Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-14T05:41:10.862Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  01 October 2019

Tian Yu Cao
Affiliation:
Boston University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

American Journal of Physics

Annals of Physics (New York)

Communications in Mathematical Physics (DAN: Doklady Akademii Nauk SSSR)

The Einstein Archives in the Hebrew University of Jerusalem

Soviet Physics, Journal of Experimental and Theoretical Physics

Journal of Mathematical Physics (New York)

Nuovo Cimento

Nuclear Physics

Physics Letters

Physical Review

Physical Review Letters

Proceedings of the Royal Society of London

Progress of Theoretical Physics

Reviews of Modern Physics

Zeitschrift für Physik

Abers, E., Zachariasan, F., and Zemach, C. (1963). “Origin of internal symmetries,” PR, 132: 18311836.Google Scholar
Abrams, G. S., et al. (1974). “Discovery of a second narrow resonance,” PRL, 33: 14531454.Google Scholar
Achinstein, P. (1968). Concepts of Science: A Philosophical Analysis (Johns Hopkins University Press, Baltimore).Google Scholar
Adler, S. L. (1964). “Tests of the conserved vector current and partially conserved axial-vector current hypotheses in high-energy neutrino reactions,” PR, B135: 963966.CrossRefGoogle Scholar
Adler, S. L. (1965a). “Consistency conditions on the strong interactions implied by a partially conserved axial-vector current,” PR, 137: B1022B1033.CrossRefGoogle Scholar
Adler, S. L. (1965b). “Consistency conditions on the strong interactions implied by a partially conserved axial-vector current. II,” PR, 139: B1638B1643.Google Scholar
Adler, S. L. (1965c). “Sum-rules for axial-vector coupling-constant renormalization in beta decay,” PR, 140: B736B747.Google Scholar
Adler, S. L. (1965d). “Calculation of the axial-vector coupling constant renormalization in β decay,” PRL, 14: 10511055.Google Scholar
Adler, S. L. (1966). “Sum rules giving tests of local current commutation relations in high-energy neutrino reactions,” PR, 143: 11441155.Google Scholar
Adler, S. L. (1969). “Axial-vector vertex in spinor electrodynamics,” PR, 177: 24262438.CrossRefGoogle Scholar
Adler, S. L. (1970). “π0 decay,” in High-Energy Physics and Nuclear Structure, ed. Devons, S. (Plenum, New York), 647655.Google Scholar
Adler, S. L. (1991). Taped interview at Princeton, December 5, 1991.Google Scholar
Adler, S. L., and Bardeen, W. (1969). “Absence of higher-order corrections in the anomalous axial-vector divergence equation,” PR, 182: 15171532.Google Scholar
Adler, S. L., and Dashen, R. F. (1968). Current Algebra and Applications to Particle Physics (Benjamin, New York).Google Scholar
Adler, S. L., and Tung, W.-K. (1969). “Breakdown of asymptotic sum rules in perturbation theory,” PRL, 22: 978981.Google Scholar
Aharonov, Y., and Bohm, D. (1959). “Significance of electromagnetic potentials in quantum theory,” PR, 115: 485491.CrossRefGoogle Scholar
Ambarzumian, V., and Iwanenko, D. (1930). “Unobservable electrons and β-rays,” Compt. Rend. Acad. Sci. Paris, 190: 582584.Google Scholar
Amelino-Camelia, G. (2010). “Doubly-special relativity: facts, myths and some key open issues,” Symmetry, 2: 230271.CrossRefGoogle Scholar
Anderson, P. W. (1952). “An approximate quantum theory of the antiferromagnetic ground state,” PR, 86: 694701.Google Scholar
Anderson, P. W. (1958a). “Coherent excited states in the theory of superconductivity: gauge invariance and the Meissner effect,” PR, 110: 827835.CrossRefGoogle Scholar
Anderson, P. W. (1958b). “Random phase approximation in the theory of superconductivity,” PR, 112: 19001916.Google Scholar
Anderson, P. W. (1963). “Plasmons, gauge invariance, and mass,” PR, 130: 439442.CrossRefGoogle Scholar
Appelquist, T., and Carazzone, J. (1975). “Infrared singularities and massive fields,” PR, D11: 28562861.Google Scholar
Appelquist, T., and Politzer, H. D. (1975). “Heavy quarks and e+e annihilation,” PRL, 34: 4345.Google Scholar
Arnison, G., et al. (1983a). “Experimental observation of isolated large transverse energy electrons with associated missing energy at GeV,” PL, 122B: 103116.Google Scholar
Arnison, G., et al. (1983b). “Experimental observation of lepton pairs of invariant mass around 95 GeV/c2 at the CERN SPS collider,” PL, 126B: 398410.Google Scholar
Arnowitt, R., Friedman, M. H., and Nath, P. (1968). “Hard meson analysis of photon decays of π0, η and vector mesons,” PL, 27B: 657659.Google Scholar
Ashtekar, A. (1986). “New variables for classical and quantum gravity,” PRL, 57: 22442247.CrossRefGoogle ScholarPubMed
Ashtekar, A., and Lewandowski, J. (1997a). “Quantum theory of geometry I: Area operators,” Class. Quant. Grav., 14: A55A81.Google Scholar
Ashtekar, A., and Lewandowski, J. (1997b). “Quantum theory of geometry II: Volume operators,” Adv. Theo. Math. Phys., 1: 388429.CrossRefGoogle Scholar
Ashtekar, A., and Lewandowski, J. (2004). “Background independent quantum gravity: a status report,” Class. Quant. Grav., 21: R53R152.CrossRefGoogle Scholar
Aubert, J. J., et al. (1974). “Observation of a heavy particle J,” PRL, 33: 14041405.CrossRefGoogle Scholar
Augustin, J.-E., et al. (1974). “Discovery of a narrow resonance in e+ e annihilation,” PRL, 33: 14061407.CrossRefGoogle Scholar
Bagnaia, P., et al. (1983). “Evidence for Z0 → e+ e at the CERN p+p collider,” PL, 129B: 130140.Google Scholar
Baker, M., and Glashow, S. L. (1962). “Spontaneous breakdown of elementary particle symmetries,” PR, 128: 24622471.CrossRefGoogle Scholar
Balzer, W., Pearce, D. A., and Schmidt, H.-J. (1984). Reduction in Science (Reidel, Dordrecht).Google Scholar
Bardeen, J. (1955). “Theory of the Meissner effect in superconductors,” PR, 97: 17241725.Google Scholar
Bardeen, J. (1957). “Gauge invariance and the energy gap model of superconductivity,” NC, 5: 17661768.Google Scholar
Bardeen, J., Cooper, L. N., and Schrieffer, J. R. (1957). “Theory of superconductivity,” PR, 108: 11751204.Google Scholar
Bardeen, W. (1969). “Anomalous Ward identities in spinor field theories,” PR, 184: 18481859.Google Scholar
Bardeen, W. (1985). “Gauge anomalies, gravitational anomalies, and superstrings,” talk presented at the INS International Symposium, Tokyo, August 1985; Fermilab preprint: Conf. 85/110-T.Google Scholar
Bardeen, W., Fritzsch, H., and Gell-Mann, M. (1973). “Light cone current algebra, π0 decay and e+ e annihilation,” in Scale and Conformal Symmetry in Hadron Physics, ed. Gatto, R. (Wiley, New York), 139153.Google Scholar
Barnes, B. (1977). Interests and the Growth of Knowledge (Routledge and Kegan Paul, London).Google Scholar
Belavin, A. A., Polyakov, A. M., Schwartz, A., and Tyupkin, Y. (1975). “Pseudoparticle solutions of the Yang–Mills equations,” PL, 59B: 8587.Google Scholar
Bell, J. S. (1967a). “Equal-time commutator in a solvable model,” NC, 47A: 616625.Google Scholar
Bell, J. S. (1967b). “Current algebra and gauge invariance,” NC, 50A: 129134.Google Scholar
Bell, J. S., and Berman, S. M. (1967). “On current algebra and CVC in pion beta-decay,” NC, 47A: 807810.Google Scholar
Bell, J. S., and Jackiw, R. (1969). “A PCAC puzzle: π0γγ in the σ-model,” NC, 60A: 4761.Google Scholar
Bell, J. S., and van Royen, R. P. (1968). “Pion mass difference and current algebra,” PL, 25B: 354356.Google Scholar
Bell, J. S., and Sutherland, D. G. (1968). “Current algebra and η → 3π,” NP, B4: 315325.Google Scholar
Bernstein, J. (1968). Elementary Particles and Their Currents (Freeman, San Francisco).Google Scholar
Bernstein, J., Fubini, S., Gell-Mann, M., and Thirring, W. (1960). “On the decay rate of the charged pion,” NC, 17: 758766.Google Scholar
Bethe, H. A. (1947). “The electromagnetic shift of energy levels,” PR, 72: 339341.Google Scholar
Bjorken, J. D. (1966a). “Applications of the chiral U(6) U(6) algebra of current densities,” PR, 148: 14671478.Google Scholar
Bjorken, J. D. (1966b). “Inequality for electron and muon scattering from nucleons,” PRL, 16: 408409.CrossRefGoogle Scholar
Bjorken, J. D. (1969). “Asymptotic sum rules at infinite momentum,” PR, 179: 15471553.Google Scholar
Bjorken, J. D. (1997). “Deep-inelastic scattering: from current algebra to partons,” in The Rise of the Standard Model, eds. Hoddeson, L., Brown, L., Riordan, M., and Dressden, M. (Cambridge University Press, Cambridge), 589599.Google Scholar
Bjorken, J. D., and Glashow, S. L. (1964). “Elementary particles and SU(4),” PL, 11: 255257.Google Scholar
Bjorken, J. D., and Paschos, E. A. (1969). “Inelastic electron–proton and γ–proton scattering and the structure of the nucleon,” PR, 185: 19751982.Google Scholar
Bjorken, J. D., and Paschos, E. A. (1970). “High-energy inelastic neutrino–nucleon interactions,” PR, D1: 31513160.Google Scholar
Blankenbecler, R., Cook, L. F., and Goldberger, M. L. (1962). “Is the photon an elementary particle?PR, 8: 463165.CrossRefGoogle Scholar
Blankenbecler, R., Coon, D. D., and Roy, S. M. (1967). “S-matrix approach to internal symmetry,” PR, 156: 16241636.Google Scholar
Blatt, J. M., Matsubara, T., and May, R. M. (1959). “Gauge invariance in the theory of superconductivity,” PTP, 21: 745757.Google Scholar
Bloom, E. D., et al. (1969). “High energy inelastic e–p scattering at 6° and 10°,” PRL, 23: 930934.Google Scholar
Bloor, D. (1976). Knowledge and Social Imagery (Routledge and Kegan Paul, London).Google Scholar
Bludman, S. A. (1958). “On the universal Fermi interaction,” NC, 9: 433444.CrossRefGoogle Scholar
Bogoliubov, N. N. (1958). “A new method in the theory of superconductivity,” JETP, 34(7): 4146, 51–55.Google Scholar
Bohr, N. (1912). In On the Constitution of Atoms and Molecules, ed. Rosenfeld, L. (Benjamin, New York, 1963), xxxii.Google Scholar
Bohr, N. (1913a, b, c). “On the constitution of atoms and molecules. I, II, III,” Philos. Mag., 26: 125, 476–502, 857–875.CrossRefGoogle Scholar
Bohr, N. (1918). On the Quantum Theory of Line-Spectra, Kgl. Dan. Vid. Seist Skr. Nat-Mat. Afd. series 8, vol. 4, number 1, Part I–III (Høst, Copenhagen).Google Scholar
Bohr, N. (1927). “Atomic theory and wave mechanics,” Nature, 119: 262.Google Scholar
Bohr, N. (1928). “The quantum postulate and the recent development of atomic theory,” (aversion of the Como lecture given in 1927), Nature, 121: 580590.Google Scholar
Bohr, N. (1930). “Philosophical aspects of atomic theory,” Nature, 125: 958.Google Scholar
Bohr, N., Kramers, H. A., and Slater, J. C. (1924). “The quantum theory of radiation,” Philos. Mag., 47: 785802.Google Scholar
Boltzmann, L. (1888). Quoted from R. S. Cohen’s “Dialectical materialism and Carnap’s logical empiricism,” in The Philosophy of Rudolf Carnap, ed. Schilpp, P. A. (Open Court, LaSalle, 1963), 109.Google Scholar
Bopp, F. (1940). “Eine lineare theorie des elektrons,” Ann. Phys., 38: 345384.CrossRefGoogle Scholar
Born, M. (1924). “Über Quantenmechanik,” ZP, 26: 379395.CrossRefGoogle Scholar
Born, M. (1926a). “Zur Quantenmechanik der Stossvorgange,” ZP, 37: 863867.Google Scholar
Born, M. (1926b). “Quantenmechanik der Stossvorgange,” ZP, 38: 803884.Google Scholar
Born, M. (1949). Natural Philosophy of Cause and Chance (Oxford University Press, Oxford).Google Scholar
Born, M. (1956). Physics in My Generation (Pergamon, London).Google Scholar
Born, M., and Jordan, P. (1925). “Zur Quantenmechanik,” ZP, 34: 858888.Google Scholar
Born, M., Heisenberg, W., and Jordan, P. (1926). “Zur Quantenmechnik. II,” ZP, 35: 557615.CrossRefGoogle Scholar
Borrelli, A. (2012). “The case of the composite Higgs: the model as a ‘Rosetta stone’ in contemporary high-energy physics,” Stud. Hist. Philos. Mod. Phys., 43: 195214.CrossRefGoogle Scholar
Bose, S. N. (1924). “Plancks Gesetz und Lichtquantenhypothese,” ZP, 26: 178181.Google Scholar
Bouchiat, C., Iliopoulos, J., and Meyer, Ph. (1972). “An anomaly-free version of Weinberg’s model,” PL, 38B: 519523.Google Scholar
Boulware, D. (1970). “Renormalizability of massive non-Abelian gauge fields: a functional integral approach,” AP, 56: 140171.Google Scholar
Boyd, R. N. (1979). “Metaphor and theory change,” in Metaphor and Thought, ed. Ortony, A. (Cambridge University Press, Cambridge).Google Scholar
Boyd, R. N. (1983). “On the current status of scientific realism,” Erkenntnis, 19: 4590.Google Scholar
Brandt, R. A. (1967). “Derivation of renormalized relativistic perturbation theory from finite local field equations,” AP, 44: 221265Google Scholar
Brandt, R. A., and Orzalesi, C. A. (1967). “Equal-time commutator and zero-energy theorem in the Lee model,” PR, 162: 17471750.Google Scholar
Brans, C. (1962). “Mach’s principle and the locally measured gravitational constant in general relativity,” PR, 125: 388396.Google Scholar
Brans, C., and Dicke, R. H. (1961). “Mach’s principle and a relativistic theory of gravitation,” PR, 124: 925935.CrossRefGoogle Scholar
Braunbeck, W., and Weinmann, E. (1938). “Die Rutherford-Streuung mit Berücksichtigung der Auszahlung,” ZP, 110: 360372.Google Scholar
Breidenbach, M., et al. (1969). “Observed behavior of highly inelastic electron–proton scattering,” PRL, 23: 935999.Google Scholar
Bridgeman, P. W. (1927). The Logic of Modern Physics (Macmillan, New York).Google Scholar
Bromberg, J. (1976). “The concept of particle creation before and after quantum mechanics,” Hist. Stud. Phys. Sci., 7: 161191.Google Scholar
Brown, H. R., and Harré, R. (1988). Philosophical Foundations of Quantum Field Theory (Clarendon, Oxford).Google Scholar
Brown, L. M. (1978). “The idea of the neutrino,” Phys. Today, 31(9): 2327.Google Scholar
Brown, L. M., and Cao, T. Y. (1991). “Spontaneous breakdown of symmetry: its rediscovery and integration into quantum field theory,” Hist. Stud. Phys. Biol. Sci., 21: 211235.Google Scholar
Brown, L. M., and Hoddeson, L. (eds.) (1983). The Birth of Particle Physics (Cambridge University Press, Cambridge).Google Scholar
Brown, L. M., and Rechenberg, H. (1988). “Landau’s work on quantum field theory and high energy physics (1930–1961),” Max Planck Institute, Preprint, MPI-PAE/Pth 42/88 (July 1988).Google Scholar
Brown, L. M., Dresden, M., and Hoddeson, L. (eds.) (1989). Pions to Quarks (Cambridge University Press, Cambridge).Google Scholar
Bucella, F., Veneziano, G., Gatto, R., and Okubo, S. (1966). “Necessity of additional unitary-antisymmetric q-number terms in the commutators of spatial current components,” PR, 149: 12681272.Google Scholar
Buckingham, M. J. (1957). “A note on the energy gap model of superconductivity,” NC, 5: 17631765.Google Scholar
Burtt, E. A. (1932). The Metaphysical Foundations of Modern Physical Science (Doubleday, Garden City). (First edition in 1924, revised version first appeared in 1932.)Google Scholar
Cabibbo, N. (1963). “Unitary symmetry and leptonic decays,” PRL, 10: 531533.Google Scholar
Cabrera, B. (1982). “First results from a superconductive detector for moving magnetic monopoles,” PRL, 48: 13781381.Google Scholar
Callan, C. (1970). “Bjorken scale invariance in scalar field theory,” PR, D2: 15411547.Google Scholar
Callan, C. (1972). “Bjorken scale invariance and asymptotic behavior,” PR, D5: 32023210.Google Scholar
Callan, C., and Gross, D. (1968). “Crucial test of a theory of currents,” PRL, 21: 311313.CrossRefGoogle Scholar
Callan, C., and Gross, D. (1969). “High-energy electroproduction and the constitution of the electric current,” PRL, 22: 156159.Google Scholar
Callan, C., and Gross, D. (1973). “Bjorken scaling in quantum field theory,” PR, D8: 43834394.Google Scholar
Callan, C., Coleman, S., and Jackiw, R. (1970). “A new improved energy-momentum tensor,” AP, 59: 4273.Google Scholar
Callan, C., Dashen, R., and Gross, D. (1976). “The structure of the vacuum,” PL, 63B: 334340.Google Scholar
Carmeli, M. (1976). “Modified gravitational Lagrangian,” PR, D14: 1727.Google Scholar
Carmeli, M. (1977). “SL2C conservation laws of general relativity,” NC, 18: 1720.Google Scholar
Cantor, G. N., and Hodge, M. J. S. (eds.) (1981). Conceptions of Ether (Cambridge University Press, Cambridge).Google Scholar
Cao, T. Y. (1991). “The Reggeization program 1962–1982: attempts at reconciling quantum field theory with S-matrix theory,” Arch. Hist. Exact Sci., 41: 239283.Google Scholar
Cao, T. Y. (1993). “What is meant by social constructivism? A critical exposition,” a talk given at the Dibner Institute, MIT, on October 19, 1993.Google Scholar
Cao, T. Y. (1997). Conceptual Developments of 20th Century Field Theories (Cambridge University Press, Cambridge).Google Scholar
Cao, T. Y. (1999). Conceptual Foundations of Quantum Field Theory (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Cao, T. Y. (2001). “Prerequisites for a consistent framework of quantum gravity,” Stud. Hist. Philos. Mod. Phys., 32(2): 181204.Google Scholar
Cao, T. Y. (2003a). “Can we dissolve physical entities into mathematical structures?Synthese, 136(1): 5771.Google Scholar
Cao, T. Y. (2003b). “What is ontological synthesis? A reply to Simon Saunders,” Synthese, 136(1): 107126.Google Scholar
Cao, T. Y. (2006). “Structural realism and quantum gravity,” in Structural Foundation of Quantum Gravity, eds. Rickles, D. French, S., and Saatsi, J. (Oxford University Press, Oxford).Google Scholar
Cao, T. Y. (2007). “Conceptual issues in quantum gravity,” an invited 50 minute talk delivered, on August 11, 2007, at The 13th International Congress of Logic, Methodology and Philosophy of Science, August 9–15, 2007, Beijing, China (unpublished).Google Scholar
Cao, T. Y. (2010). From Current Algebra to Quantum Chromodynamics—A Case for Structural Realism (Cambridge University Press, Cambridge).Google Scholar
Cao, T. Y. (2014a). “Key steps toward the creation of QCD—notes on the logic and history of the genesis of QCD,” in What We Would Like LHC to Give Us, ed. Zichichi, A. (World Scientific, Singapore), 139153.Google Scholar
Cao, T. Y. (2014b). “Incomplete, but real—a constructivist account of reference,” Epistemol. Philos. Sci., 41(3): 7281.Google Scholar
Cao, T. Y. (2016). “The hole argument and the nature of spacetime—a critical review from a constructivist perspective,” in Einstein, Tagore and the Nature of Reality, ed. Ghose, P. (Routledge, New York), 3744.Google Scholar
Cao, T. Y., and Brown, L. M. (1991). “Spontaneous breakdown of symmetry: its rediscovery and integration into quantum field theory,” Hist. Stud. Phys. Biol. Sci., 21(2): 211235.Google Scholar
Cao, T. Y., and Schweber, S. S. (1993). “The conceptual foundations and the philosophical aspects of renormalization theory,” Synthese, 97: 33108.Google Scholar
Capps, R. H. (1963). “Prediction of an interaction symmetry from dispersion relations, PRL, 10: 312314.Google Scholar
Capra, F. (1979). “Quark physics without quarks: a review of recent developments in S-matrix theory,” AJP, 47: 1123.Google Scholar
Capra, F. (1985). “Bootstrap physics: a conversation with Geoffrey Chew,” in A Passion for Physics: Essays in Honour of Geoffrey Chew, eds. De Tar, C., Finkelstein, J., and Tan, C. I. (Taylor & Francis, Philadelphia), 247286.Google Scholar
Carnap, R. (1929). Der Logisches Aufbau der Welt (Schlachtensee Weltkreis-Verlag, Berlin).Google Scholar
Carnap, R. (1934). Logische Syntax der Sprache. (English trans. 1937, The Logical Syntax of Language. Kegan Paul).Google Scholar
Carnap, R. (1950). “Empirecism, semantics and ontology,” Revue Internationale de Philosophie, 4: 20–40. Also in Carnap (1956), 205–221.Google Scholar
Carnap, R. (1956). Meaning and Necessity, enlarged edition (University of Chicago Press, Chicago).Google Scholar
Cartan, E. (1922). “Sur une géneralisation de la notion de courbure de Riemann et les éspaces à torsion,” Compt. Rend. Acad. Sci. Paris, 174: 593595.Google Scholar
Case, K. M. (1949). “Equivalence theorems for meson–nucleon coupling,” PR, 76: 114.CrossRefGoogle Scholar
Cassidy, D. C., and Rechenberg, H. (1985). “Biographical data, Werner Heisenberg (1901–1976),” in W. Heisenberg, Collected Works, eds. Blum, W. et al., Series A, part I (Berlin), 114.Google Scholar
Castillejo, L., Dalitz, R. H., and Dyson, F. J. (1956). “Low’s scattering equation for the charged and neutral scalar theories,” PR, 101: 453158.Google Scholar
