Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-06T12:51:12.924Z Has data issue: false hasContentIssue false

13 - Plant Hydraulics

Published online by Cambridge University Press:  08 February 2019

Gordon Bonan
Affiliation:
National Center for Atmospheric Research, Boulder, Colorado
Get access

Summary

Additional understanding of stomatal behavior comes from transport of water through the soil-plant-atmosphere continuum based on the principle that plants reduce stomatal conductance as needed to regulate transpiration and prevent hydraulic failure. As xylem water potential decreases, the supply of water to foliage declines and leaves may become desiccated in the absence of stomatal control. Stomata close as needed to prevent desiccation within the constraints imposed by soil water availability and plant hydraulic architecture. This chapter develops the physiological theory and mathematical equations to model plant water relations.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Plant Hydraulics
  • Gordon Bonan, National Center for Atmospheric Research, Boulder, Colorado
  • Book: Climate Change and Terrestrial Ecosystem Modeling
  • Online publication: 08 February 2019
  • Chapter DOI: https://doi.org/10.1017/9781107339217.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Plant Hydraulics
  • Gordon Bonan, National Center for Atmospheric Research, Boulder, Colorado
  • Book: Climate Change and Terrestrial Ecosystem Modeling
  • Online publication: 08 February 2019
  • Chapter DOI: https://doi.org/10.1017/9781107339217.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Plant Hydraulics
  • Gordon Bonan, National Center for Atmospheric Research, Boulder, Colorado
  • Book: Climate Change and Terrestrial Ecosystem Modeling
  • Online publication: 08 February 2019
  • Chapter DOI: https://doi.org/10.1017/9781107339217.014
Available formats
×