). The structure and function of complex networks. SIAM Review 45, 2, 167256.Google Scholar
Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 103, 23 (June), 85778582.Google Scholar
Newman, M. E. J. (2010). Networks: An Introduction. (Oxford University Press, Oxford, U.K.).Google Scholar
Newman, M. E. J. (2018). Networks, second edn. (Oxford University Press, Oxford, U.K.).Google Scholar
Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E 69, 026113.Google Scholar
Newman, M. E. J., Strogatz, S. H., and Watts, D. J. (2001). Random graphs with arbitrary degree distributions and their applications. Physical Review E 64, 026118.Google Scholar
Newton, I. S. (1687). Philosophiae Naturalis Principia Mathematica, first edn. (Londini).Google Scholar
Nikiforov, V. (2002). Some inequalities for the largest eigenvalue of a graph. Combinatorics, Probability and Computing 11, 2 (March), 179189.CrossRefGoogle Scholar
Nikiforov, V. (2021). On a theorem of Nosal. arXiv:2104.1217.Google Scholar
Nikiforov, V., Tait, M., and Timmons, C. (2018). Degenerate Turán problems for hereditary properties. The Electronic Journal of Combinatorics 25, 4, 4.39.Google Scholar
Nikoloski, Z., Deo, N., and Kucera, L. (2005). Degree-correlation of a scale-free random graph process. Discrete Mathematics and Theoretical Computer Science (DMTCS) proc. AE, Euro-Comb 2005, 239244.Google Scholar
Nilli, A. (1991). On the second eigenvalue of a graph. Discrete Mathematics 91, 207210.Google Scholar
Noldus, R. and Van Mieghem, P. (2015). Assortativity in complex networks. Journal of Complex Networks 3, 4, 507542.Google Scholar
Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and Clark, C. W. (2010). NIST Handbook of Mathematical Functions. (Cambridge University Press, New York).Google Scholar
Ortega, A. (2022). Introduction to Graph Signal Processing. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Ostrowski, A. M. (1960). On the eigenvector belonging to the maximal root of a non-negative matrix. Proceedings of the Edinburgh Mathematical Society (Series 2) 12, 2 (December), 107— 112.Google Scholar
Pastor-Satorras, R., Castellano, C., Van Mieghem, P., and Vespignani, A. (2015). Epidemic processes in complex networks. Review of Modern Physics 87, 3 (September), 925979.Google Scholar
Perron, O. (1907). Neue Kriterien für die Irreduzililität algebraischer Gleichungen. Journal für die reine und angewandte Mathematik 132, 288307.Google Scholar
Petrović, M. and Gutman, I. (2002). The path is the tree with smallest greatest Laplacian eigenvalue. Kragujevac Journal of Mathematics 24, 6770.Google Scholar
Pinkus, A. (2010). Totally Positive Matrices. Cambridge Tracts in Mathematics, (Cambridge University Press, Cambridge, U.K.).Google Scholar
Pothen, A., Simon, H. D., and Liou, K.-P. (1990). Partitioning sparse matrices with eigenvectors of graphs. SIAM Journal of Matrix Analysis and Applications 11, 3 (July), 430452.Google Scholar
Powell, P. D. (2011). Calculating determinants of block matrices. arXiv:1112.4379.Google Scholar
Powers, D. L. (1988). Graph partitioning by eigenvectors. Linear Algebra and its Applications 101, 121133.Google Scholar
Prasse, B., Devriendt, K., and Van Mieghem, P. (2021). Clustering for epidemics on networks: a geometric approach. Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 6, 063115.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C, 2nd edn. (Cambridge University Press, New York).Google Scholar
Rademacher, H. (1973). Topics in Analytic Number Theory. (Springer-Verlag, Berlin).Google Scholar
Rainville, E. D. (1971). Special Functions, reprinted edn. (Chelsea Publishing Company, New York).Google Scholar
Raj Rao, N. and Newman, M. E. J. (2013). Spectra of random graphs with arbitrary expected degrees. Physical Review E 87, 012803.Google Scholar
Restrepo, J. G., Ott, E., and Hunt, B. R. (2005). Onset of synchronization in large networks of coupled oscillators. Physical Review E 71, 036151, 112.Google Scholar
Riordan, J. (1968). Combinatorial Identities. (John Wiley & Sons, New York).Google Scholar
Rivlin, T. J. (1974). The Chebyshev Polynomials. (John Wiley & Sons, New York).Google Scholar
Roussopoulos, N. D. (1973). A max m, n algorithm for determining the graph h from its line graph g. Information Processing Letters 2, 108112.Google Scholar
Rowlinson, P. (1988). On the maximal index of graphs with a prescribed number of edges. Linear Algebra and its Applications 110, 4353.Google Scholar