Cauchy, A. L. (1828). “Sur les équations qui expriment les conditions d’équilibre ou les lois du mouvement intérieur d’un corps solide, élastique ou non élastique,” Exercise de Mathématiques, 3: 160187.Google Scholar
Cauchy, A. L. (1830). “Mémoire sur la théorie de la lumière,” Mém. de l’Acad., 10: 293316.Google Scholar
Chadwick, J. (1914). “Intensitätsvertieilung im magnetischen Spektrum der β-strahlen von Radium B + C,” Ber. Deut. Phys. Gens., 12: 383391.Google Scholar
Chadwick, J. (1932). “Possible existence of a neutron,” Nature, 129: 312.Google Scholar
Chambers, R. G. (1960). “Shift of an electron interference pattern by enclosed magnetic flux,” PRL, 5: 35.Google Scholar
Chandler, C. (1968). “Causality in S-matrix theory,” PR, 174: 17491758.CrossRefGoogle Scholar
Chandler, C., and Stapp, H. P. (1969). “Macroscopic causality and properties of scattering amplitudes,” JMP, 10: 826859.Google Scholar
Chandrasekhar, S. (1931). “The maximum mass of ideal white dwarfs,” Astrophys. J., 74: 81.Google Scholar
Chandrasekhar, S. (1934). “Stellar configurations with degenerate cores,” Observatory, 57: 373377.Google Scholar
Chanowitz, M. S., Furman, M. A., and Hinchliffe, Z. (1978). “Weak interactions of ultra heavy fermions,” PR, B78: 285289.Google Scholar
Charap, J. M., and Fubini, S. (1959). “The field theoretic definition of the nuclear potential-Ι,” NC, 14: 540559.Google Scholar
Chew, G. F. (1953a). “Pion–nucleon scattering when the coupling is weak and extended,” PR, 89: 591593.Google Scholar
Chew, G. F. (1953b). “A new theoretical approach to the pion-nucleaon interaction,” PR, 89: 904.Google Scholar
Chew, G. F. (1961). S-Matrix Theory of Strong Interactions (Benjamin, New York).Google Scholar
Chew, G. F. (1962a). “S-matrix theory of strong interactions without elementary particles,” RMP, 34: 394401.Google Scholar
Chew, G. F. (1962b). “Reciprocal bootstrap relationship of the nucleon and the (3, 3) resonance,” PRL, 9: 233235.Google Scholar
Chew, G. F. (1962c). “Strong interaction theory without elementary particles,” in Proceedings of the 1962 International Conference on High Energy Physics at CERN, ed. Prentki, J. (CERN, Geneva), 525530.Google Scholar
Chew, G. F. (1967). “Closure, locality, and the bootstrap,” PRL, 19: 1492.Google Scholar
Chew, G. F. (1989). “Particles as S-matrix poles: hadron democracy,” in Pions to Quarks: Particle Physics in the 1950s, eds. Brown, L. M., Dresden, M., and Hoddeson, L. (Cambridge University Press, Cambridge), 600607.Google Scholar
Chew, G. F., and Frautschi, S. C. (1960). “Unified approach to high- and low-energy strong interactions on the basis of the Mandelstam representation,” PRL, 5: 580583.CrossRefGoogle Scholar
Chew, G. F., and Frautschi, S. C. (1961a). “Dynamical theory for strong interactions at low momentum transfer but arbitrary energies,” PR, 123: 14781486.Google Scholar
Chew, G. F., and Frautschi, S. C. (1961b). “Potential scattering as opposed to scattering associated with independent particles in the S-matrix theory of strong interactions,” PR, 124: 264268.Google Scholar
Chew, G. F., and Frautschi, S. C. (1961c). “Principle of equivalence for all strongly interacting particles within the S-matrix framework,” PRL, 7: 394397.CrossRefGoogle Scholar
Chew, G. F., and Frautschi, S. C. (1962). “Regge trajectories and the principle of maximum strength for strong interactions,” PRL, 8: 4144.Google Scholar
Chew, G. F., and Low, F. E. (1956). “Effective-range approach to the low-energy p-wave pion–nucleon interaction,” PR, 101: 15701579.Google Scholar
Chew, G. F., and Mandelstam, S. (1960). “Theory of low energy pion-pion interaction,” PR, 119: 467477.Google Scholar
Chew, G. F., Goldberger, M. L., Low, F. E., and Nambu, Y. (1957a). “Application of dispersion relations to low-energy meson-nucleon scattering,” PR, 106: 13371344.Google Scholar
Chew, G. F., Goldberger, M. L., Low, F. E., and Nambu, Y. (1957b). “Relativistic dispersion relation approach to photomeson production,” PR, 106: 13451355.Google Scholar
Chihara, C. (1973). Ontology and the Vicious Circle Principle (Cornell University Press, Ithaca).Google Scholar
Cho, Y. M. (1975). “Higher-dimensional unifications of gravitation and gauge theories,” JMP, 16: 20292035.Google Scholar
Cho, Y. M. (1976). “Einstein Lagrangian as the translational Yang-Mills Lagrangian,” PR, D14: 25212525.Google Scholar
Christoffel, E. B. (1869a). “Ueber die Transformation der homogenen Differential-ausdrücke zweiten Grades,” J. r. angew. Math., 70: 4670.Google Scholar
Christoffel, E. B. (1869b). “Ueber ein die Transformation hamogen Differential-ausdrücke zweiten Grades betreffendes Theorem,” J. r. angew. Math., 70: 241245.Google Scholar
Clifford, W. K. (1876). “On the space-theory of matter,” in Mathematical Papers, ed. Tucker, R. (Macmillan, London).Google Scholar
Coleman, S. (1965). “Trouble with relativistic SU(6),” PR, B138: 12621267.Google Scholar
Coleman, S. (1977). “The use of instantons,” a talk later published in The Ways in Subnuclear Physics, ed. Zichichi, A. (Plenum, New York, 1979).Google Scholar
Coleman, S. (1979). “The 1979 Nobel Prize in physics,” Science, 206: 12901292.Google Scholar
Coleman, S. (1985). Aspects of Symmetry (Cambridge University Press, Cambridge).Google Scholar
Coleman, S., and Gross, D. (1973). “Price of asymptotic freedom,” PRL, 31: 851854.Google Scholar
Coleman, S., and Jackiw, R. (1971). “Why dilatation generators do not generate dilatations,” AP, 67: 552598.Google Scholar
Coleman, S., and Mandula, J. (1967). “All possible symmetries of the S matrix,” PR, B159: 12511256.Google Scholar
Coleman, S., and Weinberg, E. (1973). “Radiative corrections as the origin of spontaneous symmetry breaking,” PR, D7: 18881910.Google Scholar
Collins, C. B., and Hawking, S. W. (1973a). “The rotation and distortion of the universe,” Mon. Not. R. Astron. Soc., 162: 307320.Google Scholar
Collins, C. B., and Hawking, S. W. (1973b). “Why is the universe isotropic?,” Astrophys. J., 180: 317334.Google Scholar
Collins, J. C. (1984). Renormalization (Cambridge University Press, Cambridge).Google Scholar
Collins, J. C., Wilczek, F., and Zee, A. (1978). “Low-energy manifestations of heavy particles: application to the neutral current,” PR, D18: 242247.Google Scholar
Collins, P. D. B. (1977). An Introduction to Regge Theory and High Energy Physics (Cambridge University Press, Cambridge).Google Scholar
Compton, A. (1923a). “Total reflection of X-rays,” Philos. Mag., 45: 11211131.Google Scholar
Compton, A. (1923b). “Quantum theory of the scattering of X-rays by light elements,” PR, 21: 483502.Google Scholar
Coster, J., and Stapp, H. P. (1969). “Physical-region discontinuity equations for many-particle scattering amplitudes. I,” JMP, 10: 371396.Google Scholar
Coster, J., and Stapp, H. P. (1970a). “Physical-region discontinuity equations for many-particle scattering amplitudes. II,” JMP, 11: 14411463.Google Scholar
Coster, J., and Stapp, H. P. (1970b). “Physical-region discontinuity equations,” JMP, 11: 27432763.Google Scholar
Creutz, M. (1981). “Roulette wheels and quark confinement,” Comment Nucl. Partic. Phys., 10: 163173.Google Scholar
Crewther, R. J. (1972). Nonperturbative evaluation of the anomalies in low-energy theorems,” PRL, 28: 142.Google Scholar
Crewther, R., Divecchia, P., Veneziano, G., and Witten, E. (1979). “Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics,” PL, 88B: 123127.Google Scholar
Curie, P. (1894). “Sur la symetrie dans les phenomenes physiques, symetrie d’un champ electrique et d’un champ magnetique,” J. Phys. (Paris), 3: 393415.Google Scholar
Cushing, J. T. (1986). “The importance of Heisenberg’s S-matrix program for the theoretical high-energy physics of the 1950’s,” Centaurus, 29: 110149.CrossRefGoogle Scholar
Cushing, J. T. (1990). Theory Construction and Selection in Modern Physics: The S-Matrix Theory (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Cutkosky, R. E. (1960). “Singularities and discontinuities of Feynman amplitudes,” JMP, 1: 429433.Google Scholar
Cutkosky, R. E. (1963a). “A model of baryon states,” AP, 23: 415438.Google Scholar
Cutkosky, R. E. (1963b). “A mechanism for the induction of symmetries among the strong interactions,” PR, 131: 18881890.Google Scholar
Cutkosky, R. E., and Tarjanne, P. (1963). “Self-consistent derivations from unitary symmetry,” PR, 132: 13541361.Google Scholar
Dalitz, R. (1966). “Quark models for the ‘elementary particles,” in High Energy Physics, eds. DeWitt, C., and Jacob, M. (Gordon and Breach, New York), 251324.Google Scholar
Dancoff, S. M. (1939). “On radiative corrections for electron scattering,” PR, 55: 959963.Google Scholar
Daniel, M., and Viallet, C. M. (1980). “The geometrical setting of gauge theories of the Yang–Mills type,” RMP, 52: 175197.Google Scholar
de Broglie, L. (1923a). “Ondes et quanta,” Compt. Rend. Acad. Sci. Paris, 177: 507510.Google Scholar
de Broglie, L. (1923b). “Quanta de lumiere, diffraction et interferences,” Compt. Rend. Acad. Sci. Paris, 177: 548550.Google Scholar
de Broglie, L. (1926). “The new undulatory mechanics,” Compt. Rend. Acad. Sci. Paris, 183: 272274.Google Scholar
de Broglie, L. (1927a). “Possibility of relating interference and diffraction phenomena to the theory of light quanta,” Compt. Rend. Acad. Sci. Paris, 183: 447448.Google Scholar
de Broglie, L. (1927b). “La mécanique ondulatoire et la structure atomique de la matiére et du rayonnement,” J. Phys. Radium, 8: 225241.Google Scholar
de Broglie, L. (1960). Non-linear Wave Mechanics: A Causal Interpretation, trans. Knobel, A. J., and Miller, J. C. (Elsevier, Amsterdam).Google Scholar
de Broglie, L. (1962). New Perspectives in Physics, trans. Pomerans, A. J. (Oliver and Boyd, Edinburgh).Google Scholar
Debye, P. (1910a). Letter to Sommerfeld, March 2, 1910.Google Scholar
Debye, P. (1910b). “Der Wahrscheinlichkeitsbegriff in der Theorie der Strahlung,” Ann. Phys., 33: 14271434.Google Scholar
Debye, P. (1923). “Zerstreuung von Röntgenstrahlen und quantentheorie,” Phys. Z., 24: 161166.Google Scholar
Demopoulos, W., and Friedman, M. (1985). “Critical notice: Bertrand Russell’s The Analysis of Matter: its historical context and contemporary interest,” Philos. Sci., 52: 621639.CrossRefGoogle Scholar
Deser, S. (1970). “Self-interaction and gauge invariance,” Gen. Relat. Gravit., 1: 9.Google Scholar
de Sitter, W. (1916a). “On the relativity of rotation in Einstein’s theory,” Proc. Sect. Sci. (Koninklijke Akademie van Wetenschappen te Amsterdam), 19: 527532.Google Scholar
de Sitter, W. (1916b). “On Einstein’s theory of gravitation and its astronomical consequences. I, II,” Mon. Not. R. Astron. Soc., 76: 699738; 77: 155–183.Google Scholar
de Sitter, W. (1917a). “On the relativity of inertia: remarks concerning Einstein’s latest hypothesis,” Proc. Sect. Sci. (Koninklijke Akademie van Wetenschappen te Amsterdam), 19: 12171225.Google Scholar
de Sitter, W. (1917b). “On the curvature of space,” Proc. Sect. Sci. (Koninklijke Akademie van Wetenschappen te Amsterdam), 20: 229242.Google Scholar
de Sitter, W. (1917c). “On Einstein’s theory of gravitation and its astronomical consequences. Third paper,” Mon. Not. R. Astron. Soc., 78: 328.Google Scholar
de Sitter, W. (1917d). “Further remarks on the solutions of the field equations of Einstein’s theory of gravitation,” Proc. Sect. Sci. (Koninklijke Akademie van Wetenschappen te Amsterdam), 20: 13091312.Google Scholar
de Sitter, W. (1917e). Letter to Einstein, April 1, 1917, EA: 20–551.Google Scholar
de Sitter, W. (1920). Letter to Einstein, November 4, 1920, EA: 20–571.Google Scholar
de Sitter, W. (1931). “Contributions to a British Association discussion on the evolution of the universe,” Nature, 128: 706709.Google Scholar
DeWitt, B. S. (1964). “Theory of radiative corrections for non-Abelian gauge fields,” PRL, 12: 742746.Google Scholar
DeWitt, B. S. (1967a). “Quantum theory of gravity. I. The canonical theory,” PR, 160: 11131148.Google Scholar
DeWitt, B. S. (1967b). “Quantum theory of gravity. II. The manifestly covariant theory,” PR, 162: 11951239.Google Scholar
DeWitt, B. S. (1967c). “Quantum theory of gravity. III. Applications of the covariant theory,” PR, 162: 12391256.Google Scholar
Dirac, P. A. M. (1925). “The fundamental equations of quantum mechanics,” PRS, A109: 642653.Google Scholar
Dirac, P. A. M. (1926a). “Quantum mechanics and a preliminary investigation of the hydrogen atom,” PRS, A110: 561579.Google Scholar
Dirac, P. A. M. (1926b). “On the theory of quantum mechanics,” PRS, A112: 661677.Google Scholar
Dirac, P. A. M. (1927a). “The physical interpretation of the quantum dynamics,” PRS, A113: 621641.Google Scholar
Dirac, P. A. M. (1927b). “The quantum theory of emission and absorption of radiation,” PRS, A114: 243265.Google Scholar
Dirac, P. A. M. (1927c). “The quantum theory of dispersion,” PRS, A114: 710728.Google Scholar
Dirac, P. A. M. (1928a). “The quantum theory of the electron,” PRS, A117: 610624.Google Scholar
Dirac, P. A. M. (1928b). “The quantum theory of the electron. Part II,” PRS, A118: 351361.Google Scholar
Dirac, P. A. M. (1930a). “A theory of electrons and protons,” PRS, A126: 360365.Google Scholar
Dirac, P. A. M. (1930b). The Principles of Quantum Mechanics (Clarendon, Oxford).Google Scholar
Dirac, P. A. M. (1931). “Quantized singularities in the electromagnetic field,” PRS, A133: 6072.Google Scholar
Dirac, P. A. M. (1932). “Relativistic quantum mechanics,” PRS, A136: 453464.Google Scholar
Dirac, P. A. M. (1933). “Théorie du positron,” in Rapport du Septième Conseil de Solvay Physique, Structure et Propriétés des noyaux atomiques (22–29 Oct. 1933) (Gauthier-Villars, Paris), 203212.Google Scholar
Dirac, P. A. M. (1934). “Discussion of the infinite distribution of electrons in the theory of the positron,” Proc. Cam. Philos. Soc., 30: 150163.Google Scholar
Dirac, P. A. M. (1938). “Classical theory of radiating electrons,” PRS, A167: 148169.Google Scholar
Dirac, P. A. M. (1939). “La théorie de l’électron et du champ électromagnétique,” Ann. Inst. Henri Poincaré, 9: 1349.Google Scholar
Dirac, P. A. M. (1942). “The physical interpretation of quantum mechanics,” PRS, A180: 140.Google Scholar
Dirac, P. A. M. (1948). “Quantum theory of localizable dynamic systems,” PR, 73: 10921103.Google Scholar
Dirac, P. A. M. (1951). “Is there an aether?Nature, 168: 906907.Google Scholar
Dirac, P. A. M. (1952). “Is there an aether?Nature, 169: 146, 702.Google Scholar
Dirac, P. A. M. (1963). “The evolution of the physicist’s picture of nature,” Scientific American, 208(5): 4553.Google Scholar
Dirac, P. A. M. (1968). “Methods in theoretical physics,” in Special Supplement of IAEA Bulletin (IAEA, Vienna, 1969), 2128.Google Scholar
Dirac, P. A. M. (1969a). “Can equations of motion be used?,” in Coral Gables Conference on Fundamental Interactions at High Energy, Coral Gables, 22–24 Jan. 1969 (Gordon and Breach, New York), 118.Google Scholar
Dirac, P. A. M. (1969b). “Hopes and fears,” Eureka, 32: 24.Google Scholar
Dirac, P. A. M. (1973a). “Relativity and quantum mechanics,” in The Past Decades in Particle Theory, eds. Sudarshan, C. G., and Neéman, Y. (Gordon and Breach, New York), 741772.Google Scholar
Dirac, P. A. M. (1973b). “Development of the physicist’s conception of nature,” in The Physicist’s Conception of Nature, ed. Mehra, J. (Reidel, Dordrecht), 114.Google Scholar
Dirac, P. A. M. (1977). “Recollections of an exciting era,” in History of Twentieth Century Physics, ed. Weiner, C. (Academic Press, New York), 109146.Google Scholar
Dirac, P. A. M. (1978). Directions in Physics (Wiley, New York).Google Scholar
Dirac, P. A. M. (1981). “Does renormalization make sense?” in Perturbative Quantum Chromodynamics, eds. Duke, D. W., and Owen, J. F. (AIP Conference Proceedings No. 74, American Institute of Physics, New York), 129130.Google Scholar
Dirac, P. A. M. (1983). “The origin of quantum field theory,” in The Birth of Particle Physics, eds. Brown, L. M., and Hoddeson, L. (Cambridge University Press, Cambridge), 3955.Google Scholar
Dirac, P. A. M. (1984a). “The future of atomic physics,” Int. J. Theor. Phys., 23(8): 677681.Google Scholar
Dirac, P. A. M. (1984b). “The requirements of fundamental physical theory,” Eur. J. Phys., 5: 6567.Google Scholar
Dirac, P. A. M. (1987). “The inadequacies of quantum field theory,” in Reminiscences about a Great Physicist: Paul Adrien Maurice Dirac, eds. Kursunoglu, B. N., and Wigner, E. P. (Cambridge University Press, Cambridge).Google Scholar
Dolen, R., Horn, O., and Schmid, C. (1967). “Prediction of Regge parameters of ρ poles from low-energy πΝ data,” PRL, 19: 402407.Google Scholar
Dolen, R., Horn, O., and Schmid, C. (1968). “Finite-energy sum mies and their applications to πN charge exchange,” PR, 166: 17681781.Google Scholar
Doran, B. G. (1975). “Origins and consolidation of field theory in nineteenth century Britain,” Hist. Stud. Phys. Sci., 6: 133260.Google Scholar
Dorfman, J. (1930). “Zur Frage über die magnetischen Momente der Atomkerne,” ZP, 62: 9094.Google Scholar
Duane, W. (1923). “The transfer in quanta of radiation momentum to matter,” Proc. Natl. Acad. Sci., 9: 158164.Google Scholar
Duhem, P. (1906). The Aim and Structure of Physical Theory (Princeton University Press, Princeton, 1954).Google Scholar
Dürr, H. P., and Heisenberg, W. (1961). “Zur theorie der “seltsamen” teilchen,” Z. Naturf., 16A: 726747.Google Scholar
Dürr, H. P., Heisenberg, W., Mitter, H., Schlieder, S., and Yamazaki, K. (1959). “Zur theorie der elementarteilchen,” Z. Naturf., 14A: 441485.Google Scholar
Dyson, F. J. (1949a). “The radiation theories of Tomonaga, Schwinger and Feynman,” PR, 75: 486502.Google Scholar
Dyson, F. J. (1949b). “The S-matrix in quantum electrodynamics,” PR, 75: 17361755.Google Scholar
Dyson, F. J. (1951). “The renormalization method in quantum electrodynamics,” PRS, A207: 395401.Google Scholar
Dyson, F. J. (1952). “Divergence of perturbation theory in quantum electrodynamics,” PR, 85: 631632.Google Scholar
Dyson, F. J. (1965). “Old and new fashions in field theory,” Phys. Today, 18(6): 2124.Google Scholar
Earman, J. (1979). “Was Leibniz a relationist?’ In Studies in Metaphysics, eds. French, P., and Wettstein, H. (University of Minnesota Press, Minneapolis).Google Scholar
Earman, J. (1989). World-Enough and Space-Time (MIT Press, Cambridge, MA).Google Scholar
Earman, J. (2004a). “Curie’s principle and spontaneous symmetry breaking,” Int. Stud. Philos. Sci., 18: 173198.Google Scholar
Earman, J. (2004b). “Laws, symmetry, and symmetry breaking: invariance, conservation principles, and objectivity,” Philos. Sci., 71: 12271241.Google Scholar
Earman, J., and Norton, J. (1987). “What price space-time substantivalism? The hole story,” Brit. J. Philos. Sci., 38: 515525.Google Scholar
Earman, J., Glymore, C., and Stachel, J. (eds.) (1977). Foundations of Space-Time Theories (University of Minnesota Press, Minneapolis).Google Scholar
Eddington, A. S. (1916). Letter to de Sitter, October 13, 1916, Leiden Observatory, quoted by Kerszberg (1989).Google Scholar
Eddington, A. S. (1918). Report on the Relativity Theory of Gravitation (Fleetway, London).Google Scholar
Eddington, A. S. (1921). “A generalization of Weyl’s theory of the electromagnetic and gravitational fields,” PRS, A99: 104122.Google Scholar
Eddington, A. S. (1923). The Mathematical Theory of Gravitation (Cambridge University Press, Cambridge).Google Scholar
Eddington, A. S. (1926). The Internal Constitution of the Stars (Cambridge University Press, Cambridge).Google Scholar
Eddington, A. S. (1930). “On the instability of Einstein’s spherical world,” Mon. Not. R. Astron. Soc., 90: 668678.Google Scholar
Eddington, A. S. (1935). “Relativistic degeneracy,” Observatory, 58: 3739.Google Scholar
Ehrenfest, P. (1906). “Zur Planckschen Strahlungstheorie,” Phys. Z., 7: 528532.Google Scholar
Ehrenfest, P. (1911). “Welche Zuge der lichtquantenhypothese spielen in der Theorie die Wärmestrahlung eine wesentliche Rolle?Ann. Phys., 36: 91118.Google Scholar
Ehrenfest, P. (1916). “Adiabatische invarianten und quantentheorie,” Ann. Phys., 51: 327352.Google Scholar