Rudelson, M. and Vershynin, R. (2007). Sampling from large matrices: An approach through geometric functional analysis. Journal of the ACM 54, 4 (July), Article 21.Google Scholar
Ruiz, L., Gama, F., and Ribeiro, A. (2021). Graph neural networks: Architectures, stability and transferability. Proceedings of the IEEE 109, 5 (May), 660682.Google Scholar
Rulkov, N. F., Sushchik, M. M., Tsimring, L. S., and Abarbanel, H. D. (1995). Generalized synchronization of chaos in directionally coupled chaotic systems. Physical Review E 51, 2, 980994.Google Scholar
Sahneh, F. D., Scoglio, C., and Van Mieghem, P. (2015). Coupling threshold for structural transition in interconnected networks. Physical Review E 92, 040801.Google Scholar
Schnakenberg, J. (1976). Network theory of microscopic and macroscopic behavior of master equation systems. Review of Modern Physics 48, 4 (October), 571585.Google Scholar
Schoone, A. A., Bodlaender, H. L., and van Leeuwen, J. (1987). Diameter increase caused by edge deletion. Journal of Graph Theory 11, 3, 409427.Google Scholar
Sheil-Small, T. (2002). Complex Polynomials. Cambridge Studies in Advanced Mathematics 73, (Cambridge University Press, Cambridge, U.K.).Google Scholar
Shi, L. (2009). The spectral radius of irregular graphs. Linear Algebra and its Applications 431, 189196.Google Scholar
Shilov, G. E. (1977). Linear Algebra. (Dover Publications, Inc., New York).Google Scholar
Simić, S. K., Belardo, F., Li Marzi, E. M., and Tosić, D. V. (2010). Connected graphs of fixed order and size with maximal index: Some spectral bounds. Linear Algebra and its Applications 432, 23612372.Google Scholar
Sinkhorn, R. (1964). A relationship between arbitrary positive matrices and doubly stochastic matrices. The Annals of Mathematical Statistics 35, 2 (June), 876879.Google Scholar
Spielman, D. A. and Srivastava, N. (2011). Graph sparsification by effective resistances. SIAM Journal on Computing 40, 6, 19131926.Google Scholar
Spielman, D. A. and Teng, S.-H. (2007). Spectral partitioning works: Planar graphs and finite element meshes. Linear Algebra and its Applications 421, 284305.Google Scholar
Stam, C. J. and Reijneveld, J. C. (2007). Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedical Physics 1, 3 (July), 119.Google Scholar
Stanić, Z. (2015). Inequalities for Graph Eigenvalues. London Mathematical Society Lecture Note Series: 423, (Cambridge University Press, Cambridge, U.K.).Google Scholar
Stevanović, D. (2004). The largest eigenvalue of nonregular graphs. Journal of Combinatorial Theory, Series B 91, 1, 143146.Google Scholar
Stevanović, D. (2015). Spectral Radius of Graphs. (Academic Press, London).Google Scholar
Stewart, I. (2004). Galois Theory, 3rd edn. (Chapman & Hall/CRC, Boca Raton).Google Scholar
Stoer, M. and Wagner, F. (1997). A simple min-cut algorithm. Journal of the ACM 44, 4 (July), 585591.Google Scholar
Strogatz, S. H. (2001). Exploring complex networks. Nature 410, 8 (March), 268276.Google Scholar
Subak-Sharpe, G. E. (1990). On the structure of well-conditioned positive resistance networks. IEEE Proceedings of the 33rd Midwest Symposium on Circuits and Systems, 293296.Google Scholar
Sun, L., Wang, W., Zhou, J., and Bu, C. (2015). Some results on resistance distances and resistance matrices. Linear and Multilinear Algebra 63, 3, 523533.Google Scholar
Szegő, G. (1922). Bemerkungen zu einem Satz von J.H. Grace über die Wurzeln algebraischer Gleichungen. Mathematische Zeitschrift 13, 2855.Google Scholar
Szegő, G. (1978). Orthogonal Polynomials, 4th edn. (American Mathematical Society, Providence, Rhode Island).Google Scholar
Tao, T. and Vu, V. (2011). Random matrices: Universality of local eigenvalue statistics. Acta Mathematica 206, 127204.Google Scholar
Tao, T. and Vu, V. H. (2010). Random matrices: Universality of ESDs and the circular law. The Annals of Probability 38, 5, 20232065.Google Scholar
Tewarie, P., Prasse, B., Meier, J., Byrne, A., Domenico, M., Stam, C. J., M., B., Hillebrand, A., Daffertshofer, A., Coombes, S., and Van Mieghem, P. (2021). Interlayer connectivity reconstruction for multilayer brain networks using phase oscillator models. New Journal of Physics 23, 063065.Google Scholar
Titchmarsh, E. C. (1958). Eigenfunction Expansions Associated with Second-order Differential Equations, Part II. (Oxford University Press, Amen House, London).Google Scholar
Titchmarsh, E. C. (1962). Eigenfunction Expansions Associated with Second-order Differential Equations, Part I, 2nd edn. (Oxford University Press, Amen House, London).Google Scholar
Titchmarsh, E. C. (1964). The Theory of Functions. (Oxford University Press, Amen House, London).Google Scholar
Titchmarsh, E. C. and Heath-Brown, D. R. (1986). The Theory of the Zeta-function, 2nd edn. (Oxford Science Publications, Oxford).Google Scholar
van Dam, E. R. (2007). Graphs with given diameter maximizing the spectral radius. Linear Algebra and its Applications 426, 545457.Google Scholar
van Dam, E. R. and Haemers, W. H. (1995). Eigenvalues and the diameter of graphs. Linear and Multilinear Algebra 39, 1-2, 3344.Google Scholar
van Dam, E. R. and Haemers, W. H. (2003). Which graphs are determined by their spectrum? Linear Algebra and its Applications 373, 241272.Google Scholar
van Dam, E. R. and Kooij, R. E. (2007). The minimal spectral radius of graphs with a given diameter. Linear Algebra and its Applications 423, 2-3, 408419.Google Scholar
van Lint, J. H. and Wilson, R. M. (1996). A Course in Combinatorics. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Van Mieghem, P. (1996). The asymptotic behaviour of queueing systems: Large deviations theory and dominant pole approximation. Queueing Systems 23, 2755.Google Scholar
Van Mieghem, P. (2006). Performance Analysis of Communications Networks and Systems. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Van Mieghem, P. (2007). A new type of lower bound for the largest eigenvalue of a symmetric matrix. Linear Algebra and its Applications 427, 1 (November), 119129.Google Scholar
Van Mieghem, P. (2010). Data Communications Networking, 2nd edn. (Piet Van Mieghem, ISBN 978-94-91075-01-8, Delft).Google Scholar
Van Mieghem, P. (2013). Decay towards the overall-healthy state in SIS epidemics on networks. Delft University of Technology, Report20131016 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports) and arXiv:1310.3980.Google Scholar
Van Mieghem, P. (2014). Performance Analysis of Complex Networks and Systems. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Van Mieghem, P. (2015a). Graph eigenvectors, fundamental weights and centrality metrics for nodes in networks. Delft University of Technology, Report20150808 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports); arXiv:1401.4580.Google Scholar
Van Mieghem, P. (2015b). A Lagrange series approach to the spectrum of the kite graph. Electronic Journal of Linear Algebra 30, 934943.Google Scholar
Van Mieghem, P. (2016). Interconnectivity structure of a general interdependent network. Physical Review E 93, 4 (April), 0423405.Google Scholar
Van Mieghem, P. (2021). Some Laplacian eigenvalues can be computed by matrix perturbation. Delft University of Technology, report20211109 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports).Google Scholar
Van Mieghem, P., Devriendt, K., and Cetinay, H. (2017). Pseudo-inverse of the Laplacian and best spreader node in a network. Physical Review E 96, 3 (September), 032311.Google Scholar
Van Mieghem, P., Ge, X., Schumm, P., Trajanovski, S., and Wang, H. (2010). Spectral graph analysis of modularity and assortativity. Physical Review E 82, 5 (November), 056113.Google Scholar
Van Mieghem, P. and Kuipers, F. A. (2004). Concepts of exact quality of service algorithms. IEEE/ACM Transaction on Networking 12, 5 (October), 851864.Google Scholar
Van Mieghem, P., Omic, J., and Kooij, R. E. (2009). Virus spread in networks. IEEE/ACM Transactions on Networking 17, 1 (February), 114.Google Scholar
Van Mieghem, P., Stevanović, D., Kuipers, F. A., Li, C., van de Bovenkamp, R., Liu, D., and Wang, H. (2011). Decreasing the spectral radius of a graph by link removals. Physical Review E 84, 1 (July), 016101.Google Scholar
Van Mieghem, P. and van de Bovenkamp, R. (2013). Non-Markovian infection spread dramatically alters the SIS epidemic threshold in networks. Physical Review Letters 110, 10 (March), 108701.Google Scholar
Van Mieghem, P. and Wang, H. (2009). Spectra of a new class of graphs with extremal properties. Delft University of Technology, Report20091010 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports).Google Scholar
Van Mieghem, P., Wang, H., Ge, X., Tang, S., and Kuipers, F. A. (2010). Influence of assortativity and degree-preserving rewiring on the spectra of networks. The European Physical Journal B 76, 4, 643652.Google Scholar