Ehrenfest, P., and Kamerling-Onnes, H. (1915). “Simplified deduction of the formula from the theory of combinations which Planck uses as the basis for radiation theory,” Proc. Amsterdam Acad., 23: 789792.Google Scholar
Eichten, E., Gottfried, K., Kinoshita, T., Koght, J., Lane, K. D., and Yan, T.-M. (1975). “Spectrum of charmed quark-antiquark bound states,” PRL, 34: 369372.Google Scholar
Einstein, A. (1905a). “Über einen die Erzeugung und Verwandlung des lichtes betreffenden heuristischen Gesichtspunkt,” Ann. Phys., 17: 132148.Google Scholar
Einstein, A. (1905b). “Die von der molekulärkinetischen Theorie der Wärme geforderte bewegung von in ruhenden Flüssigkeiten suspendierten Toilchen,” Ann. Phys., 17: 549560.Google Scholar
Einstein, A. (1905c). “Zur Elektrodynamik bewegter Körper,” Ann. Phys., 17: 891921.Google Scholar
Einstein, A. (1905d). “Ist die Trägheit eines Körpers von seinem Energiegehalt abhängig?,” Ann. Phys., 18: 639641.Google Scholar
Einstein, A. (1906a). “Zur Theorie der Lichterzeugung und Lichtabsorption,” Ann. Phys., 20: 199206.Google Scholar
Einstein, A. (1906b). “Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie,” Ann. Phys., 20: 627633.Google Scholar
Einstein, A. (1907a). “Die vom Relativitätsprinzip geforderte Trägheit der Energie,” Ann. Phys., 23: 371384.Google Scholar
Einstein, A. (1907b). “Über das Relativitätsprinzip und aus demselben gezogenen Folgerungen,” Jahrb. Radioakt. Elektron., 4: 411462.Google Scholar
Einstein, A. (1909a). “Zum gegenwärtigen Stand des Strhlungsproblems,” Phys. Z., 10: 185193.Google Scholar
Einstein, A. (1909b). “Über die Entwicklung unserer Anschauungen über das wesen und die Konstitution der Strahlung,” Phys. Z., 10: 817825.Google Scholar
Einstein, A. (1909c). Letter to Lorentz, May 23, 1909.Google Scholar
Einstein, A. (1911). “Über den Einfluss der Schwerkraft aus die Ausbreitung des Lichtes,” Ann. Phys., 35: 898908.Google Scholar
Einstein, A. (1912a). “Lichtgeschwindigkeit und statik des Gravitationsfeldes,” Ann. Phys., 38: 355369.CrossRefGoogle Scholar
Einstein, A. (1912b). “Zur Theorie des statischen Gravitationsfeldes,” Ann. Phys., 38: 443458.Google Scholar
Einstein, A. (1913a). “Zum gegenwärtigen Stande des Gravitationsproblems,” Phys. Z., 14: 12491266.Google Scholar
Einstein, A. (1913b). “Physikalische Grundlagen einer gravitationstheorie,” Vierteljahrsschr. Naturforsch. Ges. Zürich, 58: 284290.Google Scholar
Einstein, A. (1913c). A letter to Mach, E., June 25, 1913; quoted by Holton, G. (1973).Google Scholar
Einstein, A. (1914a). “Prinzipielles zur verallgeneinerten Relativitästheorie und Gravitationstheorie,” Phys. Z., 15: 176180.Google Scholar
Einstein, A. (1914b). “Die formale Grundlage der allgemeinen Relativitätstheorie,” Preussische Akad. Wiss. Sitzungsber., 1030–1085.Google Scholar
Einstein, A. (1915a). “Zur allgemeinen Relativitätstheorie,” Preussische Akad. Wiss. Sitzungsber., 778–786.Google Scholar
Einstein, A. (1915b). “Zur allgemeinen Relativitätstheorie (Nachtrag),” Preussische Akad. Wiss. Sitzungsber., 799–801.Google Scholar
Einstein, A. (1915c). “Erklärung der perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie,” Preussische Akad. Wiss. Sitzungsber., 831–839.Google Scholar
Einstein, A. (1915d). “Die Feldgleichungen der Gravitation,” Preussische Akad. Wiss. Sitzungsber., 844–847.Google Scholar
Einstein, A. (1915e). Letter to Ehrenfest, P., December 26, 1915. EA: 9–363.Google Scholar
Einstein, A. (1916a). Letter to Besso, M., January 3, 1916, in Speziali, P. (1972).Google Scholar
Einstein, A. (1916b). Letter to Schwarzschild, K., January 9, 1916. EA: 21–516.Google Scholar
Einstein, A. (1916c). “Die Grundlage der allgemeinen Relativitätstheorie,” Ann. Phys., 49: 769822.Google Scholar
Einstein, A. (1916d). “Ernst Mach,” Phys. Z., 17: 101104.Google Scholar
Einstein, A. (1917a). “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie,” Preussische Akad. Wiss. Sitzungsber., 142–152.Google Scholar
Einstein, A. (1917b). “Zur quantentheorie der strahlung,” Phys. Z., 18: 121128.Google Scholar
Einstein, A. (1917c). Letter to de Sitter, March 12, 1917. EA: 20–542.Google Scholar
Einstein, A. (1917d). Letter to de Sitter, June 14, 1917. EA: 20–556.Google Scholar
Einstein, A. (1917e). Letter to de Sitter, August 8, 1917. EA: 20–562.Google Scholar
Einstein, A. (1918a). “Prinzipielles zur allgemeinen Relativitätstheorie,” Ann. Phys., 55: 241244.Google Scholar
Einstein, A. (1918b). “Kritischen zu einer von Herrn de Sitter gegebenen Lösung der Gravitationsgleichungen,” Preussische Akad. Wiss. Sitzungsber., 270–272.Google Scholar
Einstein, A. (1918c). “Dialog über Einwande gegen die Relativitätstheorie,” Naturwissenschaften, 6: 197702.Google Scholar
Einstein, A. (1918d). “‘Nachtrag’ zu H. Weyl: ‘Gravitation und elektrizität’,” Preussische Akad. Wiss. Sitzungsber., 478–480.Google Scholar
Einstein, A. (1919). “Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle?,” Preussische Akad. Wiss. Sitzungsber., 349–356.Google Scholar
Einstein, A. (1920a). Äther und Relativitätstheorie (Springer, Berlin).Google Scholar
Einstein, A. (1920b). Relativity (Methuen, London).Google Scholar
Einstein, A. (1921a). “Geometrie und Erfahrung,” Preussische Akad. Wiss. Sitzungsber., 123–130.Google Scholar
Einstein, A. (1921b). “A brief outline of the development of the theory of relativity,” Nature, 106: 782784.Google Scholar
Einstein, A. (1922). The Meaning of Relativity (Princeton University Press, Princeton).Google Scholar
Einstein, A. (1923a). “Zur affinen Feldtheorie,” Preussische Akad. Wiss. Sitzungsber., 137–140.Google Scholar
Einstein, A. (1923b). “Bietet die Feldtheorie Möglichkeiten für die Lösung des Quanten problems?,” Preussische Akad. Wiss. Sitzungsber., 359–364.Google Scholar
Einstein, A. (1923c). “Notiz zu der Arbeit von A. Friedmann ‘Über die Krümmung des Raumes’,” ZP, 16: 228.Google Scholar
Einstein, A. (1924). “Quantentheorie des einatomigen idealen Gases,” Preussische Akad. Wiss. Sitzungsber., 261–267.Google Scholar
Einstein, A. (1925a). “Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung,” Preussische Akad. Wiss. Sitzungsber., 3–14.Google Scholar
Einstein, A. (1925b). “Non-Euclidean geometry and physics,” Neue Rundschau, 1: 1620.Google Scholar
Einstein, A. (1927). “The meaning of Newton and influence upon the development of theoretical physics,” Naturwissenschaften, 15: 273276.Google Scholar
Einstein, A. (1929a). “Field: old and new,” New York Times, February 3, 1929.Google Scholar
Einstein, A. (1929b). “Zur einheitlichen Feldtheorie,” Preussische Akad. Wiss. Sitzungsber., 2–7.Google Scholar
Einstein, A. (1929c). “Professor Einstein spricht über das physikalische Raum- und Äther-Problem,” Deutsche Bergwerks-Zeitung, December 15, 1929, 11.Google Scholar
Einstein, A. (1930a). “Raum-, Feld- und Äther-Problem in der physik,” in Gesamtbericht, Zweite Weltkraftkonferenz, Berlin, 1930, eds. Neden, F., and Kromer, C. (VDI-Verlag, Berlin), 15.Google Scholar
Einstein, A. (1930b). Letter to Weiner, A., September 18, 1930; quoted by Holton (1973).Google Scholar
Einstein, A. (1931). “Zum kosmologischen problem der allgemeinen Relativitätstheorie,” Preussische Akad. Wiss. Sitzungsber., 235–237.Google Scholar
Einstein, A. (1933a). On the Method of Theoretical Physics (Clarendon, Oxford).Google Scholar
Einstein, A. (1933b). Origins of the General Theory of Relativity (Jackson, Glasgow).Google Scholar
Einstein, A. (1936). “Physics and reality,” J. Franklin Inst., 221: 313347.Google Scholar
Einstein, A. (1945). “A generalization of relativistic theory of gravitation,” Ann. Math., 46: 578584.Google Scholar
Einstein, A. (1948a). A letter to Barnett, L., June 19, 1948, quoted by Stachel. J. in his “Notes on the Andover conference,” in Earman et al. (1977), ix.Google Scholar
Einstein, A. (1948b). “Generalized theory of gravitation,” RMP, 20: 3539.Google Scholar
Einstein, A. (1949). “Autobiographical notes,” in Albert Einstein: Philosopher-Scientist, ed. Schilpp, P. A. (The Library of Living Philosophers, Evanston), 195.Google Scholar
Einstein, A. (1950a). “On the generalized theory of gravitation,” Scientific American, 182(4): 1317.Google Scholar
Einstein, A. (1950b). Letter to Viscount Samuel, October 13, 1950, in In Search of Reality, by Samuel, V. (Blackwell, 1957), 17.Google Scholar
Einstein, A. (1952a). “Relativity and the problem of space,” appendix 5 in the 15th edition of Relativity: The Special and the General Theory (Methuen, London, 1954), 135157.Google Scholar
Einstein, A. (1952b). Preface to the fifteenth edition of Relativity: The Special and the General Theory (Methuen, London, 1954).Google Scholar
Einstein, A. (1952c). Letter to Seelig, C., April 8, 1952, quoted by Holton, G. (1973).Google Scholar
Einstein, A. (1952d). Letter to Max Born, May 12, 1952, in The Born–Einstein Letters (Walker, New York, 1971).Google Scholar
Einstein, A. (1953). Foreword to Concepts of Space, by Jammer, M. (Harvard University Press, Cambridge, MA).Google Scholar
Einstein, A. (1954a). Letter to Pirani, F., February 2, 1954.Google Scholar
Einstein, A. (1954b). “Relativity theory of the non-symmetrical field,” appendix 2 in The Meaning of Relativity (Princeton University Press, Princeton, 1955), 133166.Google Scholar
Einstein, A., and Grossmann, M. (1913). “Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation,” Z. Math. Phys., 62: 225261.Google Scholar
Einstein, A., Infeld, L., and Hoffmann, B. (1938). “Gravitational equations and the problem of motion,” Ann. Math., 39: 65100.Google Scholar
Ellis, G. (1989). “The expanding universe: a history of cosmology from 1917 to 1960,” in Einstein and the History of General Relativity, eds. Howard, D., and Stachel, J. (Birkhäuser, Boston/Basel/Berlin), 367431.Google Scholar
Elsasser, W. (1925). “Bemerkunggen zur Quantenmechanik Elektronen,” Naturwissenschaften, 13: 711.Google Scholar
Engler, F. O., and Renn, J. (2013). “Hume, Einstein und Schlick über die Objektivität der Wissenschaft,” in Moritz Schlick – Die Rostocker Jahre und ihr Einfluss auf die Wiener Zeit, 3. Internationales Rostocker Moritz-Schlick-Symposium, November 2011, eds. Engler, F. O., Iven, M., and Schlickiana (Leipziger Universitätsverlag, Leipzig), vol. 6, 123156.Google Scholar
Englert, F., and Brout, R. (1964). “Broken symmetry and the mass of gauge vector mesons,” PRL, 13: 321323.Google Scholar
Englert, F., Brout, R., and Thiry, M. F. (1966). “Vector mesons in presence of broken symmetry,” NC, 43: 244257.Google Scholar
Essam, J. W., and Fisher, M. E. (1963). “Padé approximant studies of the lattice gas and Ising ferromagnet below the critical point,” J. Chem. Phys., 38: 802812.Google Scholar
Euler, H. (1936). “Über die Streuung von Licht an Licht nach Diracschen Theorie,” Ann. Phys., 21: 398448.Google Scholar
Faddeev, L. D., and Popov, V. N. (1967). “Feynman diagrams for the Yang–Mills field,” PL, 25B: 2930.Google Scholar
Faraday, M. (1844). “A speculation touching electric conduction and the nature of matter,” Philos. Mag., 24: 136144.Google Scholar
Feinberg, G., and Gürsey, F. (1959). “Space-time properties and internal symmetries of strong interactions,” PR, 114: 11531170.Google Scholar
Feldman, D. (1949). “On realistic field theories and the polarization of the vacuum,” PR, 76: 13691375.Google Scholar
Feldman, D. (ed.) (1967). Proceedings of the Fifth Annual Eastern Theoretical Physics Conference (Benjamin, New York).Google Scholar
Fermi, E. (1922). “Sopra i fenomeni che avvengono in vicinanza di una linea oraria,” Accad. Lincei, 311: 184187, 306–309.Google Scholar
Fermi, E. (1929). “Sopra l’electrodinamica quantistica. I,” Rend. Lincei, 9: 881887.Google Scholar
Fermi, E. (1930). “Sopra l’electrodinamica quantistica. II,” Rend. Lincei, 12: 431135.Google Scholar
Fermi, E. (1932). “Quantum theory of radiation,” RMP, 4: 87132.Google Scholar
Fermi, E. (1933). “Tentativo di una teoria del l’emissione dei raggi β’ Ric. Science, 4(2): 491495.Google Scholar
Fermi, E. (1934). “Versuch einer Theorie der β-Strahlen. I,” ZP, 88: 161171.Google Scholar
Feyerabend, P. (1962). “Explanation, reduction and empiricism,” in Scientific Explanation, Space and Time, eds. Feigl, H., and Maxwell, G. (University of Minnesota Press, Minneapolis), 2897.Google Scholar
Feynman, R. P. (1948a). “A relativistic cut-off for classical electrodynamics,” PR, 74: 939946.Google Scholar
Feynman, R. P. (1948b). “Relativistic cut-off for quantum electrodynamics,” PR, 74: 14301438.Google Scholar
Feynman, R. P. (1948c). “Space-time approach to non-relativistic quantum mechanics,” RMP, 20: 367387.Google Scholar
Feynman, R. P. (1949a). “The theory of positrons,” PR, 76: 749768.Google Scholar
Feynman, R.P. (1949b). “The space-time approach to quantum electrodynamics,” PR, 76: 769789.Google Scholar
Feynman, R. P. (1963). “Quantum theory of gravity,” Acta Phys. Polonica, 24: 697722.Google Scholar
Feynman, R. P. (1969). “Very high-energy collisions of hadrons,” PRL, 23: 14151417.Google Scholar
Feynman, R. P. (1973). “Partons,” in The Past Decade in Particle Theory, eds. Sudarshan, C. G., and Ne’eman, Y. (Gordon and Breach, New York), 775.Google Scholar
Feynman, R. P., and Gell-Mann, M. (1958). “Theory of the Fermi interaction,” PR, 109: 193198.Google Scholar
Feynman, R. P., and Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals (McGraw-Hill, New York).Google Scholar
Finkeistein, D. (1958). “Past-future asymmetry of the gravitational field of a point particle,” PR, 110: 965.Google Scholar
Fisher, M. E. (1964). “Correlation functions and the critical region of simple fluids,” JMP, 5: 944962.Google Scholar
FitzGerald, G. E. (1885). “On a model illustrating some properties of the ether,” Proc. Dublin Sci. Soc., 4: 407419. Reprinted in: The Scientific Writings of the late George Francis FitzGerald, ed. Larmor, J. (Longmans, Green, & Co, London, 1902), 142–156.Google Scholar
Fock, V. (1927). “Über die invariante from der Wellen- und der Bewegungs- gleichungen für einen geladenen Massenpunkt,” ZP, 39: 226233.CrossRefGoogle Scholar
Forman, P. (1971). “Weimar culture, causality, and quantum theory, 1918–27: adaptation by German physicists and mathematicians to a hostile intellectual environment,” Hist. Stud. Phys. Sci., 3: 1115.Google Scholar
Forman, P. (2011). “Kausalität, Anschaulichkeit, and Individualität, or, How cultural values prescribed the character and the lessons ascribed to quantum mechanics,” in Weimar Culture and Quantum Mechanics, eds. Carson, C., Kojevnikov, A., and Trischler, H. (World Scientific, Singapore), 203219.Google Scholar
Fradkin, E. S. (1956). “Concerning some general relations of quantum electrodynamics,” JETP, 2: 361363.Google Scholar
Fradkin, E. S., and Tyutin, I. V. (1970). “S matrix for Yang–Mills and gravitational fields,” PR, D2: 28412857.Google Scholar
French, S., and Ladyman, J. (2003a). “Remodelling structural realism: quantum physics and the metaphysics of structure,” Synthese, 136: 3156.Google Scholar
French, S., and Ladyman, J. (2003b). “Between platonism and phenomenalism: Reply to Cao.’ Synthese, 136: 7378.Google Scholar
Frenkel, J. (1925). “Zur elektrodynamik punktfoermiger elektronen,” ZP, 32: 518534.Google Scholar
Friederich, S. (2014). “A philosophical look at the Higgs mechanism,” J. Gen. Philos. Sci., 45(2): 335350.Google Scholar
Friedlander, F. G. (1976). The Wave Equation on a Curved Space-Time (Cambridge University Press, Cambridge).Google Scholar
Friedman, A. (1922). “Über die Krümmung des Raumes,” ZP, 10: 377386.Google Scholar
Friedman, A. (1924). “Über die Möglichkeit einer Welt mit konstant negativer Krümmung des Raumes,” ZP, 21: 326332.Google Scholar
Friedman, M. (1983). Foundations of Space-Time Theories (Princeton University Press, Princeton).Google Scholar
Friedman, M. (2001). Dynamics of Reason: The 1999 Kant Lectures at Stanford University (CSLI Publications, Stanford, CA).Google Scholar
Friedman, M. (2009). “Einstein, Kant, and the relativized a priori,” in Constituting Objectivity: Transcendental Perspectives on Modern Physics, eds. Bitbol, M., Kerszberg, P., and Petitot, J. (Springer, New York), 253267.Google Scholar
Friedman, M. (2010). “Kuhnian approach to the history and philosophy of science,” Monist, 93: 497517.Google Scholar
Friedman, M. (2011). “Extending the dynamics of reason,” Erkenntnis, 75: 431444.Google Scholar
Friedman, M. (2012). “Reconsidering the dynamics of reason,” Stud. Hist. Philos. Sci., 43: 4753.Google Scholar
Friedman, M. (2013). “Neo-Kantianism, scientific realism, and modern physics,” in Scientific Metaphysics, eds. Ross, D., Ladyman, J., and Kincaid, H. (Oxford University Press, Oxford), 182198.Google Scholar
Friedman, M. (2014). A Post-Kuhnian Philosophy of Science (Spinoza Lectures, Van Gorcum).Google Scholar
Frishman, Y. (1971). “Operator products at almost light like distances,” AP, 66: 373389.Google Scholar
Fritzsch, H., and Gell-Mann, M. (1971a), “Scale invariance and the lightcone,” in Proceedings of the 1971 Coral Gables Conference on Fundamental Interactions at High Energy, eds. Dal Cin, M., et al. (Gordon and Breach, New York), 153.Google Scholar
Fritzsch, H., and Gell-Mann, M. (1971b). “Light cone current algebra,” in Proceedings of the International Conference on Duality and Symmetry in Hadron Physics, ed. Gotsman, E. (Weizmann Science Press, Rehovot, Israel), 317374.Google Scholar
Fritzsch, H., and Gell-Mann, M. (1972). “Current algebra, quarks and what else?” in Proceedings of the XVI International Conference on High Energy Physics, September 6–13, 1972, eds. Jackson, J. D., and Roberts, A. (National Accelerator Laboratory, Batavia, IL), vol. 2, 135165.Google Scholar
Fritzsch, H., and Minkowski, P. (1975). “Unified interactions of leptons and hadrons,” AP, 93: 193266.Google Scholar
Fritzsch, H., Gell-Mann, M., and Leutwyler, H. (1973). “Advantages of the color octet gluon picture,” PL, 47B: 365368.Google Scholar
Fubini, S., and Furlan, G. (1965). “Renormalization effects for partially conserved currents,” Physics, 1: 229247.Google Scholar
Fukuda, H., and Miyamoto, Y. (1949). “On the γ-decay of neutral meson,” PTP, 4: 347357.Google Scholar
Furry, W. H., and Neuman, M. (1949). “Interaction of meson with electromagnetic field,” PR, 76: 432.Google Scholar
Furry, W. H., and Oppenheimer, J. R. (1934). “On the theory of the electron and positron,” PR, 45: 245262.Google Scholar
Gasiorowicz, S. G., Yennie, P. R., and Suura, H. (1959). “Magnitude of renormalization constants,” PRL, 2: 513516.Google Scholar
Gauss, C. F. (1827). “Disquisitiones generales circa superficies curvas,” Comm. Soc. reg. Sci. Gött. cl. math., 6: 99146.Google Scholar
Gauss, C. F. (1845). Letter to Weber, March 19, 1845, quoted by Whittaker (1951), 240.Google Scholar
Gell-Mann, M. (1956). “Dispersion relations in pion–pion and photon–nucleon scattering,” in Proceedings of the Sixth Annual Rochester Conference on High Energy Nuclear Physics (Interscience, New York), sect. III, 3036.Google Scholar
Gell-Mann, M. (1958). “Remarks after Heisenberg’s paper,” in 1958 Annual International Conference on High Energy Physics at CERN (CERN, Geneva), 126.Google Scholar
Gell-Mann, M. (1960). Remarks in Proceedings of the 1960 Annual International Conference on High Energy Physics at Rochester (Interscience, New York), 508.Google Scholar
Gell-Mann, M. (1962a). “Symmetries of baryons and mesons,” PR, 125: 10671084.Google Scholar
Gell-Mann, M. (1962b). “Applications of Regge poles,” in 1962 International Conference on High Energy Physics at CERN (CERN, Geneva), 533542.Google Scholar
Gell-Mann, M. (1962c). “Factorization of coupling to Regge poles,” PRL, 81: 263264.Google Scholar
Gell-Mann, M. (1964a). “A schematic model of baryons and mesons,” PL, 8: 214215.Google Scholar
Gell-Mann, M. (1964b). “The symmetry group of vector and axial vector currents,” Physics, 1: 6375.Google Scholar
Gell-Mann, M. (1972a). “Quarks,” Acta Phys. Austr. Suppl., 9: 733761; CERN-TH-1543.Google Scholar
Gell-Mann, M. (1972b). “General status: summary and outlook,” in Proceedings of the XVI International Conference on High Energy Physics, September 6–13, 1972, eds. Jackson, J. D., and Roberts, A. (National Accelerator Laboratory), vol. 4, 333355.Google Scholar