van Rooij, A. C. M. and Wilf, H. S. (1965). The interchange graph of a finite graph. Acta Mathematica Hungarica 16, 3-4, 263269.Google Scholar
Vu, V. H. (2007). Spectral norm of random matrices. Combinatorica 27, 6, 721736.Google Scholar
Walker, S. G. and Van Mieghem, P. (2008). On lower bounds for the largest eigenvalue of a symmetric matrix. Linear Algebra and its Applications 429, 2-3 (July), 519526.Google Scholar
Wang, H., Douw, L., Hernandez, J. M., Reijneveld, J. C., Stam, C. J., and Van Mieghem, P. (2010). Effect of tumor resection on the characteristics of functional brain networks. Physical Review E 82, 2 (August), 021924.Google Scholar
Wang, H., Kooij, R. E., and Van Mieghem, P. (2010). Graphs with given diameter maximizing the algebraic connectivity. Linear Algebra and its Applications Vol. 433, 11, 18891908.Google Scholar
Wang, H., Martin Hernandez, J., and Van Mieghem, P. (2008). Betweenness centrality in weighted networks. Physical Review E 77, 4 (April), 046105.Google Scholar
Wang, X., Dubbeldam, J. L. A., and Van Mieghem, P. (2017). Kemeny’s constant and the effective graph resistance. Linear Algebra and its Applications 535, 232244.Google Scholar
Watson, G. N. (1995). A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library edn. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Watts, D. J. (1999). Small Worlds, The Dynamics of Networks between Order and Randomness. (Princeton University Press, Princeton, New Jersey).Google Scholar
Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of “small-worlds” networks. Nature 393, 440442.Google Scholar
Weil, A. (1984). Number Theory, An Approach through History From Hammurapi to Legendre. (Birkhäuser, Boston).Google Scholar
Weyl, H. (1912). Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Holhraumstrahlung). Mathematische Annalen 71, 4, 441479.Google Scholar
Whitney, H. (1932). Congruent graphs and the connectivity of graphs. American Journal of Mathematics 54, 1, 150168.Google Scholar
Whittaker, E. T. and Watson, G. N. (1996). A Course of Modern Analysis, Cambridge Mathematical Library edn. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Wigner, E. P. (1955). Characteristic vectors of bordered matrices with infinite dimensions. Annals of Mathematics 62, 3 (November), 548564.Google Scholar
Wigner, E. P. (1957). Characteristic vectors of bordered matrices with infinite dimensions ii. Annals of Mathematics 65, 2 (March), 203207.Google Scholar
Wigner, E. P. (1958). On the distribution of the roots of certain symmetric matrices. Annals of Mathematics 67, 2 (March), 325327.Google Scholar
Wilf, H. S. (1986). Spectral bounds for the clique and independence numbers of graphs. Journal of Combinatorial Theory, Series B 40, 113117.Google Scholar
Wilkinson, J. H. (1965). The Algebraic Eigenvalue Problem. (Oxford University Press, New York).Google Scholar
Xing, R. and Zhou, B. (2013). On least eigenvalues and least eigenvectors of real symmetric matrices and graph. Linear Algebra and its Applications 438, 23782384.Google Scholar
Xiong, L. (2001). The Hamiltonian index of a graph. Graphs and Combinatorics 17, 775784.Google Scholar
Zhou, B. and Trinasjtić. (2008). A note on Kirchhoff index. Chemical Physics Letters 455, 120123.Google Scholar
Zhou, J., Wang, Z., and Bu, C. (2016). On the resistance matrix of a graph. The Electronic Journal of Combinatorics 23, 1 (March), P1.41.Google Scholar
Zhu, X., Ghahramani, Z., and Lafferty, J. (2003). Semi-supervised learning using Gaussian fields and harmonic functions. Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003, Washington D.C.) 912-919 (August).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Piet Van Mieghem, Technische Universiteit Delft, The Netherlands
  • Book: Graph Spectra for Complex Networks
  • Online publication: 07 September 2023
  • Chapter DOI: https://doi.org/10.1017/9781009366793.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Piet Van Mieghem, Technische Universiteit Delft, The Netherlands
  • Book: Graph Spectra for Complex Networks
  • Online publication: 07 September 2023
  • Chapter DOI: https://doi.org/10.1017/9781009366793.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Piet Van Mieghem, Technische Universiteit Delft, The Netherlands
  • Book: Graph Spectra for Complex Networks
  • Online publication: 07 September 2023
  • Chapter DOI: https://doi.org/10.1017/9781009366793.018
Available formats
×