Gell-Mann, M. (1987). “Particle theory from S-matrix to quarks,” in Symmetries in Physics (1600–1980), eds. Doncel, M. G., Hermann, A., Michael, L., and Pais, A. (Bellaterra, Barcelona), 474497.Google Scholar
Gell-Mann, M. (1989). “Progress in elementary particle theory, 1950–1964,” in Pions to Quarks, eds. Brown, L. M., Dresden, M., and Hoddeson, L. (Cambridge University Press, Cambridge), 694709.Google Scholar
Gell-Mann, M. (1997). “Quarks, color, and QCD,” in The Rise of the Standard Model, eds. Hoddeson, L., Brown, L., Riordan, M., and Dresden, M. (Cambridge University Press, Cambridge), 625633.Google Scholar
Gell-Mann, M., and Goldberger, M. L. (1954). “The scattering of low energy photons by particles of spin 1/2,” PR, 96: 14331438.Google Scholar
Gell-Mann, M., and Levy, M. (1960). “The axial vector current in beta decay,” NC, 14: 705725.Google Scholar
Gell-Mann, M., and Low, F. E. (1954). “Quantum electrodynamics at small distances,” PR, 95: 13001312.Google Scholar
Gell-Mann, M., and Ne’eman, Y. (1964). The Eightfold Way (Benjamin, New York).Google Scholar
Gell-Mann, M., and Pais, A. (1954). “Theoretical views on the new particles,” in Proceedings of the Glaskow International Conference on Nuclear Physics, eds. Bellamy, E. H., and Moorhouse, R. G. (Pergamon, Oxford), 342350.Google Scholar
Gell-Mann, M., Goldberger, M. L., and Thirring, W. (1954). “Use of causality conditions in quantum theory,” PR, 95: 16121627.Google Scholar
Gell-Mann, M., Ramond, P., and Slansky, R. (1978). “Color embeddings, charge assignments, and proton stability in unified gauge theories,” RMP, 50: 721744.Google Scholar
Georgi, H. (1989a). “Grand unified field theories,” in The New Physics, ed. Davies, P. (Cambridge University Press, Cambridge), 425445.Google Scholar
Georgi, H. (1989b). “Effective quantum field theories,” in The New Physics, ed. Davies, P. (Cambridge University Press, Cambridge), 446457.Google Scholar
Georgi, H., and Glashow, S. L. (1974). “Unity of all elementary particles,” PRL, 32: 438441.Google Scholar
Georgi, H., Quinn, H. R., and Weinberg, S. (1974). “Hierarchy of interactions in unified gauge theories,” PRL, 33: 451454.Google Scholar
Gershstein, S., and Zel’dovich, J. (1955). “On corrections from mesons to the theory of β-decay,” Zh. Eksp. Teor. Fiz., 29: 698699. (English trans.: JETP, 2: 576).Google Scholar
Gerstein, I., and Jackiw, R. (1969). “Anomalies in Ward identities for three-point functions,” PR, 181: 19551963.Google Scholar
Gervais, J. L., and Lee, B. W. (1969). “Renormalization of the σ-model (II) Fermion fields and regularization,” NP, B12: 627646.Google Scholar
Giedymin, J. (1982). Science and Convention (Pergamon, Oxford).Google Scholar
Gilbert, W. (1964). “Broken symmetries and massless particles,” Phys. Rev. Lett., 12: 713714.Google Scholar
Ginzburg, V. L., and Landau, L. D. (1950). “On the theory of superconductivity,” Zh. Eksp. Teor. Fiz., 20: 1064.Google Scholar
Glashow, S. L. (1959). “The renormalizability of vector meson interactions,” NP, 10: 107117.Google Scholar
Glashow, S. L. (1961). “Partial symmetries of weak interactions,” NP, 22: 579588.Google Scholar
Glashow, S. L. (1980). “Toward a unified theory: threads in a tapestry,” RMP, 52: 539543.Google Scholar
Glashow, S. L., Iliopoulos, J., and Maiani, L. (1970). “Weak interactions with lepton–hadron symmetry,” PR, D2: 12851292.Google Scholar
Glauser, R. J. (1953). “On the gauge invariance of the neutral vector meson theory,” PTP, 9: 295298.Google Scholar
Glimm, J., and Jaffe, A. (1987). Quantum Physics, section 6.6 (Springer-Verlag).Google Scholar
Gödel, K. (1949). “An example of a new type of cosmological solution of Einstein’s field equations of gravitation,” RMP, 21: 447450.Google Scholar
Gödel, K. (1952). “Rotating universes in general relativity theory,” Proceedings of the International Congress of Mathematicians, Cambridge, Mass. 1950 (American Mathematical Society, Providence, RI), vol. I, 175181.Google Scholar
Goldberger, M. L. (1955a). “Use of causality conditions in quantum theory,” PR, 97: 508510.Google Scholar
Goldberger, M. L. (1955b). “Causality conditions and dispersion relations. I. Boson fields,” PR, 99: 979985.Google Scholar
Goldberger, M. L., and Treiman, S. B. (1958a). “Decay of the pi meson,” PR, 110: 11781184.Google Scholar
Goldberger, M. L., and Treiman, S. B. (1958b). “Form factors in β decay and v capture,” PR, 111: 354361.Google Scholar
Goldhaber, G., et al. (1976). Observation in e+ e annihilation of a narrow state at 1865 Mev/c2 decaying to Kπ and Κπππ,” PRL, 37: 255259.Google Scholar
Goldstone, J. (1961). “Field theories with “superconductor” solutions,” NC, 19: 154164.Google Scholar
Goldstone, J., Salam, A., and Weinberg, S. (1962). “Broken symmetries,” PR, 127: 965970.Google Scholar
Goto, T., and Imamura, T. (1955). “Note on the non-perturbation-approach to quantum field theory,” PTP, 14: 396397.Google Scholar
Green, M. B. (1985). “Unification of forces and particles in superstring theories,” Nature, 314: 409414.Google Scholar
Green, M. B., and Schwarz, J. H. (1985). “Infinity cancellations in SO(32) superstring theory,” PL, 151B: 2125.Google Scholar
Green, M. B., Schwarz, J. H., and Witten, E. (1987). Superstring Theory (Cambridge University Press, Cambridge).Google Scholar
Greenberg, O. W. (1964). “Spin and unitary-spin independence in a paraquark model of baryons and mesons,” PRL, 13: 598.Google Scholar
Greenberg, O. W., and Zwanziger, D. (1966). “Saturation in triplet models of hadrons,” PR, 150: 1177.Google Scholar
Gross, D. (1985). “Beyond quantum field theory,” in Recent Developments in Quantum Field Theory, eds. Ambjorn, J. Durhuus, B. J., and Petersen, J. L. (Elsevier, New York), 151168.Google Scholar
Gross, D. (1992). “Asymptotic freedom and the emergence of QCD’ (a talk given at the Third International Symposium on the History of Particle Physics, June 26, 1992; Princeton Preprint PUPT 1329).Google Scholar
Gross, D., and Jackiw, R. (1972). “Effect of anomalies on quasi-renormalizable theories,” PR, D6: 477493.Google Scholar
Gross, D., and Llewellyn Smith, C. H. (1969). “High-energy neutrino–nucleon scattering, current algebra and partons,” NP, B14: 337347.Google Scholar
Gross, D., and Treiman, S. (1971). “Light cone structure of current commutators in the gluon–quark model,” PR, D4: 10591072.Google Scholar
Gross, D., and Wilczek, F. (1973a). “Ultraviolet behavior of non-Abelian gauge theories,” PRL, 30: 13431346.Google Scholar
Gross, D., and Wilczek, F. (1973b). “Asymptotic free gauge theories: I,” PR, D8: 36333652.Google Scholar
Gross, D., and Wilczek, F. (1973c). “Asymptotically free gauge theories. II,” PR, D9: 980.Google Scholar
Gulmanelli, P. (1954). Su una Teoria dello Spin Isotropico (Pubblicazioni della Sezione di Milano dell’istituto Nazionale di Fisica Nucleare, Casa Editrice Pleion, Milano).Google Scholar
Guralnik, G. S. (2011). “The beginnings of spontaneous symmetry breaking in particle physics,” Proceedings of the DPF-2011 Conference, Providence, RI, 8–13, August 2011. Ar1110.2253v1 [physics, hist-ph].Google Scholar
Guralnik, G. S. (2013). “Heretical ideas that provided the cornerstone for the standard model of particle physics,” SPG MITTEILUNGEN March 2013, No. 39 (p. 14).Google Scholar
Guralnik, G. S., Hagen, C. R., and Kibble, T. W. B. (1964). “Global conservation laws and massless particles,” PRL, 13: 585587.Google Scholar
Gürsey, F. (1960a). “On the symmetries of strong and weak interactions,” NC, 16: 230240.Google Scholar
Gürsey, F. (1960b). “On the structure and parity of weak interaction currents,” Proceedings of 10th International High Energy Physics Conference, 570–577.Google Scholar
Gürsey, F., and Radicati, L. A. (1964). “Spin and unitary spin independence,” PRL, 13: 173175.Google Scholar
Gürsey, F., and Sikivie, P. (1976). “E7 as a unitary group,” PRL, 36: 775778.Google Scholar
Haag, R. (1958). “Quantum field theories with composite particles and asymptotic conditions,” PR, 112: 669673.Google Scholar
Haas, A. (1910a). “Über die elektrodynamische Bedeutung des Planck’schen strahlungsgesetzes und über eine neue Bestimmung des elektrischen Elementarquantums und der Dimensionen des Wasserstoffatoms,” Wiener Ber II, 119: 119144.Google Scholar
Haas, A. (1910b). “Über eine neue theoretische Methode zur Bestmmung des elektrischen Elementarquantums und des Halbmessers des Wasserstoffatoms,” Phys. Z., 11: 537538.Google Scholar
Haas, A. (1910c). “Der zusammenhang des Planckschen elementaren Wirkungsquantums mit dem Grundgrössen der Elektronentheorie,” J. Radioakt., 7: 261268.Google Scholar
Haag, R. (1955). “On quantum field theories,” Det Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske Meddelelser 29(12): 137.Google Scholar
Hacking, I. (1983). Representing and Intervening (Cambridge University Press, Cambridge).Google Scholar
Hamprecht, B. (1967). “Schwinger terms in perturbation theory,” NC, 50A: 449457.Google Scholar
Han, M. Y., and Nambu, Y. (1965). “Three-triplet model with double SU(3) symmetry,” PR, B139: 10061010.Google Scholar
Hanson, N. R. (1958). Patterns of Discovery (Cambridge University Press, Cambridge).Google Scholar
Hara, Y. (1964). “Unitary triplets and the eightfold way,” PR, B134: 701704.Google Scholar
Harman, P. M. (1982a). Energy, Force, and Matter: The Conceptual Development of Nineteenth-Century Physics (Cambridge University Press, Cambridge).Google Scholar
Harman, P. M. (1982b). Metaphysics and Natural Philosophy: The Problem of Substance in Classical Physics (Barnes and Noble, Totowa, NJ).Google Scholar
Harrington, B. J., Park, S. Y., and Yildiz, A. (1975). “Spectrum of heavy mesons in e+ e annihilation,” PRL, 34: 168171.Google Scholar
Hartle, J. B., and Hawking, S. W. (1983). “Wave function of the universe,” PR, D28: 29602975.Google Scholar
Hasert, F. J., et al. (1973a). “Search for elastic muon-neutrino electron scattering,” PL, 46B: 121124.Google Scholar
Hasert, F. J., et al. (1973b). “Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment,” PL, 46B: 138140.Google Scholar
Hawking, S. (1975). “Particle creation by black holes,” CMP, 43: 199220.Google Scholar
Hawking, S. (1979). “The path-integral approach to quantum gravity,” in General Relativity: An Einstein Centenary Survey, eds. Hawking, S., and Israel, W. (Cambridge University Press, Cambridge).Google Scholar
Hawking, S. (1980). Is the End in Sight for Theoretical Physics? (Cambridge University Press, Cambridge).Google Scholar
Hawking, S. (1987). “Quantum cosmology,” in Three Hundred Years of Gravitation, eds. Hawking, S. W., and Israel, W. (Cambridge University Press, Cambridge), 631.Google Scholar
Hawking, S., and Ellis, G. (1968). “The cosmic black body radiation and the existence of singularities in our universe,” Astrophys. J., 152: 2536.Google Scholar
Hawking, S., and Penrose, R. (1970). “The singularities of gravitational collapse and cosmology,” PRS, A314: 529548.Google Scholar
Hayakawa, S. (1983). “The development of meson physics in Japan,” in The Birth of Particle Physics, eds. Brown, L. M., and Hoddeson, L. (Cambridge University Press, Cambridge), 82107.Google Scholar
Hayashi, K., and Bregman, A. (1973). “Poincaré gauge invariance and the dynamical role of spin in gravitational theory,” AP, 75: 562600.Google Scholar
Hehl, F. W (2014). “Gauge theory of gravity and spacetime,” arXiv:1204.3672.Google Scholar
Hehl, F. W., et al. (1976). “General relativity with spin and torsion: foundations and prospects,” RMP, 48: 393416.Google Scholar
Heilbron, J. L. (1981). “The electric field before Faraday,” in Conceptions of Ether, eds. Cantor, G. N., and Hodge, M. J. S. (Cambridge University Press, Cambridge), 187213.Google Scholar
Heisenberg, W. (1925). “Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehung,” ZP, 33: 879883.Google Scholar
Heisenberg, W. (1926a). “Über die spektra von Atomsystemen mit zwei Elektronen,” ZP, 39: 499518.Google Scholar
Heisenberg, W. (1926b). “Schwankungserscheinungen und Quantenmechanik,” ZP, 40: 501.Google Scholar
Heisenberg, W. (1926c). “Quantenmechanik,” Naturwissenschaften, 14: 989994.Google Scholar
Heisenberg, W. (1926d). Letters to Pauli, W.: 28 Oct. 1926, 4 Nov. 1926, 23 Nov. 1926, in Pauli, W., Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg, u. A., Band I: 1919–1929, eds. Hermann, A., Meyenn, K. V., and Weisskopf, V. E. (Springer-Verlag, Berlin, 1979).Google Scholar
Heisenberg, W. (1927). “Über den anschaulichen Inhalt der quantentheoretischen kinematik u. mechanik,” ZP, 43: 172198.Google Scholar
Heisenberg, W. (1928). “Zur Theorie des Ferromagnetismus,” ZP, 49: 619636.Google Scholar
Heisenberg, W. (1932a). “Über den Bau der Atomkerne,” ZP, 77: 111.Google Scholar
Heisenberg, W. (1932b). “Über den Bau der Atomkerne,” ZP, 78: 156164.Google Scholar
Heisenberg, W. (1933). “Über den Bau der Atomkerne,” ZP, 80: 587596.Google Scholar
Heisenberg, W. (1934). “Remerkung zur Diracschen Theorie des Positrons,” ZP, 90: 209231.Google Scholar
Heisenberg, W. (1943a). “Die “beobachtbaren Grössen” in der Theorie der Elementarteilchen,” ZP, 120: 513538.Google Scholar
Heisenberg, W. (1943b). “Die “beobachtbaren Grössen” in der Theorie der Elementarteilchen. II,” ZP, 120: 673702.Google Scholar
Heisenberg, W. (1944). “Die “beobachtbaren Grössen” in der Theorie der Elementarteilchen. III,” ZP, 123: 93112.Google Scholar
Heisenberg, W. (1955). “The development of the interpretation of the quantum theory,” in Niels Bohr and the Development of Physics, ed. Pauli, W. (McGraw-Hill, New York), 1229.Google Scholar
Heisenberg, W. (1957). “Quantum theory of fields and elementary particles,” RMP, 29: 269278.Google Scholar
Heisenberg, W. (1958). “Research on the non-linear spinor theory with indefinite metric in Hilbert space,” in 1958 Annual International Conference on High Energy Physics at CERN (CERN, Geneva), 119126.Google Scholar
Heisenberg, W. (1960). “Recent research on the nonlinear spinor theory of elementary particles,” in Proceedings of the 1960 Annual International Conference on High Energy Physics at Rochester (Interscience, New York), 851857.Google Scholar
Heisenberg, W. (1961). “Planck’s discovery and the philosophical problems of atomic physics,” in On Modern Physics (by Heisenberg and others), trans. Goodman, M., and Binns, J. W. (C. N. Potter, New York).Google Scholar
Heisenberg, W. (1966). Introduction to the Unified Field Theory of Elementary Particles (Interscience, New York).Google Scholar
Heisenberg, W. (1971). Physics and Beyond: Encounters and Conversations (Harper and Row, New York).Google Scholar
Heisenberg, W., and Pauli, W. (1929). “Zur Quantenelektrodynamik der Wellenfelder. I,” ZP, 56: 161.Google Scholar
Heisenberg, W., and Pauli, W. (1930). “Zur Quantenelektrodynamik der Wellenfelder. II,” ZP, 59: 168190.Google Scholar
Heisenberg, W., et.al. (1959). “Zur theorie der elementarteilchen,” Z. Naturfor., 14A: 441–485.Google Scholar
Heitler, W. (1936). The Quantum Theory of Radiation (Clarendon, Oxford).Google Scholar
Heitler, W. (1961). “Physical aspects in quantum-field theory,” in The Quantum Theory of Fields, ed. Stoops, R. (Interscience, New York), 3760.Google Scholar
Heitler, W., and Herzberg, G. (1929). “Gehorchen die Stickstoffkerne der Boseschen Statistik?Naturwissenschaften, 17: 673.Google Scholar
Hendry, J. (1984). The Creation of Quantum Mechanics and the Bohr–Pauli Dialogue (Reidel, Dordrecht/Boston/Lancaster).Google Scholar
Hertz, H. (1894). Die Prinzipien der Mechanik in neuem Zusammenhang Dargestellt (Barth, Leipzig).Google Scholar
Hesse, M. B. (1961). Forces and Fields (Nelson, London).Google Scholar
Hesse, M. B. (1974). The Structure of Scientific Inference (Macmillan, London).Google Scholar
Hesse, M. B. (1980). Revolutions and Reconstructions in the Philosophy of Science (Harvester, Brighton, Sussex).Google Scholar
Hesse, M. B. (1981). “The hunt for scientific reason,” in PSA 1980 (Philosophy of Science Association, East Lansing, MI, 1981), vol. 2, 322.Google Scholar
Hesse, M. B. (1985). “Science beyond realism and relativism” (unpublished manuscript).Google Scholar
Hessenberg, G. (1917). “Vektorielle Begründung der Differentialgeometrie,” Math. Ann., 78: 187.Google Scholar
Higgs, P. W. (1964a). “Broken symmetries, massless particles and gauge fields,” PL, 12: 132133.Google Scholar
Higgs, P. W. (1964b). “Broken symmetries and the masses of gauge bosons,” PRL, 13: 508509.Google Scholar
Higgs, P. W. (1966). “Spontaneous symmetry breakdown without massless bosons,” Phys. Rev., 145: 11561163.Google Scholar
Hilbert, D. (1915). “Die Grundlagen der Physik,” Nachr. Ges. Wiss. Göttingen Math.- phys. Kl., 395–407.Google Scholar
Hilbert, D. (1917). “Die Grundlagen der Physik: zweite Mitteilung,” Nachr. Ges. Wiss. Göttingen. Math.-phys. Kl., 55 –76(201): 477480.Google Scholar
Holton, G. (1973). Thematic Origins of Scientific Thought: Kepler to Einstein (Harvard University Press, Cambridge, MA).Google Scholar
Hosotani, Y. (1983). “Dynamical gauge symmetry breaking as the Casimir effect,” PL, 129B: 193197.Google Scholar
Houard, J. C., and Jouvet, B. (1960). “Etude d’un modèle de champ à constante de renormalisation nulle,” NC, 18: 466481.Google Scholar
Houtappel, R. M. F., Van Dam, H., and Wigner, E. P. (1965). “The conceptual basis and use of the geometric invariance principles,” RMP, 37: 595632.Google Scholar
Hubble, E. P. (1929). “A relation between distance and radial velocity among extra-galactic nebulae,” Proc. Natl. Acad. Sci. USA, 15: 169173.Google Scholar
Hurst, C. A. (1952). “The enumeration of graphs in the Feynman–Dyson technique,” PRS, A214: 4461.Google Scholar
Iagolnitzer, D., and Stapp, H. P. (1969). “Macroscopic causality and physical region analyticity in the S-matrix theory,” CMP, 14: 1555.Google Scholar
Isham, C. (1990). “An introduction to general topology and quantum topology,” in Physics, Geometry, and Topology, ed. Lee, H. C. (Plenum, New York), 129189.Google Scholar
Ito, D., Koba, Z., and Tomonaga, S. (1948). “Corrections due to the reaction of “cohesive force field” to the elastic scattering of an electron. I,” PTP, 3: 276289.Google Scholar
Iwanenko, D. (1932a). “The neutron hypothesis,” Nature, 129: 798.Google Scholar
Iwanenko, D. (1932b). “Sur la constitution des noyaux atomiques,” Compt. Rend. Acad. Sci. Paris, 195: 439141.Google Scholar
Iwanenko, D. (1934). “Interaction of neutrons and protons,” Nature, 133: 981982.Google Scholar
Jackiw, R. (1972). “Field investigations in current algebra,” in Lectures on Current Algebra and Its Applications, by Treiman, S. B., Jackiw, R., and Gross, D. J. (Princeton University Press, Princeton), 97254.Google Scholar
Jackiw, R. (1975). “Dynamical symmetry breaking,” in Laws of Hadronic Matter, ed. Zichichi, A. (Academic Press, New York).Google Scholar
Jackiw, R. (1985). “Topological investigations of quantified gauge theories,” in Current Algebra and Anomalies, eds. Treiman, S. B., Jackiw, R., Zumino, B., and Witten, E. (Princeton University Press, Princeton), 211359.Google Scholar
Jackiw, R. (1991). “Breaking of classical symmetries by quantum effects,” MIT preprint CTP #1971 (May 1991).Google Scholar
Jackiw, R., and Johnson, K. (1969). “Anomalies of the axial-vector current,” PR, 182: 14591469.Google Scholar
Jackiw, R., and Preparata, G. (1969). “Probe for the constituents of the electromagnetic current and anomalous commutators,” PRL, 22: 975977.Google Scholar
Jackiw, R., and Rebbi, C. (1976). “Vacuum periodicity in a Yang–Mills quantum theory,” PRL, 37: 172175.Google Scholar
Jackiw, R., Van Royen, R., and West, G. (1970). “Measuring light-cone singularities,” PR, D2: 24732485.Google Scholar
Jacob, M. (1974). Dual Theory (North-Holland, Amsterdam).Google Scholar
Jaffe, A. (1965). “Divergence of perturbation theory for bosons,” CMP, 1: 127149.Google Scholar
Jaffe, A. (1995). Conversation with Schweber, S. S. and Cao, T. Y. on February 9, 1995.Google Scholar
Jammer, M. (1974). The Philosophy of Quantum Mechanics (McGraw-Hill, New York).Google Scholar
Johnson, K. (1961). “Solution of the equations for the Green’s functions of a two dimensional relativistic field theory,” NC, 20: 773790.Google Scholar
Johnson, K. (1963). “γ5 Invariance,” PL, 5: 253254.Google Scholar
Johnson, K., and Low, F. (1966). “Current algebra in a simple model,” PTP, 37 –38: 7493.Google Scholar
Jordan, P. (1925). “Über das thermische Gleichgewicht zwischen quantenatomen und Hohlraumstrahlung,” ZP, 33: 649655.Google Scholar
Jordan, P. (1927a). “Zur quantenmechanik der gasentartung,” ZP, 44: 473480.Google Scholar
Jordan, P. (1927b). “Über Wellen und Korpuskeln in der quantenmechanik,” ZP, 45: 766775.Google Scholar
Jordan, P. (1928). “Der Charakter der quantenphysik,” Naturwissenschaften, 41: 765772. (English trans. taken from J. Bromberg, 1976).Google Scholar
Jordan, P. (1973). “Early years of quantum mechanics: some reminiscences,” in The Physicists Conception of Nature, ed. Mehra, (Reidel, Dordrecht), 294300.Google Scholar
Jordan, P., and Klein, O. (1927). “Zum Mehrkörperproblem der Quantentheorie,” ZP, 45: 751765.Google Scholar
Jordan, P., and Wigner, E. (1928). “Über das Paulische Äquivalenzverbot,” ZP, 47: 631651.Google Scholar
Jost, R. (1947). “Über die falschen Nullstellen der Eigenwerte der S-matrix,” Helv. Phys. Acta., 20: 256266.Google Scholar
Jost, R. (1965). The General Theory of Quantum Fields (American Mathematical Society, Providence, RI).Google Scholar
Jost, R. (1972). “Foundation of quantum field theory,” in Aspects of Quantum Theory, eds. Salam, A., and Wigner, E. P. (Cambridge University Press, Cambridge), 6177.Google Scholar
Kadanoff, L. P. (1966). “Scaling laws for Ising models near Tc,” Physics, 2 : 263272.Google Scholar
Kadanoff, L. P., Götze, W., Hamblen, D., Hecht, R., Lewis, E., Palciauskas, V., Rayl, M., Swift, J., Aspnes, D., and Kane, J. (1967). “Static phenomena near critical points: theory and experiment,” RMP, 39: 395431.Google Scholar
Källen, G. (1953). “On the magnitude of the renormalization constants in quantum electrodynamics,” Dan. Mat.-Fys. Medd., 27: 118.Google Scholar
Källen, G. (1966). “Review of consistency problems in quantum electrodynamics,” Acta Phys. Austr. Suppl., 2: 133161.Google Scholar
Kaluza, T. (1921). “Zum Unitätsproblem der Physik,” Preussische Akad. Wiss. Sitzungsber, 54: 966972.Google Scholar
Kamefuchi, S. (1951). “Note on the direct interaction between spinor fields,” PTP, 6: 175181.Google Scholar
Kamefuchi, S. (1960). “On Salam’s equivalence theorem in vector meson theory,” NC, 18: 691696.Google Scholar
Kant, I. (1783). Prolegomena zu einer jeden künftigen Metaphysik die als Wissenschaft wird auftreten können (J. F. Hartknoch, Riga), English trans. revised by Ellington, J. W. (Hackett, Indianapolis, 1977).Google Scholar
Karaca, K. (2013). “The construction of the Higgs mechanism and the emergence of the electroweak theory,” Stud. Hist. Philos. Mod. Phys., 44: 116.Google Scholar
Kastrup, H. A. (1966). “Conformal group in space-time,” PR, 142: 10601071.Google Scholar
Kemmer, N. (1938). “The charge-dependence of nuclear forces,” Proc. Cam. Philos. Soc., 34: 354364.Google Scholar
Kerr, R. P. (1963). “Gravitational field of a spinning mass as an example of algebraically special metrics,” PRL, 11: 237238.Google Scholar
Kerszberg, P. (1989). “The Einstein–de Sitter controversy of 1916–1917 and the rise of relativistic cosmology,” in Einstein and the History of General Relativity, eds. Howard, D., and Stachel, J. (Birkhäuser, Boston/Basel/Berlin), 325366.Google Scholar
Kibble, T. W. B. (1961). “Lorentz invariance and the gravitational field,” JMP, 2: 212.Google Scholar
Kibble, T. W. B. (1967). “Symmetry breaking in non-Abelian gauge theories,” PR, 155: 15541561.Google Scholar
Kinoshita, T. (1950). “A note on the C meson hypothesis,” PTP, 5: 535536.Google Scholar
Klein, A., and Lee, B. W. (1964). “Does spontaneous breakdown of symmetry imply zero-mass particles?Phys. Rev. Lett., 12: 266268.Google Scholar
Klein, F. (1872). “A comparative review of recent researches in geometry,” English trans., in N. Y. Math. Soc. Bull., 2(1893): 215249.Google Scholar
Klein, O. (1926). “Quantentheorie und fündimentionale Relativitätstheorie,” ZP, 37: 895906.Google Scholar
Klein, O. (1927). “Zur fundimentionalen Darstellung der Relativitästheorie,” ZP, 46: 188.Google Scholar
Klein, O. (1939). “On the theory of charged fields,” in New Theories in Physics, Conference organized in collaboration with the International Union of Physics and the Polish Intellectual Co-operation Committee, Warsaw, May 30–June 3, 1938 (International Institute of Intellectual Cooperation, Paris, 1939), 7793.Google Scholar
Kline, M. (1972). Mathematical Thought from Ancient to Modern Times (Oxford University Press, Oxford).Google Scholar
Koba, Z., and Tomonaga, S. (1947). “Application of the ‘self-consistent’ subtraction method to the elastic scattering of an electron,” PTP, 2: 218.Google Scholar
Koester, D., Sullivan, D., and White, D. H. (1982). “Theory selection in particle physics: a quantitative case study of the evolution of weak-electromagnetic unification theory,” Social Stud. Sci., 12: 73100.Google Scholar
Kogut, J., and Susskind, L. (1975). “Hamiltonian formulation of Wilson’s lattice gauge theories,” PR, D11: 395408.Google Scholar
Komar, A., and Salam, A. (1960). “Renormalization problem for vector meson theories,” NP, 21: 624630.Google Scholar
Komar, A., and Salam, A. (1962). “Renormalization of gauge theories,” PR, 127: 331334.Google Scholar
Koyré, A. (1965). Newtonian Studies (Harvard University Press, Cambridge, MA).Google Scholar
Krajewski, W. (1977). Correspondence Principle and Growth of Science (Reidel, Dordrecht).Google Scholar
Kramers, H. (1924). “The law of dispersion and Bohr’s theory of spectra,” Nature, 113: 673674.Google Scholar
Kramers, H. (1938a). Quantentheorie des Elektrons und der Strahlung, part 2 of Hand- und Jahrbuch der Chemische Physik. I (Akad. Verlag, Leipzig).Google Scholar
Kramers, H. (1938b). “Die Wechselwirkung zwischen geladenen Teilchen und Strahlungsfeld,” NC, 15: 108114.Google Scholar
Kramers, H. (1944). “Fundamental difficulties of a theory of particles,” Ned. Tijdschr. Natuurk., 11: 134147.Google Scholar
Kramers, H. (1947). A review talk at the Shelter Island conference, June 1947 (unpublished). For its content and significance in the development of renormalization theory, see Schweber, S. S.: “A short history of Shelter Island I,” in Island, Shelter II, eds. Jackiw, R., Khuri, N. N., Weinberg, S., and Witten, E. (MIT Press, Cambridge, MA, 1985).Google Scholar
Kramers, H., and Heisenberg, W. (1925). “Über die Streuung von Strahlen durch Atome,” ZP, 31: 681708.Google Scholar
Kretschmann, E. (1917). “Über den Physikalischen Sinn der Relativitats-postulaten,” Ann. Phys., 53: 575614.Google Scholar
Kripke, (1972). “Naming and necessity,” in Semantics of Natural Language, eds. Davidson, D., and Harman, G. (Reidel, Dordrecht).Google Scholar
Kronig, R. (1946). “A supplementary condition in Heisenberg’s theory of elementary particles,” Physica, 12: 543544.Google Scholar
Kruskal, M. D. (1960). “Minimal extension of the Schwarzschild metric,” PR, 119: 17431745.Google Scholar
Kuhn, T. S. (1962). The Structure of Scientific Revolutions (University of Chicago Press, Chicago).Google Scholar
Kuhn, T. S. (1970). The Structure of Scientific Revolutions, second enlarged edition (University of Chicago Press, Chicago).Google Scholar
Kuhn, T. S. (1976). “Theory-change as structure-change: comments on the Sneed formalism,” Erkenntnis, 10: 179199.Google Scholar
Kuhn, T. S. (1990). “The road since structure,” in PSA 1990 (Philosophy of Science Association, East Lansing, MI), vol. 2, 313.Google Scholar
Kuhn, T. S. (1991). “The trouble with the historical philosophy of science,” Robert and Maurine Rothschild Distinguished Lecture delivered at Harvard University on 19 November 1991.Google Scholar
Kuhn, T. S. (1993). Afterwords to World Changes – Thomas Kuhn and the Nature of Science, ed. Horwich, P. (MIT Press, Cambridge, MA).Google Scholar
Kuhn, T. S. (2000). The Road since Structure (University of Chicago Press, Chicago).Google Scholar
Lamb, W. E., and Retherford, R. C. (1947). “Fine structure of the hydrogen atom by a microwave method,” PR, 72: 241243.Google Scholar
Lagrange, J. L. (1788). Mécanique analytique (République, Paris).Google Scholar
Lagrange, J. L. (1797). Théorie des fonctions analytiques (République, Paris).Google Scholar
Landau, L. D. (1937). “On the theory of phase transitions,” Phys. Z. Sowjetunion, 11: 2647, 545–555; also in Collected Papers (of Landau, L. D.), ed. ter Haar, D. (New York, 1965), 193–216.Google Scholar
Landau, L. D. (1955). “On the quantum theory of fields,” in Niels Bohr and the Development of Physics, ed. Pauli, W. (Pergamon, London), 5269.Google Scholar
Landau, L. D. (1958). Letter to Heisenberg, Feb. 1958, quoted by Brown, L. M. and Rechenberg, H. (1988): “Landau’s work on quantum field theory and high energy physics (1930–1961),” Max Planck Institute Preprint MPI-PAE/Pth 42/88 (July 1988), 30.Google Scholar
Landau, L. D. (1959). “On analytic properties of vertex parts in quantum field theory,” NP, 13: 181192.Google Scholar
Landau, L. D. (1960a). “On analytic properties of vertex parts in quantum field theory,” in Proceedings of the Ninth International Annual Conference on High Energy Physics (Moscow), II, 95–101.Google Scholar
Landau, L. D. (1960b). “Fundamental problems,” in Theoretical Physics in the Twentieth Century, eds. Fierz, M., and Weisskopf, V. F. (Interscience, New York).Google Scholar
Landau, L. D. (1965). Collected Papers (Pergamon, Oxford).Google Scholar
Landau, L. D., and Pomeranchuck, I. (1955). “On point interactions in quantum electrodynamics,” DAN, 102: 489491.Google Scholar
Landau, L. D., Abrikosov, A. A., and Khalatnikov, I. M. (1954a). “The removal of infinities in quantum electrodynamics,” DAN, 95: 497499.Google Scholar
Landau, L. D., Abrikosov, A. A., and Khalatnikov, I. M. (1954b). “An asymptotic expression for the electro Green function in quantum electrodynamics,” DAN, 95: 773776.Google Scholar
Landau, L. D., Abrikosov, A. A., and Khalatnikov, I. M. (1954c). “An asymptotic expression for the photon Green function in quantum electrodynamics,” DAN, 95: 11171120.Google Scholar
Landau, L. D., Abrikosov, A. A., and Khalatnikov, I. M. (1954d). “The electron mass in quantum electrodynamics,” DAN, 96: 261263.Google Scholar
Landau, L. D., Abrikosov, A. A., and Khalatnikov, I. M. (1956). “On the quantum theory of fields,” NC (Suppl.), 3: 80104.Google Scholar
Larmor, J. (1894). “A dynamical theory of the electric and luminiferous medium,” Philos. Trans. Roy. Soc., 185: 719822.Google Scholar
Lasenby, A., Doran, C., and Gull, S. (1998). “Gravity, gauge theories and geometric algebra,” Philos. Trans. R. Soc. Lond., A356: 487582.Google Scholar
Laudan, L. (1981). “A confutation of convergent realism,” Philos. Sci., 48: 1949.Google Scholar
Lee, B. W. (1969). “Renormalization of the σ-model,” NP, B9: 649672.Google Scholar
Lee, B. W. (1972). “Perspectives on theory of weak interactions,” In Proceedings of High Energy Physics Conference (1972), ed. Jacob, M. (National Accelerator Laboratory, Batavia, IL), vol. 4, 249306.Google Scholar
Lee, T. D. (1954). “Some special examples in renormalizable field theory,” PR, 95: 13291334.Google Scholar
Lee, T. D., and Wick, G. C. (1974). “Vacuum stability and vacuum excitation in a spin-0 field theory,” PR, D9: 22912316.Google Scholar
Lee, T. D., and Yang, C. N. (1962). “Theory of charge vector mesons interacting with the electromagnetic field,” PR, 128: 885898.Google Scholar
Lee, Y. K., Mo, L. W., and Wu, C. S. (1963). “Experimental test of the conserved vector current theory on the beta spectra of B12 and N12,” PRL, 10: 253258.Google Scholar
Lehmann, H., Symanzik, K., and Zimmerman, W. (1955). “Zur Formalisierung quantisierter Feldtheorie,” NC, 1(10): 205225.Google Scholar
Lehmann, H., Symanzik, K., and Zimmerman, W. (1957). “On the formulation of quantized field theories,” NC, 6(10): 319333.Google Scholar
Lemaître, G. (1925). “Note on de Sitter’s universe,” J. Math. Phys., 4: 189192.Google Scholar
Lemaître, G. (1927). “Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nebuleues extragalactiques,” Ann. Soc. Sci. Bruxelles, A47: 4959. (English trans.: Monthly Notices of the Royal Astronomical Society, 91(1931): 483–490).Google Scholar
Lemaître, G. (1932). “La expansion de l’espace,” Rev. Quest. Sci., 20: 391410.Google Scholar
Lemaître, G. (1934). “Evolution of the expanding universe,” Proc. Natl. Acad. Sci., 20: 1217.Google Scholar
Lense, J., and Thirring, H. (1918). “Ueber den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie,” Phys. Z., 19: 156163.Google Scholar
Lepage, G.P. (1989). “What is renormalization?,” Cornell University preprint CLNS 89/970, also in From Action to Answers, eds. DeGrand, T., and Toussaint, T. (World Scientific, Singapore, 1990), 446457.Google Scholar
Leutwyler, H. (1968). “Is the group SU(3)l an exact symmetry of one-particle-states?” Preprint, University of Bern, unpublished.Google Scholar
Leutwyler, H., and Stern, J. (1970). “Singularities of current commutators on the light cone,” NP, B20: 77101.Google Scholar
Levi-Civita, T. (1917). “Nozione di parallelismo in una varietà qualunque,” Rend. Circ. Mat. Palermo, 42: 173205.Google Scholar
Lewis, G. N. (1926). “The conservation of photons,” Nature, 118: 874875.Google Scholar
Lewis, H. W. (1948). “On the reactive terms in quantum electrodynamics,” PR, 73: 173176.Google Scholar
Lie, S., and Engel, F. (1893). Theorie der Transformationsgruppen (Teubner, Leipzig).Google Scholar
Lipanov, L. N. (ed.) (2001) The Creation of Quantum Chromodynamics and the Effective Energy (World Scientific, Singapore).Google Scholar
Lodge, O. (1883). “The ether and its functions,” Nature, 27: 304306, 328–330.Google Scholar
London, F. (1927). “Quantenmechanische Deutung der Theorie von Weyl,” ZP, 42: 375389.Google Scholar
Lorentz, H. A. (1892). “La théorie électromagnetique de Maxwell et son application aux corps mouvants,” Arch. Néerlandaises, 25: 363552.Google Scholar
Lorentz, H. A. (1895). Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpen (Brill, Leiden).Google Scholar
Lorentz, H. A. (1899). “Théorie simplifiée des phénomènes électriques et optiques dans les corps en mouvement,” Versl. K. Akad. Wet. Amst., 7: 507522; reprinted in Collected Papers (Nijhoff, The Hague, 1934–1939), 5: 139–155.Google Scholar
Lorentz, H. A. (1904). “Electromagnetic phenomena in a system moving with any velocity less than that of light,” Proc. K. Akad. Amsterdam, 6: 809830.Google Scholar
Lorentz, H. A. (1915). The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat, second edition (Dover, New York).Google Scholar
Lorentz, H. A. (1916). Les Théories Statistiques et Thermodynamique (Teubner, Leipzig and Berlin).Google Scholar
Low, F. E. (1954). “Scattering of light of very low frequency by system of spin 1/2,” PR, 96: 14281432.Google Scholar
Low, F. E. (1962). “Bound states and elementary particles,” NC, 25: 678684.Google Scholar
Low, F. E. (1967). “Consistency of current algebra,” in Proceedings of Fifth Annual Eastern Theoretical Physics Conference, ed. Feldman, D. (Benjamin, New York), 75.Google Scholar
Low, F. E. (1988). An interview at MIT, July 26, 1988.Google Scholar
Ludwig, G. (1968). Wave Mechanics (Pergamon, Oxford).Google Scholar
Lyre, H. (2008). “Does the Higgs mechanism exist?Int. Stud. Philos. Sci., 22: 119133.Google Scholar
Mach, E. (1872). Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit (Calve, Prague).Google Scholar
Mach, E. (1883). Die Mechanik in ihrer Entwicklung. Historisch-Kritisch dargestellt (Brockhaus, Leipzig).Google Scholar
Mack, G. (1968). “Partially conserved dilatation current,” NP, B5: 499507.Google Scholar
Majorana, E. (1933). “Über die Kerntheorie,” ZP, 82: 137145.Google Scholar
Mandelstam, S. (1958). “Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity. General theory,” PR, 112: 13441360.Google Scholar
Mandelstam, S. (1968a). “Feynman rules for electromagnetic and Yang-Mills fields from the gauge-independent field-theoretic formalism,” PR, 175: 15801603.Google Scholar
Mandelstam, S. (1968b). “Feynman rules for the gravitational field from the coordinate-independent field-theoretic formalism,” PR, 175: 16041623.Google Scholar
Marciano, W., and Pagels, H. (1978). “Quantum chromodynamics,” Phys. Rep., 36: 137276.Google Scholar
Marshak, R. E., and Bethe, H. A. (1947). “On the two-meson hypothesis,” PR, 72: 506509.Google Scholar
Massimi, M. (ed.) (2008). Kant and Philosophy of Science Today (Cambridge University Press, Cambridge).Google Scholar
Matthews, P. T. (1949). “The S-matrix for meson-nucleon interactions,” PR, 76: 12541255.Google Scholar
Maxwell, G. (1971). “Structural realism and the meaning of theoretical terms,” in Minnesota Studies in the Philosophy of Science, vol. 4 (University of Minnesota Press, Minneapolis).Google Scholar
Maxwell, J. C. (1861/62). “On physical lines of force,” Philos. Mag., 21(4): 162175, 281–291, 338–348; 23: 12–24, 85–95.Google Scholar
Maxwell, J. C. (1864). “A dynamical theory of the electromagnetic field,” Scientific Papers, I: 526597.Google Scholar
Maxwell, J. C. (1873). A Treatise on Electricity and Magnetism (Clarendon, Oxford).Google Scholar
McGlinn, W. D. (1964). “Problem of combining interaction symmetries and relativistic invariance,” PRL, 12: 467469.Google Scholar
McGuire, J. E. (1974). “Forces, powers, aethers and fields,” in Methodological and Historical Essays in the Natural and Social Sciences, eds. Cohen, R. S., and Wartofsky, M. W. (Reidel, Dordrecht), 119159.Google Scholar
McMullin, E. (1982). “The motive for metaphor,” Proc. Am. Cathol. Philos. Assoc., 55: 27.Google Scholar
McMullin, E. (1984). “A case for scientific realism,” in Scientific Realism, ed. Leplin, J. (University of California Press, Berkeley/Los Angeles/London).Google Scholar
Merton, R. (1938). “Science, technology and society in seventeenth century England,” Osiris, 4: 360632.Google Scholar
Merz, J. T. (1904). A History of European Thought in the Nineteenth Century (W. Blackwood, Edinburgh, 1904–1912).Google Scholar
Meyerson, É. (1908). Identité et Reálité (Labrairie Félix Alcan, Paris).Google Scholar
Michell, J. (1784). “On the means of discovering the distance, magnitude, etc., of the fixed stars,” Philos. Trans. R. Soc. Lond., 74: 3557.Google Scholar
Mie, G. (1912a, b; 1913). “Grundlagen einer Theorie der Materie,” Ann. Phys., 37(4): 511534; 39: 1–10; 40: 1–66.Google Scholar
Miller, A. (1975). “Albert Einstein and Max Wertheimer: a gestalt psychologist’s view of the genesis of special relativity theory,” Hist. Sci., 13: 75103.Google Scholar
Mills, R. L., and Yang, C. N. (1966). “Treatment of overlapping divergences in the photon self-energy function,” PTP (Suppl.), 37/38: 507511.Google Scholar
Minkowski, H. (1907). “Das Relativitätsprinzip,” Ann. Phys., 47: 921.Google Scholar
Minkowski, H. (1908). “Die grundgleichungen für die elektromagnetischen vorguge in bewegten körper,” Gött. Nachr., 53–111.Google Scholar
Minkowski, H. (1909). “Raum und Zeit,” Phys. Z., 10: 104111.Google Scholar
Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation (Freeman, San Francisco).Google Scholar
Moulines, C. U. (1984). “Ontological reduction in the natural sciences,” in Reduction in Science, eds. Balzer, et al. (Reidel, Dordrecht), 5170.Google Scholar
Moyer, D. F. (1978). “Continuum mechanics and field theory: Thomson and Maxwell,” Stud. Hist. Philos. Sci., 9: 3550.Google Scholar
Nagel, E. (1961). The Structure of Science (Harcourt, New York).Google Scholar
Nambu, Y. (1955). “Structure of Green’s functions in quantum field theory,” PR, 100: 394411.Google Scholar
Nambu, Y. (1956). “Structure of Green’s functions in quantum field theory. II,” PR, 101: 459467.Google Scholar
Nambu, Y. (1957). “Parametric representations of general Green’s functions. II,” NC, 6: 10641083.Google Scholar
Nambu, Y. (1957a). “Possible existence of a heavy neutral meson,” PR, 106: 13661367.Google Scholar
Nambu, Y. (1959). Discussion remarks, Proceedings of the International Conference on High Energy Physics, IX (1959) (Academy of Science, Moscow, 1960), vol. 2, 121122.Google Scholar
Nambu, Y. (1960a). “Dynamical theory of elementary particles suggested by superconductivity,” in Proceedings of the 1960 Annual International Conference on High Energy Physics at Rochester (Interscience, New York), 858866.Google Scholar
Nambu, Y. (1960b). “Quasi-particles and gauge invariance in the theory of superconductivity,” PR, 117: 648663.Google Scholar
Nambu, Y. (1960c). “A ‘superconductor’ model of elementary particles and its consequences,” in Proceedings of the Midwest Conference on Theoretical Physics (Purdue University, West Lafayette).Google Scholar
Nambu, Y. (1960d). “Axial vector current conservation in weak interactions,” PRL, 4: 380382.Google Scholar
Nambu, Y. (1965). “Dynamical symmetries and fundamental fields,” in Symmetry Principles at High Energies, eds. Kursunoglu, B., Perlmutter, A., and Sakmar, A. (Freeman, San Francisco and London), 274285.Google Scholar
Nambu, Y. (1966). “A systematics of hadrons in subnuclear physics,” in Preludes in Theoretical Physics, eds. De Shalit, A., Feshbach, H., and Van Hove, L. (North-Holland, Amsterdam), 133142.Google Scholar
Nambu, Y. (1989). “Gauge invariance, vector-meson dominance, and spontaneous symmetry breaking,” in Pions to Quarks, eds. Brown, L. M., Dresden, M., and Hoddeson, L. (Cambridge University Press, Cambridge), 639642.Google Scholar
Nambu, Y., and Jona-Lasinio, G. (1961a). “A dynamical model of elementary particles based on an analogy with superconductivity. I,” PR, 122: 345358.Google Scholar
Nambu, Y., and Jona-Lasinio, G. (1961b). “A dynamical model of elementary particles based on an analogy with superconductivity. II,” PR, 124: 246254.Google Scholar
Nambu, Y., and Lurie, D. (1962). “Chirality conservation and soft pion production,” PR, 125: 14291436.Google Scholar
Navier, C. L. (1821). “Sur les lois de l’equilibre et du mouvement des corps solides elastiques,” Mém. Acad. (Paris), 7: 375.Google Scholar
Nersessian, N. J. (1984). Faraday to Einstein: Constructing Meaning in Scientific Theories (Martinus Nijhoff, Dordrecht).Google Scholar
Neumann, C. (1868). “Resultate einer Untersuchung über die Prinzipien der elektrodynamik,” Nachr. Ges. Wiss. Göttingen. Math.-phys. Kl., 20: 223235.Google Scholar
Neveu, A., and Scherk, J. (1972). “Connection between Yang–Mills fields and dual models,” NP, B36: 155161.Google Scholar
Neveu, A., and Schwarz, J. H. (1971a). “Factorizable dual model of pions,” NP, B31: 86112.Google Scholar
Neveu, A., and Schwarz, J. H. (1971b). “Quark model of dual pions,” PR, D4: 11091111.Google Scholar
Newman, J. R. (ed.) (1946). The Common Sense of the Exact Sciences (by W. K. Clifford) (Simon and Schuster, New York).Google Scholar
Newton, I. (1934). Sir Isaac Newton’s Mathematical Principle of Natural Philosophy and His System of the World, ed. Cajori, F. (University of California Press, Berkeley).Google Scholar
Newton, I. (1978). Unpublished Scientific Papers of Isaac Newton, eds. Hall, A. R., and Hall, M. B. (Cambridge University Press, Cambridge).Google Scholar
Nishijima, K. (1957). “On the asymptotic conditions in quantum field theory,” PTP, 17: 765802.Google Scholar
Nishijima, K. (1958). “Formulation of field theories of composite particles,” PR, 111: 9951011.Google Scholar
Nissani, N. (1984). “SL(2, C) gauge theory of gravitation: conservation laws,” Phys. Rep., 109: 95130.Google Scholar
Norton, J. (1984). “How Einstein found his field equations, 1912–1915,” Hist. Stud. Phys. Sci., 14: 253316.Google Scholar
Norton, J. (1985). “What was Einstein’s principle of equivalence?Stud. Hist. Philos. Sci., 16: 203246.Google Scholar
Norton, J. (1989). “Coordinates and covariance: Einstein's view of spacetime and the modern view," Foundat. Phys., 19, 12151263.Google Scholar
Okubo, S. (1966). “Impossibility of having the exact U6 group based upon algebra of currents,” NC, 42A: 10291034.Google Scholar
Olive, D. I. (1964). “Exploration of S-matrix theory,” PR, 135B: 745760.Google Scholar
Oppenheimer, J. R. (1930a). “Note on the theory of the interaction of field and matter,” PR, 35: 461477.Google Scholar
Oppenheimer, J. R. (1930b). “On the theory of electrons and protons,” PR, 35: 562563.Google Scholar
Oppenheimer, J. R., and Snyder, H. (1939). “On continued gravitational contraction,” PR, 56: 455.Google Scholar
Oppenheimer, J. R., and Volkoff, G. (1939). “On massive neutron cores,” PR, 54: 540.Google Scholar
O’Raifeartaigh, L. (1965). “Mass difference and Lie algebras of finite order,” PRL, 14: 575577.Google Scholar
Pais, A. (1945). “On the theory of the electron and of the nucleon,” PR, 68: 227228.Google Scholar
Pais, A. (1953). “Isotopic spin and mass quantization,” Physica, 19: 869887.Google Scholar
Pais, A. (1964). “Implications of Spin-Unitary Spin Independence,” PRL, 13: 175.Google Scholar
Pais, A. (1966). “Dynamical symmetry in particle physics,” RMP, 368: 215255.Google Scholar
Pais, A. (1986). Inward Bound (Oxford University Press, Oxford).Google Scholar
Pais, A., and Treiman, S. (1975). “How many charm quantum numbers are there?,” PRL, 35: 15561559.Google Scholar
Papapetrou, A. (1949). “Non-symmetric stress-energy-momentum tensor and spin-density,” Philos. Mag., 40: 937.Google Scholar
Parisi, G. (1973). “Deep inelastic scattering in a field theory with computable large-momenta behavior,” NC, 7: 8487.Google Scholar
Pasternack, S. (1938). “Note on the fine structure of Hα and Dα,” PR, 54: 11131115.Google Scholar
Pati, J. C., and Salam, A. (1973a). “Unified lepton–hadron symmetry and a gauge theory of the basic interactions,” PR, D8: 12401251.Google Scholar
Pati, J. C., and Salam, A. (1973b). “Is baryon number conserved?,” PRL, 31: 661664.Google Scholar
Pauli, W. (1926). Letter to Heisenberg, October 19, 1926, in Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg, U. A., Band I: 1919–1929, eds. Hermann, A., Meyenn, K. V., and Weisskopf, V. E. (Springer-Verlag, Berlin, 1979).Google Scholar
Pauli, W. (1930). A letter of 4 December 1930, in Collected Scientific Papers, eds. Kronig, R., and Weisskopf, V. F. (Interscience, New York, 1964), vol. II, 1313.Google Scholar
Pauli, W. (1933). Pauli’s remarks at the seventh Solvay conference, Oct. 1933, in Rapports du Septième Conseil de Physique Solvay, 1933 (Gauthier-Villarw, Paris, 1934).Google Scholar
Pauli, W. (1941). “Relativistic field theories of elementary particles,” RMP, 13: 203232.Google Scholar
Pauli, W. (1953a). Two letters to Abraham Pais, in Wissenschaftlicher Briefwechsel, ed. Meyenn, K. V. (Springer-Verlag), vol. IV, Part II. Letter [1614]: to A. Pais (July 25, 1953); letter [1682]: to A. Pais (December 6, 1953).Google Scholar
Pauli, W. (1953b). Two seminar lectures, reported in Paolo Gulmanelli (1954), “Su una Teoria dello Spin Isotropico” (Pubblicazioni della Sezione di Milano dell’istituto Nazionale di Fisica Nucleare, 1999).Google Scholar
Pauli, W., and Fierz, M. (1938). “Zur Theorie der Emission langwelliger Lichtquanten,” NC, 15: 167188.Google Scholar
Pauli, W., and Villars, F. (1949). “On the invariant regularization in relativistic quantum theory,” RMP, 21: 434444.Google Scholar
Pauli, W., and Weisskopf, V. (1934). “Über die quantisierung der skalaren relativistischen wellengleichung,” Helv. Phys. Acta., 7: 709731.Google Scholar
Pavelle, R. (1975). “Unphysical solutions of Yang’s gravitational-field equations,” PRL, 34: 1114.Google Scholar
Peierls, R. (1934). “The vacuum in Dirac’s theory of the positive electron,” PRS, A146: 420441.Google Scholar
Penrose, R. (1967a). “Twistor algebra,” JMP, 8: 345.Google Scholar
Penrose, R. (1967b). “Twistor quantization and curved space-time,” Int. J. Theor. Phys., 1: 6199.Google Scholar
Penrose, R. (1968). “Structure of space-time,” in Lectures in Mathematics and Physics (Battele Rencontres), eds. DeWitt, C. M., and Wheeler, J. A. (Benjamin, New York), 121235.Google Scholar
Penrose, R. (1969). “Gravitational collapse: the role of general relativity,” NC, 1: 252276.Google Scholar
Penrose, R. (1972). “Black holes and gravitational theory,” Nature, 236: 377380.Google Scholar
Penrose, R. (1975). “Twistor theory,” in Quantum Gravity, eds. Isham, C. J., Penrose, R., and Sciama, J. W. (Clarendon, Oxford).Google Scholar
Penrose, R. (1987). Three Hundred Years of Gravitation, eds. Hawking, S. W., and Israel, W. (Cambridge University Press, Cambridge).Google Scholar
Perez, A. (2003). “Spin foam models for quantum gravity Class,” Quant. Grav., 20: R43R104.Google Scholar
Perez, A. (2013). “The spin foam approach to quantum gravity,” Living Rev. Rel., 16.Google Scholar
Perring, F. (1933). “Neutral particles of intrinsic mass 0,” Compt. Rend. Acad. Sci. Paris, 197: 16251627.Google Scholar
Peruzzi, I., et al. (1976). “Observation of a narrow charged state at 1875 Mev/c2 decaying to an exotic combination of Kππ,” PRL, 37: 569571.Google Scholar
Peterman, A. (1953a). “Divergence of perturbation expression,” PR, 89: 11601161.Google Scholar
Peterman, A. (1953b). “Renormalisation dans les séries divergentes,” Helv. Phys. Acta., 26: 291299.Google Scholar
Peterman, A., and Stueckelberg, E. C. G. (1951). “Restriction of possible interactions in quantum electrodynamics,” PR, 82: 548549.Google Scholar
Pickering, A. (1984). Constructing Quarks: A Sociological History of Particle Physics (Edinburgh University Press, Edinburgh).Google Scholar
Pines, D., and Schrieffer, L. R. (1958). “Gauge invariance in the theory of superconductivity,” NC, 10: 407408.Google Scholar
Planck, M. (1900). “Zur Theorie des Gesetzes der Energieverteilung im Normal-spectrum,” Verh. Deutsch. Phys. Ges., 2 : 237245.Google Scholar
Poincaré, H. (1890). Electricité et optique: les théories de Maxwell et la théorie électromagnétique de la lumière, ed. Blondin, (G. Carré, Paris).Google Scholar
Poincaré, H. (1895). “A propos de la theorie de M. Larmor,” in Oeuvres (Gauthier-Villars, Paris), vol. 9, 369426.Google Scholar
Poincaré, H. (1897). “Les idées de Hertz sur la méchanique,” in Oeuvres (Gauthier-Villars, Paris), vol. 9, 231250.Google Scholar
Poincaré, H. (1898). “De la mesure du temps,” Rev. Métaphys. Morale, 6: 113.Google Scholar
Poincaré, H. (1899). “Des fondements de la géométrie, a propos d’un livre de M. Russell,” Rev. Métaphys. Morale, 7: 251279.Google Scholar
Poincaré, H. (1900). “La théorie de Lorentz et le principe de la réaction,” Arch. Néerlandaises, 5: 252278.Google Scholar
Poincaré, H. (1902). La science et l’hypothèse (Flammarion, Paris).Google Scholar
Poincaré, H. (1904). “The principles of mathematical physics,” in Philosophy and Mathematics, Volume I of Congress of Arts and Sciences: Universal Exposition, St. Louis, 1904, ed. Rogers, H. (H. Mifflin, Boston, 1905), 604622.Google Scholar
Poincaré, H. (1905). “Sur la dynamique de l’électron,” Compt. Rend. Acad. Sci., 140: 15041508.Google Scholar
Poincaré, H. (1906). “Sur la dynamique de l’électron,” Rend. Circ. Mat. Palermo, 21: 129175.Google Scholar
Polchinski, J. (1984). “Renormalization and effective Lagrangians,” NP, B231: 269295.Google Scholar
Politzer, H. D. (1973). “Reliable perturbative results for strong interactions?,” PRL, 30: 13461349.Google Scholar
Polkinghorne, J. C. (1958). “Renormalization of axial vector coupling,” NC, 8: 179180, 781.Google Scholar
Polkinghorne, J. C. (1967). “Schwinger terms and the Johnson–Low model,” NC, 52A: 351358.Google Scholar
Polkinghorne, J. C. (1989). Private correspondence, October 24, 1989.Google Scholar
Polyakov, A. M. (1974). “Particle spectrum in quantum field theory,” JETP (Lett.), 20: 194195.Google Scholar
Popper, K. (1970). “A realist view of logic, physics, and history,” in Physics, Logic, and History, eds. Yourgrau, W., and Breck, A. D. (Plenum, New York), 139.Google Scholar
Popper, K. (1974). “Scientific reduction and the essential incompleteness of all science,” in Studies in the Philosophy of Biology, Reduction and Related Problems, eds. Ayala, F. J., and Dobzhansky, T. (Macmillan, London), 259284.Google Scholar
Post, H. R. (1971). “Correspondence, invariance and heuristics,” Stud. Hist. Philos. Sci., 2: 213255.Google Scholar
Putnam, H. (1975). Mind, Language and Reality (Cambridge University Press, Cambridge).Google Scholar
Putnam, H. (1978). Meaning and the Moral Sciences (Routledge and Kegan Paul, London).Google Scholar
Putnam, H. (1981). Reason, Truth and History (Cambridge University Press, Cambridge).Google Scholar
Radicati, L. A. (1987). “Remarks on the early development of the notion of symmetry breaking,” in Symmetries in Physics (1600–1980), eds. Doncel, M. G., Hermann, A., Michael, L., and Pais, A. (Bellaterra, Barcelona), 197207.Google Scholar
Raine, D. J. (1975). “Mach’s principle in general relativity,” Mon. Not. R. Astron. Soc., 171: 507528.Google Scholar
Raine, D. J. (1981). “Mach’s principle and space-time structure,” Rep. Prog. Phys., 44: 11511195.Google Scholar
Ramond, P. (1971a). “Dual theory for free fermions,” PR, D3: 24152418.Google Scholar
Ramond, P. (1971b). “An interpretation of dual theories,” NC, 4A: 544548.Google Scholar
Rasetti, F. (1929). “On the Raman effect in diatomic gases. II,” Proc. Natl. Acad. Sci., 15: 515519.Google Scholar
Rayski, J. (1948). “On simultaneous interaction of several fields and the self-energy problem,” Acta Phys. Polonica, 9: 129140.Google Scholar
Redhead, M. L. G. (1983). “Quantum field theory for philosophers,” in PSA 1982 (Philosophy of Science Association, East Lansing, MI, 1983), 5799.Google Scholar
Redhead, M. L. G. (2001). “The intelligibility of the universe,” in Philosophy at the New Millennium, ed. O’Hear, A. (Cambridge University Press, Cambridge), 7390.Google Scholar
Regge, T. (1958a). “Analytic properties of the scattering matrix,” NC, 8: 671679.Google Scholar
Regge, T. (1958b). “On the analytic behavior of the eigenvalue of the S-matrix in the complex plane of the energy,” NC, 9: 295302.Google Scholar
Regge, T. (1959). “Introduction to complex orbital momenta,” NC, 14: 951976.Google Scholar
Regge, T. (1960). “Bound states, shadow states and Mandelstam representation,” NC, 18: 947956.Google Scholar
Reiff, J., and Veltman, M. (1969). “Massive Yang–Mills fields,” NP, B13: 545564.Google Scholar
Reinhardt, M. (1973). “Mach’s principle – a critical review,” Z. Naturf., 28A: 529537.Google Scholar
Renn, J., and Stachel, J. (2007). “Hilbert's foundation of physics: from a theory of everything to a constituent of general relativity,” in The Genesis of General Relativity, Vol. 4 Gravitation in the Twilight of Classical Physics: The Promise of Mathematics, ed. Renn, J. (Springer, Berlin).Google Scholar
Resnik, M. (1981). “Mathematics as a science of patterns: ontology and reference,” Nous, 15: 529550.Google Scholar
Resnik, M. (1982). “Mathematics as a science of patterns: epistemology,” Nous, 16: 95105.Google Scholar
Riazuddin, A., and Sarker, A. Q. (1968). “Some radiative meson decay processes in current algebra,” PRL, 20: 14551458.Google Scholar
Ricci, G., and Levi-Civita, T. (1901). “Méthodes de calcul differentiel absolu et leurs applications,” Math. Ann., 54: 125201.Google Scholar
Rickaysen, J. G. (1958). “Meissner effect and gauge invariance,” PR, 111: 817821.Google Scholar
Riemann, B. (1853, 1858, 1867). In his Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass., ed. Weber, H. (Teubner, Leipzig, 1892).Google Scholar
Riemann, B. (1854). “Über die Hypothesen, welche der Geometrie zu Grunde liegen,” Ges. Wiss. Göttingen. Abhandl., 13(1867): 133152.Google Scholar
Riemann, B. (1861a). Schwere, Elektricität, und Magnetismus: nach den Vorlesungen von Bernhard Riemann, ed. Hattendoff, K. (Carl Rümpler, Hannover, 1876).Google Scholar
Riemann, B. (1861b). Quoted by Kline (1972), 894–896.Google Scholar
Rindler, W. (1956). “Visual horizons in world models,” Mon. Not. R. Astron. Soc., 116: 662677.Google Scholar
Rindler, W. (1977). Essential Relativity (Springer-Verlag, New York).Google Scholar
Rivier, D., and Stueckelberg, E. C. G. (1948). “A convergent expression for the magnetic moment of the neutron,” PR, 74: 218.Google Scholar
Robertson, H. P. (1939). Lecture notes, printed posthumously in Relativity and Cosmology, eds. Robertson, H. P., and Noonan, T. W. (Saunders, Philadelphia, 1968).Google Scholar
Rodichev, V. I. (1961). “Twisted space and non-linear field equations,” Zh. Eksp. Ther. Fiz., 40: 1469.Google Scholar
Rohrlich, F. (1973). “The electron: development of the first elementary particle theory,” in The Physicist’s Conception of Nature, ed. Mehra, J. (Reidel, Dordrecht), 331369.Google Scholar
Rohrlich, F., and Hardin, L. (1983). “Established theories,” Philos. Sci., 50: 603617.Google Scholar
Rosenberg, L. (1963). “Electromagnetic interactions of neutrinos,” PR, 129: 27862788.Google Scholar
Rosenfeld, L. (1963). Interview with Rosenfeld on 1 July 1963; Archive for the History of Quantum Physics.Google Scholar
Rosenfeld, L. (1968). “The structure of quantum theory,” in Selected Papers, eds. Cohen, R. S., and Stachel, J. J. (Reidel, Dordrecht, 1979).Google Scholar
Rosenfeld, L. (1973). “The wave-particle dilemma,” in The Physicist’s Conception of Nature, ed. Mehra, J. (Reidel, Dordrecht), 251263.Google Scholar
Rovelli, C. (2004). Quantum Gravity (Cambridge University Press, Cambridge).Google Scholar
Rovelli, C., and Vidotto, F. (2014). Covariant Loop Quantum Gravity (Cambridge University Press, Cambridge).Google Scholar
Russell, B. (1927). The Analysis of Matter (Allen & Unwin, London).Google Scholar
Sakata, S. (1947). “The theory of the interaction of elementary particles,” PTP, 2 : 145147.Google Scholar
Sakata, S. (1950). “On the direction of the theory of elementary particles,” Iwanami, II: 100103. (English trans. PTP (Suppl.), 50(1971): 155–158).Google Scholar
Sakata, S. (1956). “On the composite model for the new particles,” PTP, 16: 686688.Google Scholar
Sakata, S., and Hara, O. (1947). “The self-energy of the electron and the mass difference of nucleons,” PTP, 2: 3031.Google Scholar
Sakata, S., and Inoue, T. (1943). First published in Japanese in Report of Symposium on Meson Theory, then in English, “On the correlations between mesons and Yukawa particles,” PTP, 1: 143150.Google Scholar
Sakata, S., and Tanikawa, Y. (1940). “The spontaneous disintegration of the neutral mesotron (neutretto),” PR, 57: 548.Google Scholar
Sakata, S., Umezawa, H., and Kamefuchi, S. (1952). “On the structure of the interaction of the elementary particles,” PTP, 7: 377390.Google Scholar
Sakita, B. (1964). “Supermultiplets of elementary particles,” PR, B136: 17561760.Google Scholar
Sakurai, J. J. (1960). “Theory of strong interactions,” AP, 11: 148.Google Scholar
Salam, A. (1951a). “Overlapping divergences and the S-matrix,” PR, 82: 217227.Google Scholar
Salam, A. (1951b). “Divergent integrals in renormalizable field theories,” PR, 84: 426431.Google Scholar
Salam, A. (1960). “An equivalence theorem for partially gauge-invariant vector meson interactions,” NP, 18: 681690.Google Scholar
Salam, A. (1962a). “Lagrangian theory of composite particles,” NC, 25: 224227.Google Scholar
Salam, A. (1962b). “Renormalizability of gauge theories,” PR, 127: 331334.Google Scholar
Salam, A. (1968). “Weak and electromagnetic interactions,” in Elementary Particle Theory: Relativistic Group and Analyticity. Proceedings of Nobel Conference VIII, ed. Svartholm, N. (Almqvist and Wiksell, Stockholm), 367377.Google Scholar
Salam, A., and Ward, J. C. (1959). “Weak and electromagnetic interactions,” NC, 11: 568577.Google Scholar
Salam, A., and Ward, J. C. (1961). “On a gauge theory of elementary interactions,” NC, 19: 165170.Google Scholar
Salam, A., and Ward, J. C. (1964). “Electromagnetic and weak interactions,” PL, 13: 168171.Google Scholar
Salam, A., and Wigner, E. P. (eds.) (1972). Aspects of Quantum Theory (Cambridge University Press, Cambridge).Google Scholar
Scadron, M., and Weinberg, S. (1964b). “Potential theory calculations by the quasi-particle method,” PR, B133: 15891596.Google Scholar
Schafroth, M. R. (1951). “Bemerkungen zur Frohlichsen theorie der Supraleitung,” Helv. Phys. Acta., 24: 645662.Google Scholar
Schafroth, M. R. (1958). “Remark on the Meissner effect,” PR, 111: 7274.Google Scholar
Scherk, J. (1975). “An introduction to the theory of dual models and strings,” RMP, 47: 123164.Google Scholar
Schlick, M. (1918). General Theory of Knowledge, trans. Blumberg, A. E. and Feigl, H. (Springer-Verlag, New York).Google Scholar
Schmidt, B. G. (1971). “A new definition of singular points in general relativity,” Gen. Relat. Gravit., 1: 269280.Google Scholar
Schrödinger, E. (1922). “Über eine bemerkenswerte Eigenschaft der Quantenbahnen eine einzelnen Elektrons,” ZP, 12: 1323.Google Scholar
Schrödinger, E. (1926a). “Zur Einsteinschen Gastheorie,” Phys. Z., 27: 95101.Google Scholar
Schrödinger, E. (1926b). “Quantisierung als Eigenwertproblem, Erste Mitteilung,” Ann. Phys., 79: 361376.Google Scholar
Schrödinger, E. (1926c). “Quantisierung, Zweite Mitteilung,” Ann. Phys., 79: 489527.Google Scholar
Schrödinger, E. (1926d). “Über das Verhältnis der Heisenberg–Born–Jordanschen Quantenmechanik zu der meinen,” Ann. Phys., 79: 734756.Google Scholar
Schrödinger, E. (1926e). “Quantisierung, Dritte Mitteilung,” Ann. Phys., 80: 437490.Google Scholar
Schrödinger, E. (1926f). “Quantisierung, Vierte Mitteilung,” Ann. Phys., 81: 109139.Google Scholar
Schrödinger, E. (1926g). Letter to Max Planck, May 31, 1926, in Letters on Wave Mechanics, ed. Przibram, K., trans. Klein, M. (Philosophical Library, New York, 1967), 811.Google Scholar
Schrödinger, E. (1950). Spacetime Structure (Cambridge University Press, Cambridge).Google Scholar
Schrödinger, E. (1961). “Wave field and particle: their theoretical relationship’, “Quantum steps and identity of particles’, and ‘Wave identity’,” in On Modern Physics (by Heisenberg and others), trans. Goodman, M., and Binns, J. W. (C. N. Potter, New York), 4854.Google Scholar
Schwarzschild, K. (1916a). “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie,” Preuss. Akad. Wiss. Sitzungsber., 189–196.Google Scholar
Schwarzschild, K. (1916b). “Über das Gravitationsfeld eines Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie,” Preuss. Akad. Wiss. Sitzungsber., 424–434.Google Scholar
Schweber, S. S. (1961). Relativistic Quantum Field Theory (Harper and Row, New York).Google Scholar
Schweber, S. S. (1985). “A short history of Shelter Island I,” in Shelter Island I, eds. Jackiw, R.; Khuri, N. N.; Weinberg, S., and Witten, E. (MIT Press, Cambridge, MA), 301343.Google Scholar
Schweber, S. S. (1986). “Shelter Island, Pocono, and Oldstone: the emergence of American quantum electrodynamics after World War II,” Osiris, second series, 2: 65302.Google Scholar
Schweber, S. S., Bethe, H. A., and de Hoffmann, F. (1955). Mesons and Fields, vol. I (Row, Peterson and Co., New York).Google Scholar
Schwinger, J. (1948a). “On quantum electrodynamics and the magnetic moment of the electron,” PR, 73: 416417.Google Scholar
Schwinger, J. (1948b). “Quantum electrodynamics. I. A covariant formulation,” PR, 74: 14391461.Google Scholar
Schwinger, J. (1949a). “Quantum electrodynamics. II. Vacuum polarization and self energy,” PR, 75: 651679.Google Scholar
Schwinger, J. (1949b). “Quantum electrodynamics. III. The electromagnetic properties of the electro-radiative corrections to scatteringPR, 76: 790817.Google Scholar
Schwinger, J. (1951). “On gauge invariance and vacuum polarization,” PR, 82: 664679.Google Scholar
Schwinger, J. (1957). “A theory of the fundamental interactions,” AP, 2: 407434.Google Scholar
Schwinger, J. (1959). “Field theory commutators,” PRL, 3: 296297.Google Scholar
Schwinger, J. (1962a). “Gauge invariance and mass,” PR, 125: 397398.Google Scholar
Schwinger, J. (1962b). “Gauge invariance and mass. II,” PR, 128: 24252429.Google Scholar
Schwinger, J. (1966). “Relativistic quantum field theory. Nobel lecture,” Science, 153: 949953.Google Scholar
Schwinger, J. (1967). “Chiral dynamics,” PL, 24B: 473176.Google Scholar
Schwinger, J. (1970). Particles, Sources and Fields (Addison-Wesley, Reading, MA).Google Scholar
Schwinger, J. (1973a). Particles, Sources and Fields, vol. 2 (Addison-Wesley, Reading, MA).Google Scholar
Schwinger, J. (1973b). “A report on quantum electrodynamics,” in The Physicist’s Conception of Nature, ed. Mehra, J. (Reidel, Dordrecht), 413429.Google Scholar
Schwinger, J. (1983). “Renormalization theory of quantum electrodynamics: an individual view,” in The Birth of Particle Physics, eds. Brown, L. M., and Hoddeson, L. (Cambridge University Press, Cambridge), 329375.Google Scholar
Sciama, D. W. (1958). “On a non-symmetric theory of the pure gravitational field,” Proc. Cam. Philos. Soc., 54: 72.Google Scholar
Seelig, C. (1954). Albert Einstein: Eine dokumentarische Biographie (Europa-Verlag, Zürich).Google Scholar
Sellars, W. (1961). “The language of theories,” in Current Issues in the Philosophy of Science, eds. Feigl, H., and Maxwell, G. (Holt, Rinehart, and Winston, New York), 57.Google Scholar
Sellars, W. (1963). “Theoretical explanation,” Philos. Sci., 2 : 61.Google Scholar
Sellars, W. (1965). “Scientific realism or irenic instrumentalism,” in Boston Studies in the Philosophy of Science, eds. Cohen, R. S., and Wortofsky, M. W. (Humanities Press, New York), vol. 2, 171.Google Scholar
Shaw, R. (1955). Invariance under general isotopic spin transformations, Part II, chapter III of Cambridge Ph.D. thesis, 34–46 (reprinted in Gauge Theories in The Twentieth Century, ed. Taylor, J. C., Imperial College Press, 2001), 100108.Google Scholar
Shimony, A. (1978). “Metaphysical problems in the foundations of quantum mechanics,” Int. Philos. Quart., 18: 317.Google Scholar
Simons, P. (1994). “Particulars in particular clothing: three trope theories of substance,” Philos. Phenomenol. Res., 54(3): 553575.Google Scholar
Slater, J. C. (1924). “Radiation and atoms,” Nature, 113: 307308.Google Scholar
Slavnov, A. A. (1972). “Ward identities in gauge theories,” Theor. Math. Phys., 19: 99104.Google Scholar
Slavnov, A. A., and Faddeev, L. D. (1970). “Massless and massive Yang-Mills field,” (in Russian) Theor. Math. Phys., 3: 312316.Google Scholar
Smeenk, C. (2006). “The elusive mechanism,” Philos. Sci., 73: 487499.Google Scholar
Sneed, J. D. (1971). The Logical Structure of Mathematical Physics (Reidel, Dordrecht).Google Scholar
Sneed, J. D. (1979). “Theoritization and invariance principles,” in The Logic and Epistemology of Scientific Change (North-Holland, Amsterdam), 130178.Google Scholar
Sommerfeld, A. (1911a). Letter to Planck, M., April 24, 1911.Google Scholar
Sommerfeld, A. (1911b). Die Theorie der Strahlung und der Quanten, ed. Eucken, A. (Halle, 1913), 303.Google Scholar
Spector, M. (1978). Concept of Reduction in Physical Science (Temple University Press, Philadelphia).Google Scholar
Speziali, P. (ed.) (1972). Albert Einstein–Michele Besso. Correspondence 1903–1955 (Hermann, Paris).Google Scholar
Stachel, J. (1980a). “Einstein and the rigidly rotating disk,” in General Relativity and Gravitation One Hundred Years after the Birth of Albert Einstein, ed. Held, A. (Plenum, New York), vol. 1, 115.Google Scholar
Stachel, J. (1980b). “Einstein’s search for general covariance, 1912–1915,” Paper presented to the 9th International Conference on General Relativity and Gravitation, Jena, 1980; later printed in Einstein and the History of General Relativity, eds. Howard, D., and Stachel, J. (Birkhäuser, Boston), 63100.Google Scholar
Stachel, J. (1993). “The meaning of general covariance: the hole story,” in Philosophical Problems of the Internal and External Worlds: Essays Concerning the Philosophy of Adolf Grübaum, eds. Janis, A. I., Rescher, N., and Massey, G. J. (University of Pittsburgh Press, Pittsburgh), 129160.Google Scholar
Stachel, J. (1994). “Changes in the concepts of space and time brought about by relativity,” in Artifacts, Representations, and Social Practice, eds. Gould, C. C., and Cohen, R. S. (Kluwer, Dordrecht/Boston/London), 141162.Google Scholar
Stapp, H. P. (1962a). “Derivation of the CPT theorem and the connection between spin and statistics from postulated of the S-matrix theory,” PR, 125: 21392162.Google Scholar
Stapp, H. P. (1962b). “Axiomatic S-matrix theory,” RMP, 34: 390394.Google Scholar
Stapp, H. P. (1965). “Space and time in S-matrix theory,” PR, B139: 257270.Google Scholar
Stapp, H. P. (1968). “Crossing, Hermitian analyticity, and the connection between spin and statistics,” JMP, 9: 15481592.Google Scholar
Stark, J. (1909). “Zur experimentellen Entscheidung zwischen Ätherwellen- und Lichtquantenhypothese. I. Röntgenstrahlen,” Phys. Z., 10: 902913.Google Scholar
Stegmüller, W. (1976). The Structure and Dynamics of Theories (Springer-Verlag, New York).Google Scholar
Stegmüller, W. (1979). The Structuralist View of Theories (Springer-Verlag, New York).Google Scholar
Stein, H. (1981). “'Subtle forms of matter’ in the period following Maxwell,” in Conceptions of Ether, eds. Cantor, G. N., and Hodge, M. J. S. (Cambridge University Press, Cambridge), 309340.Google Scholar
Steinberger, J. (1949). “On the use of subtraction fields and the lifetimes of some types of meson decay,” PR, 70: 11801186.Google Scholar
Strawson, P. T. (1950). “On referring,” Mind, 54: 320344.Google Scholar
Straumann, N. (2000). “On Pauli’s invention of non-abelian Kaluza-Klein theory in 1953,” in The Ninth Marcel Grossman Meeting. Proceedings of the MGIXMM Meeting held at the University of Rome “La Sapienza”, July 2-8 2000, eds. Gurzadyan, V. G., Jantzen, R. T., and Remo Ruffini, R. (World Scientific, Singapore), part B, 10631066.Google Scholar
Streater, R. F. (1965). “Generalized Goldstone theorem,” Phys. Rev. Lett., 15: 475476.Google Scholar
Streater, R. F., and Wightman, A. S. (1964). PTC, Spin and Statistics, and All That (Benjamin, New York).Google Scholar
Struyve, W. (2011). “Gauge invariant account of the Higgs mechanism,” Stud. Hist. Philos. Mod. Phys., 42: 226236.Google Scholar
Stueckelberg, E. C. G. (1938). “Die Wechselwirkungskräfte in der Elektrodynamik und in der Feldtheorie der Kern kräfte,” Helv. Phys. Acta., 11: 225244, 299–329.Google Scholar
Stueckelberg, E. C. G., and Peterman, A. (1953). “La normalisation des constances dans la théorie des quanta,” Helv. Phys. Acta., 26: 499520.Google Scholar
Sudarshan, E. C. G., and Marshak, R. E. (1958). “Chirality invariance and the universal Fermi interaction,” PR, 109: 18601862.Google Scholar
Sullivan, D., Koester, D., White, D. H., and Kern, K. (1980). “Understanding rapid theoretical change in particle physics: a month-by-month co-citation analysis,” Scientometrics, 2: 309319.Google Scholar
Susskind, L. (1968). “Model of self-induced strong interactions,” PR, 165: 1535.Google Scholar
Susskind, L. (1979). “Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory,” Phys. Rev. D, 20: 26192625.Google Scholar
Sutherland, D. G. (1967). “Current algebra and some non-strong mesonic decays,” NP, B2: 473440.Google Scholar
Symanzik, K. (1969). “Renormalization of certain models with PCAC,” (Lett.) NC, 2: 1012.Google Scholar
Symanzik, K. (1970). “Small distance behavior in field theory and power counting,” CMP, 18: 227246.Google Scholar
Symanzik, K. (1971). “Small-distance behavior analysis and Wilson expansions,” CMP, 23: 4986.Google Scholar
Symanzik, K. (1972). Renormalization of Yang–Mills Fields and Applications to Particle Physics (the Proceedings of the Marseille Conference, 19–23 June 1972), ed. Korthals-Altes, C. P. (Centre de Physique Théorique, CNRS, Marseille).Google Scholar
Symanzik, K. (1973). “Infrared singularities and small-distance-behavior analysis,” CMP, 34: 736.Google Scholar
Symanzik, K. (1983). “Continuum limit and improved action in lattice theories,” NP, B226: 187227.Google Scholar
Takabayasi, T. (1983). “Some characteristic aspects of early elementary particle theory in Japan,” in The Birth of Particle Physics, eds. Brown, L. M., and Hoddeson, L. (Cambridge University Press, Cambridge), 294303.Google Scholar
Takahashi, Y. (1957). “On the generalized Ward Identity,” NC, 6: 371375.Google Scholar
Tamm, I. (1934). “Exchange forces between neutrons and protons, and Fermi’s theory,” Nature, 133: 981.Google Scholar
Tanikawa, Y. (1943). First published in Japanese in Report of the Symposium on Meson Theory, then in English, “On the cosmic-ray meson and the nuclear meson,” PTP, 2: 220.Google Scholar
Taylor, J. C. (1958). “Beta decay of the pion,” PR, 110: 1216.Google Scholar
Taylor, J. C. (1971). “Ward identities and the Yang–Mills field,” NP, B33: 436444.Google Scholar
Taylor, J. C. (1976). Gauge Theories of Weak Interactions (Cambridge University Press, Cambridge).Google Scholar
Thirring, H. (1918). “Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie,” Phys. Z., 19: 3339.Google Scholar
Thirring, H. (1921). “Berichtigung zu meiner Arbeit: ‘Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie’,” Phys. Z., 22: 2930.Google Scholar
Thirring, W. (1953). “On the divergence of perturbation theory for quantum fields,” Helv. Phys. Acta., 26: 3352.Google Scholar
Thomson, J. J. (1881). “On the electric and magnetic effects produced by the motion of electrified bodies,” Philos. Mag., 11: 227249.Google Scholar
Thomson, J. J. (1904). Electricity and Matter (Charles Scribner’s Sons, New York).Google Scholar
Thomson, W. (1884). Notes of Lectures on Molecular Dynamics and the Wave Theory of Light (Johns Hopkins University, Baltimore).Google Scholar
’t Hooft, G. (1971a). “Renormalization of massless Yang–Mills fields,” NP, B33: 173199.Google Scholar
’t Hooft, G. (1971b). “Renormalizable Lagrangians for massive Yang–Mills fields,” NP, B35: 167188.Google Scholar
’t Hooft, G. (1971c). “Prediction for neutrino-electron cross-sections in Weinberg’s model of weak interactions,” PL, 37B: 195196.Google Scholar
’t Hooft, G. (1972c). Remarks after Symansik’s presentation, in Renormalization of Yang–Mills Fields and Applications to Particle Physics (the Proceedings of the Marseille Conference, 19–23 June 1972), ed. Korthals-Altes, C. P. (Centre de Physique Théorique, CNRS, Marseille).Google Scholar
’t Hooft, G. (1973). “Dimensional regularization and the renormalization group,” CERN Preprint Th.1666, May 2, 1973, and NP, B61: 455, in which his unpublished remarks at the Marseille Conference (1972c) were publicized.Google Scholar
’t Hooft, G. (1974). “Magnetic monopoles in unified gauge theories,” NP, B79: 276284.Google Scholar
’t Hooft, G. (1976a). “Symmetry breaking through Bell–Jackiw anomalies,” PRL, 37: 811.Google Scholar
’t Hooft, G. (1976b). “Computation of the quantum effects due to a four-dimensional pseudoparticle,” PR, D14: 34323450.Google Scholar
’t Hooft, and Veltman, M. (1972a). “Renormalization and regularization of gauge fields,” NP, B44: 189213.Google Scholar
’t Hooft, and Veltman, M. (1972b). “Combinatorics of gauge fields,” NP, B50: 318353.Google Scholar
Toll, J. (1952). “The dispersion relation for light and its application to problems involving electron pairs,” unpublished PhD dissertation, Princeton University.Google Scholar
Toll, J. (1956). “Causality and the dispersion relation: logical foundations,” PR, 104: 17601770.Google Scholar
Tomonaga, S. (1943). “On a relativistic reformulation of quantum field theory,” Bull. IPCR (Rikeniko), 22: 545557. (In Japanese; the English trans. appeared in PTP, 1: 1–13).Google Scholar
Tomonaga, S. (1946). “On a relativistically invariant formulation of the quantum theory of wave fields,” PTP, 1: 2742.Google Scholar
Tomonaga, S. (1948). “On infinite reactions in quantum field theory,” PR, 74: 224225.Google Scholar
Tomonaga, S. (1966). “Development of quantum electrodynamics. Personal recollections,” Noble Lectures (Physics): 1963–1970 (Elsevier, Amsterdam/London/New York), 126136.Google Scholar
Tomonaga, S., and Koba, Z. (1948). “On radiation reactions in collision processes. I,” PTP, 3: 290303.Google Scholar
Torretti, R. (1983). Relativity and Geometry (Pergamon, Oxford).Google Scholar
Toulmin, S. (1961). Foresight and Understanding (Hutchinson, London).Google Scholar
Touschek, B. F. (1957). “The mass of the neutrino and the nonconservation of parity,” NC, 5: 12811291.Google Scholar
Trautman, A. (1980). “Fiber bundles, gauge fields, and gravitation,” in General Relativity and Gravitation, vol. 1. One Hundred Years after the Birth of Albert Einstein, ed. Held, A. (Plenum Press, New York), 287308.Google Scholar
Umezawa, H. (1952). “On the structure of the interactions of the elementary particles, II,” PTP, 7: 551562.Google Scholar
Umezawa, H., and Kamefuchi, R. (1951). “The vacuum in quantum field theory,” PTP, 6: 543558.Google Scholar
Umezawa, H., and Kamefuchi, S. (1961). “Equivalence theorems and renormalization problem in vector field theory (the Yang–Mills field with non-vanishing masses),” NP, 23: 399429.Google Scholar
Umezawa, H., and Kawabe, R. (1949a). “Some general formulae relating to vacuum polarization,” PTP, 4: 423442.Google Scholar
Umezawa, H., and Kawabe, R. (1949b). “Vacuum polarization due to various charged particles,” PTP, 4: 443460.Google Scholar
Umezawa, H., Yukawa, J., and Yamada, E. (1948). “The problem of vacuum polarization,” PTP, 3: 317318.Google Scholar
Utiyama, R. (1956). “Invariant theoretical interpretation of interaction,” PR, 101: 15971607.Google Scholar
Valatin, J. G. (1954a). “Singularities of electron kernel functions in an external electromagnetic field,” PRS, A222: 93108.Google Scholar
Valatin, J. G. (1954b). “On the Dirac–Heisenberg theory of vacuum polarization,” PRS, A222: 228239.Google Scholar
Valatin, J. G. (1954c). “On the propagation functions of quantum electrodynamics,” PRS, A225: 535548.Google Scholar
Valatin, J. G. (1954d). “On the definition of finite operator quantities in quantum electrodynamics,” PRS, A226: 254265.Google Scholar
van Dam, H., and Veltman, M. (1970). “Massive and massless Yang–Mills and gravitational fields,” NP, B22: 397411.Google Scholar
van der Waerden, B. L. (1967). Sources of Quantum Mechanics (North-Holland, Amsterdam).Google Scholar
van Nieuwenhuizen, P. (1981). “Supergravity,” PL (Rep.), 68: 189398.Google Scholar
Vaughn, M. T., Aaron, R., and Amado, R. D. (1961). “Elementary and composite particles,” PR, 124: 12581268.Google Scholar
Veblen, O., and Hoffmann, D. (1930). “Projective relativity,” PR, 36: 810822.Google Scholar
Velo, G., and Wightman, A. (eds.) (1973). Constructive Quantum Field Theory (Springer-Verlag, Berlin and New York).Google Scholar
Veltman, M. (1963a). “Higher order corrections to the coherent production of vector bosons in the Coulomb field of a nucleus,” Physica, 29: 161185.Google Scholar
Veltman, M. (1963b). “Unitarity and causality in a renormalizable field theory with unstable particles,” Physica, 29: 186207.Google Scholar
Veltman, M. (1966). “Divergence conditions and sum rules,” PRL, 17: 553556.Google Scholar
Veltman, M. (1967). “Theoretical aspects of high energy neutrino interactions,” PRS, A301: 107112.Google Scholar
Veltman, M. (1968a). “Relations between the practical results of current algebra techniques and the originating quark model,” Copenhagen Lectures, July 1968, reprinted in Gauge Theory – Past and Future, eds. Akhoury, R., DeWitt, B., Van Nieuwenhuizen, P., and Veltman, H. (World Scientific, Singapore, 1992).Google Scholar
Veltman, M. (1968b). “Perturbation theory of massive Yang–Mills fields,” NP, B7: 637650.Google Scholar
Veltman, M. (1969). “Massive Yang-Mills fields,” in Proceedings of Topical Conference on Weak Interactions (CERN Yellow Report 69–7), 391–393.Google Scholar
Veltman, M. (1970). “Generalized Ward identities and Yang–Mills fields,” NP, B21: 288302.Google Scholar
Veltman, M. (1973). “Gauge field theories (with an appendix “Historical review and bibliography,” in The Proceedings of the 6th International Symposium on Electron and Photon Interactions at High Energies, eds. Rollnik, H., and Pheil, W. (North-Holland, Amsterdam).Google Scholar
Veltman, M. (1977). “Large Higgs mass and μ-e universality,” PL, 70B: 253254.Google Scholar
Veltman, M. (1991). Interview with the author, December 9–11, 1991.Google Scholar
Veltman, M. (1992). “The path to renormalizability,” a talk given at the Third International Symposium on the History of Particle Physics, SLAC, 24–27 June 1992.Google Scholar
Waller, I. (1930). “Bemerküngen über die Rolle der Eigenenergie des Elektrons in der Quantentheorie der Strahlung,” ZP, 62: 673676.Google Scholar
Ward, J. C. (1950). “An identity in quantum electrodynamics,” PR, 78: 182.Google Scholar
Ward, J. C. (1951). “On the renormalization of quantum electrodynamics,” Proc. Phys. Soc. London, A64: 5456.Google Scholar
Ward, J. C., and Salam, A. (1959). “Weak and electromagnetic interaction,” NC, 11: 568577.Google Scholar
Weinberg, S. (1960). “High energy behavior in quantum field theory,” PR, 118: 838849.Google Scholar
Weinberg, S. (1964a). “Systematic solution of multiparticle scattering problems,” PR, B133: 232256.Google Scholar
Weinberg, S. (1964b). “Derivation of gauge invariance and the equivalence principle from Lorentz invariance of the S-matrix,” PL, 9: 357359.Google Scholar
Weinberg, S. (1964c). “Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass,” PR, B135: 10491056.Google Scholar
Weinberg, S. (1965a). Lectures on Particles and Field Theories, eds. Deser, S., and Ford, K. W. (Prentice-Hall, Englewood Cliffs, NJ).Google Scholar
Weinberg, S. (1965b). “Photons and gravitons in perturbation theory: derivation of Maxwell’s and Einstein’s equations,” PR, B138: 9881002.Google Scholar
Weinberg, S. (1967a). “Dynamical approach to current algebra,” PRL, 18: 188191.Google Scholar
Weinberg, S. (1967b). “A model of leptons,” PRL, 19: 12641266.Google Scholar
Weinberg, S. (1968). “Nonlinear realizations of chiral symmetry,” PR, 166: 15681577.Google Scholar
Weinberg, S. (1976). “Implications of dynamical symmetry breaking,” Phys. Rev. D, 13: 974996.Google Scholar
Weinberg, S. (1977). “The search for unity: notes for a history of quantum field theory,” Daedalus, 106: 1735.Google Scholar
Weinberg, S. (1978). “Critical phenomena for field theorists,” in Understanding the Fundamental Constituents of Matter, ed. Zichichi, A. (Plenum, New York), 152.Google Scholar
Weinberg, S. (1979). “Phenomenological Lagrangian,” Physica, 96A: 327340.Google Scholar
Weinberg, S. (1980a). “Conceptual foundations of the unified theory of weak and electromagnetic interactions,” RMP, 52: 515523.Google Scholar
Weinberg, S. (1980b). “Effective gauge theories,” PL, 91B: 5155.Google Scholar
Weinberg, S. (1983). “Why the renormalization group is a good thing,” in Asymptotic Realms of Physics: Essays in Honor of Francis. E. Low, eds. Guth, A. H., Huang, K., and Jaffe, R. L. (MIT Press, Cambridge, MA), 119.Google Scholar
Weinberg, S. (1985). “The ultimate structure of matter,” in A Passion for Physics: Essays in Honor of Jeffrey Chew, eds. De Tar, C., Finkelstein, J., and Tan, C. I. (Taylor & Francis, Philadelphia), 114127.Google Scholar
Weinberg, S. (1986a). “Particle physics: past and future,” Int. J. Mod. Phys. A1/1: 135145.Google Scholar
Weinberg, S. (1986b). “Particles, fields, and now strings,” in The Lesson of Quantum Theory, eds. De Boer, J., Dal, E., and Ulfbeck, O. (Elsevier, Amsterdam), 227239.Google Scholar
Weinberg, S. (1987). “Newtonianism, reductionism and the art of congressional testimony,” in Three Hundred Years of Gravitation, eds. Hawking, S. W., and Israel, W. (Cambridge University Press, Cambridge).Google Scholar
Weinberg, S. (1992). Dreams of a Final Theory (Pantheon, New York).Google Scholar
Weinberg, S. (1995). The Quantum Theory of Fields (Cambridge University Press, Cambridge).Google Scholar
Weinberg, S. (1996). The Quantum Theory of Fields (Cambridge University Press), sections 19.2 and 21.1, especially 299300.Google Scholar
Weisberger, W. I. (1965). “Renormalization of the weak axial-vector coupling constant,” PRL, 14: 10471055.Google Scholar
Weisberger, W. I. (1966). “Unsubstracted dispersion relations and the renormalization of the weak axial-vector coupling constants,” PR, 143: 13021309.Google Scholar
Weisskopf, V. F. (1934). “Über die Selbstenergie des Elektrons,” ZP, 89: 2739.Google Scholar
Weisskopf, V. F. (1936). “Über die Elektrodynamic des Vakuums auf Grund der Quantentheorie des Elektrons,” K. Danske Vidensk. Selsk., Mat.-Fys. Medd., 14: 139.Google Scholar
Weisskopf, V. F. (1939). “On the self-energy and the electromagnetic field of the electron,” PR, 56: 7285.Google Scholar
Weisskopf, V. F. (1949). “Recent developments in the theory of the electron,” RMP, 21: 305328.Google Scholar
Weisskopf, V. F. (1972). Physics in the Twentieth Century (MIT Press, Cambridge, MA).Google Scholar
Weisskopf, V. F. (1983). “Growing up with field theory: the development of quantum electrodynamics,” in The Birth of Particle Physics, eds. Brown, L. M., and Hoddeson, L. (Cambridge University Press, Cambridge), 5681.Google Scholar
Welton, T. A. (1948). “Some observable effects of the quantum-mechanical fluctuations of the electromagnetic field,” PR, 74: 11571167.Google Scholar
Wentzel, G. (1933a, b; 1934). “Über die Eigenkräfte der Elementarteilchen. I, II and III,” ZP, 86: 479494, 635–645; 87: 726–733.Google Scholar
Wentzel, G. (1943). Einführung in der Quantentheorie der Wellenfelder (Franz Deuticke, Vienna); English trans.: Quantum Theory of Fields (Interscience, New York, 1949).Google Scholar
Wentzel, G. (1956). “Discussion remark,” in Proceedings of 6th Rochester Conference on High Energy Nuclear Physics (Interscience Publishers, New York), VIII-15 to VIII-17.Google Scholar
Wentzel, G. (1958). “Meissner effect,” PR, 112: 14881492.Google Scholar
Wentzel, G. (1959). “Problem of gauge invariance in the theory of the Meissner effect,” PRL, 2: 3334.Google Scholar
Wentzel, G. (1960). “Quantum theory of fields (until 1947),” in Theoretical Physics in the Twentieth Century: A Memorial Volume to Wolfgang Pauli (Interscience, New York), 4467.Google Scholar
Wess, J. (1960). “The conformal invariance in quantum field theory,” NC, 13: 1086.Google Scholar
Wess, J., and Zumino, B. (1971). “Consequences of anomalous Ward identities,” PL, 37B: 9597.Google Scholar
Wess, J., and Zumino, B. (1974). “Supergauge transformations in four dimensions,” NP, B70: 3950.Google Scholar
Weyl, H. (1918a). Raum-Zeit-Materie (Springer, Berlin).Google Scholar
Weyl, H. (1918b). “Gravitation und Elektrizität,” Preussische Akad. Wiss. Sitzungsber., 465–478.Google Scholar
Weyl, H. (1921). “Electricity and gravitation,” Nature, 106: 800802.Google Scholar
Weyl, H. (1922). “Gravitation and electricity,” in The Principle of Relativity (Methuen, London, 1923), 201216.Google Scholar
Weyl, H. (1929). “Elektron und Gravitation. I,” ZP, 56: 330352.Google Scholar
Weyl, H. (1930). Gruppentheorie und Quantenmechanik (translated by Robertson as The Theory of Groups and Quantum Mechanics (E. P. Dutton, New York, 1931).Google Scholar
Wheeler, J. (1962). Geometrodynamics (Academic Press, New York).Google Scholar
Wheeler, J. (1964a). “Mach’s principle as a boundary condition for Einstein’s equations,” in Gravitation and Relativity, eds. Chiu, H.-Y., and Hoffman, W. F. (Benjamin, New York), 303349.Google Scholar
Wheeler, J. (1964b). “Geometrodynamics and the issue of the final state,” in Relativity, Group and Topology, eds. DeWitt, C., and DeWitt, B. (Gordon and Breach, New York), 315.Google Scholar
Wheeler, J. (1973). “From relativity to mutability,” in The Physicist’s Conception of Nature, ed. Mehra, J. (Reidel, Dordrecht), 202247.Google Scholar
Whewell, W. (1847). The Philosophy of the Inductive Sciences, second edition (Parker & Son, London).Google Scholar
Whittaker, E. (1951). A History of the Theories of Aether and Electricity (Nelson, London).Google Scholar
Widom, B. (1965a). “Surface tension and molecular correlations near the critical point,” J. Chem. Phys., 43: 38923897.Google Scholar
Widom, B. (1965b). “Equation of state in the neighborhood of the critical point,” J. Chem. Phys., 43: 38983905.Google Scholar
Wien, W. (1909). Encykl. der Math. Wiss (B. G. Teubner, Leipzig), vol. 3, 356.Google Scholar
Wightman, A. S. (1956). “Quantum field theories in terms of expectation values,” PR, 101: 860866.Google Scholar
Wightman, A. S. (1976). “Hilbert’s sixth problem: mathematical treatment of the axioms of physics,” in Mathematical Developments Arising from Hilbert Problems, ed. Browder, F. E. (American Mathematical Society, Providence, RI), 147240.Google Scholar
Wightman, A. S. (1978). “Field theory, Axiomatic,” in the Encyclopedia of Physics (McGraw-Hill, New York), 318321.Google Scholar
Wightman, A. S. (1986). “Some lessons of renormalization theory,” in The Lesson of Quantum Theory, eds. de Boer, J., Dal, E., and Ulfbeck, D. (Elsevier, Amsterdam), 201225.Google Scholar
Wightman, A. S. (1989). “The general theory of quantized fields in the 1950s,” in Pions to Quarks, eds. Brown, L. M., Dresden, M., and Hoddeson, L. (Cambridge University Press, Cambridge), 608629.Google Scholar
Wightman, A. S. (1992). Interview with the author on July 15 and 16, 1992 in Professor Wightman’s Office, Princeton University.Google Scholar
Wigner, E. P. (1931). Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren (Friedr.Vieweg & Sohn Akt. Ges., Braunschweig).Google Scholar
Wigner, E. (1937). “On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei,” PR, 51: 106119.Google Scholar
Wigner, E. (1949). “Invariance in physical theory,” Proc. Amer. Philos. Soc., 93: 521526.Google Scholar
Wigner, E. (1960). “The unreasonable effectiveness of mathematics in the natural sciences,” Commun. Pure. Appl. Math., 13: 114.Google Scholar
Wigner, E. (1963). Interview with Wigner on 4 Dec 1963; Archive for the History of Quantum Physics.Google Scholar
Wigner, E. (1964a). “Symmetry and conservation laws,” Proc. Natl. Acad. Sci., 5: 956965.Google Scholar
Wigner, E. (1964b). “The role of invariance principles in natural philosophy,” in Proceedings of the Enrico Fermi International School of Physics (XXIX), ed. Wigner, E. (Academic Press, New York), ixxvi.Google Scholar
Wigner, E. P., and Witmer, E. E. (1928). “Über die Struktur der zweiatomigen Molekulspektren nach der Quantenmechanik,” ZP, 51: 859886.Google Scholar
Wilson, K. G. (1965). “Model Hamiltonians for local quantum field theory,” PR, B140: 445457.Google Scholar
Wilson, K. G. (1969). “Non-Lagrangian models of current algebra,” PR, 179: 14991512.Google Scholar
Wilson, K. G. (1970a). “Model of coupling-constant renormalization,” PR, D2: 14381472.Google Scholar
Wilson, K. G. (1970b). “Operator-product expansions and anomalous dimensions in the Thirring model,” PR, D2: 14731477.Google Scholar
Wilson, K. G. (1970c). “Anomalous dimensions and the breakdown of scale invariance in perturbation theory,” PR, D2: 14781493.Google Scholar
Wilson, K. G. (1971a). “The renormalization group and strong interactions,” PR, D3: 18181846.Google Scholar
Wilson, K. G. (1971b). “Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture,” PR, B4: 31743183.Google Scholar
Wilson, K. G. (1971c). “Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior,” PR, B4: 31843205.Google Scholar
Wilson, K. G. (1972). “Renormalization of a scalar field in strong coupling,” PR, D6: 419426.Google Scholar
Wilson, K. G. (1974). “Confinement of quarks,” PR, D10: 24452459.Google Scholar
Wilson, K. G. (1975). “The renormalization group: critical phenomena and the Kondo problem,” RMP, 47: 773840.Google Scholar
Wilson, K. G. (1979). “Problems in physics with many scales of length,” Scientific American, 241(2): 140157.Google Scholar
Wilson, K. G. (1983). “The renormalization group and critical phenomena,” RMP, 55: 583600.Google Scholar
Wilson, K. G., and Fisher, M. E. (1972). “Critical exponents in 3.99 dimensions,” PRL, 28: 240243.Google Scholar
Wilson, K. G., and Kogut, J. (1974). “The renormalization group and the є expansion,” PL (Rep.), 12C: 75199.Google Scholar
Wimsatt, W.C. (2003). “Evolution, entrenchnebt, and innateness,” in Reductionism and the Development of Knowledge, ed. Brown, T., and Smith, L. (Mahwah).Google Scholar
Wise, N. (1981). “German concepts of force, energy and the electromagnetic ether: 1845–1880,” in Contor and Hodge (1981), 269–308.Google Scholar
Worrall, J. (1989). “Structural realism: the best of both worlds?Dialectica, 43: 99124.Google Scholar
Worrall, J. (2007). Reason in Revolution: A Study of Theory-Change in Science (Oxford University Press, Oxford).Google Scholar
Wu, T. T., and Yang, C. N. (1967). “Some solutions of the classical isotopic gauge field equations,” in Properties of Matter under Unusual Conditions, eds. Mark, H., and Fernbach, S. (Wiley, New York), 349354.Google Scholar
Wu, T. T., and Yang, C. N. (1975). “Concept of nonintegrable phase factors and global formulation of gauge fields,” PR, D12: 38453857.Google Scholar
Wuthrich, A. (2012). “Eating Goldstone bosons in a phase transition: a critical review of Lyre’s analysis of the Higgs mechanism,” J. Gen. Philos. Sci., 43: 281287.Google Scholar
Yang, C. N. (1970). “Charge quantization of the gauge group, and flux quantization,” PR, D1: 8.Google Scholar
Yang, C. N. (1974). “Integral formalism for gauge fields,” PRL, 33: 445447.Google Scholar
Yang, C. N. (1977). “Magnetic monopoles, fiber bundles, and gauge fields,” Ann. N. Y. Acad. Sci., 294: 8697.Google Scholar
Yang, C. N. (1980). “Einstein’s impact on theoretical physics,” Phys. Today, 33(6): 4249.Google Scholar
Yang, C. N. (1983). Selected Papers (1945–1980) (Freeman, New York).Google Scholar
Yang, C. N., and Mills, R. L. (1954a). “Isotopic spin conservation and a generalized gauge invariance,” PR, 95: 631.Google Scholar
Yang, C. N., and Mills, R. L. (1954b). “Conservation of isotopic spin and isotopic gauge invariance,” PR, 96: 191195.Google Scholar
Yates, F. (1964). Giordano Bruno and the Hermetic Tradition (Routledge and Kegan Paul, London).Google Scholar
Yoshida, R. (1977). Reduction in the Physical Sciences. (Dalhousie University Press, Halifax).Google Scholar
Yoshida, R. (1981). “Reduction as replacement,” Brit. J. Philos. Sci., 32: 400.Google Scholar
Yukawa, H. (1935). “On the interaction of elementary particles,” Proc. Phys.-Math. Soc. Japan, 17: 4857.Google Scholar
Yukawa, H., and Sakata, S. (1935a). “On the theory of internal pair production,” Proc. Phys.-Math. Soc. Japan, 17: 397407.Google Scholar
Yukawa, H., and Sakata, S. (1935b). “On the theory of the β-disintegration and the allied phenomenon,” Proc. Phys.-Math. Soc. Japan, 17: 467479.Google Scholar
Zachariasen, F., and Zemach, C. (1962). “Pion resonances,” PR, 128: 849858.Google Scholar
Zahar, E. (1982). “Poincaré et la découverte du Principe de Relativité,” LSE-Preprint, February 6, 1982.Google Scholar
Zilsel, E. (1942). “The sociological roots of science,” Amer. J. Sociology, 47: 544562.Google Scholar
Zimmermann, W. (1958). “On the bound state problem in quantum field theory,” NC, 10: 597614.Google Scholar
Zimmermann, W. (1967). “Local field equation for A4-coupling in renormalized perturbation theory,” CMP, 6: 161188.Google Scholar
Zumino, B. (1975). “Supersymmetry and the vacuum,” NP, B89: 535546.Google Scholar
Zweig, G. (1964a). “An SU3 model for strong interaction symmetry and its breaking: I and II,” CERN preprint TH401 (January 17, 1964) and TH 412 (February 21, 1964).Google Scholar
Zweig, G. (1964b). “Fractionally charged particles and SU(6),” in Symmetries in Elementary Particle Physics, ed. Zichichi, A. (Academic Press, New York), 192243.Google Scholar
Zwicky, F. (1935). “Stellar guests,” Scientific Monthly, 40: 461.Google Scholar
Zwicky, F. (1939). “On the theory and observation of highly collapsed stars,” PR, 55: 726743.Google Scholar
Abers, E., Zachariasan, F., and Zemach, C. (1963). “Origin of internal symmetries,” PR, 132: 18311836.Google Scholar
Abrams, G. S., et al. (1974). “Discovery of a second narrow resonance,” PRL, 33: 14531454.Google Scholar
Achinstein, P. (1968). Concepts of Science: A Philosophical Analysis (Johns Hopkins University Press, Baltimore).Google Scholar
Adler, S. L. (1964). “Tests of the conserved vector current and partially conserved axial-vector current hypotheses in high-energy neutrino reactions,” PR, B135: 963966.CrossRefGoogle Scholar
Adler, S. L. (1965a). “Consistency conditions on the strong interactions implied by a partially conserved axial-vector current,” PR, 137: B1022B1033.CrossRefGoogle Scholar
Adler, S. L. (1965b). “Consistency conditions on the strong interactions implied by a partially conserved axial-vector current. II,” PR, 139: B1638B1643.Google Scholar
Adler, S. L. (1965c). “Sum-rules for axial-vector coupling-constant renormalization in beta decay,” PR, 140: B736B747.Google Scholar
Adler, S. L. (1965d). “Calculation of the axial-vector coupling constant renormalization in β decay,” PRL, 14: 10511055.Google Scholar
Adler, S. L. (1966). “Sum rules giving tests of local current commutation relations in high-energy neutrino reactions,” PR, 143: 11441155.Google Scholar
Adler, S. L. (1969). “Axial-vector vertex in spinor electrodynamics,” PR, 177: 24262438.CrossRefGoogle Scholar
Adler, S. L. (1970). “π0 decay,” in High-Energy Physics and Nuclear Structure, ed. Devons, S. (Plenum, New York), 647655.Google Scholar
Adler, S. L. (1991). Taped interview at Princeton, December 5, 1991.Google Scholar
Adler, S. L., and Bardeen, W. (1969). “Absence of higher-order corrections in the anomalous axial-vector divergence equation,” PR, 182: 15171532.Google Scholar
Adler, S. L., and Dashen, R. F. (1968). Current Algebra and Applications to Particle Physics (Benjamin, New York).Google Scholar
Adler, S. L., and Tung, W.-K. (1969). “Breakdown of asymptotic sum rules in perturbation theory,” PRL, 22: 978981.Google Scholar
Aharonov, Y., and Bohm, D. (1959). “Significance of electromagnetic potentials in quantum theory,” PR, 115: 485491.CrossRefGoogle Scholar
Ambarzumian, V., and Iwanenko, D. (1930). “Unobservable electrons and β-rays,” Compt. Rend. Acad. Sci. Paris, 190: 582584.Google Scholar
Amelino-Camelia, G. (2010). “Doubly-special relativity: facts, myths and some key open issues,” Symmetry, 2: 230271.CrossRefGoogle Scholar
Anderson, P. W. (1952). “An approximate quantum theory of the antiferromagnetic ground state,” PR, 86: 694701.Google Scholar
Anderson, P. W. (1958a). “Coherent excited states in the theory of superconductivity: gauge invariance and the Meissner effect,” PR, 110: 827835.CrossRefGoogle Scholar
Anderson, P. W. (1958b). “Random phase approximation in the theory of superconductivity,” PR, 112: 19001916.Google Scholar
Anderson, P. W. (1963). “Plasmons, gauge invariance, and mass,” PR, 130: 439442.CrossRefGoogle Scholar
Appelquist, T., and Carazzone, J. (1975). “Infrared singularities and massive fields,” PR, D11: 28562861.Google Scholar
Appelquist, T., and Politzer, H. D. (1975). “Heavy quarks and e+e annihilation,” PRL, 34: 4345.Google Scholar
Arnison, G., et al. (1983a). “Experimental observation of isolated large transverse energy electrons with associated missing energy at GeV,” PL, 122B: 103116.Google Scholar
Arnison, G., et al. (1983b). “Experimental observation of lepton pairs of invariant mass around 95 GeV/c2 at the CERN SPS collider,” PL, 126B: 398410.Google Scholar
Arnowitt, R., Friedman, M. H., and Nath, P. (1968). “Hard meson analysis of photon decays of π0, η and vector mesons,” PL, 27B: 657659.Google Scholar
Ashtekar, A. (1986). “New variables for classical and quantum gravity,” PRL, 57: 22442247.CrossRefGoogle ScholarPubMed
Ashtekar, A., and Lewandowski, J. (1997a). “Quantum theory of geometry I: Area operators,” Class. Quant. Grav., 14: A55A81.Google Scholar
Ashtekar, A., and Lewandowski, J. (1997b). “Quantum theory of geometry II: Volume operators,” Adv. Theo. Math. Phys., 1: 388429.CrossRefGoogle Scholar
Ashtekar, A., and Lewandowski, J. (2004). “Background independent quantum gravity: a status report,” Class. Quant. Grav., 21: R53R152.CrossRefGoogle Scholar
Aubert, J. J., et al. (1974). “Observation of a heavy particle J,” PRL, 33: 14041405.CrossRefGoogle Scholar
Augustin, J.-E., et al. (1974). “Discovery of a narrow resonance in e+ e annihilation,” PRL, 33: 14061407.CrossRefGoogle Scholar
Bagnaia, P., et al. (1983). “Evidence for Z0 → e+ e at the CERN p+p collider,” PL, 129B: 130140.Google Scholar
Baker, M., and Glashow, S. L. (1962). “Spontaneous breakdown of elementary particle symmetries,” PR, 128: 24622471.CrossRefGoogle Scholar
Balzer, W., Pearce, D. A., and Schmidt, H.-J. (1984). Reduction in Science (Reidel, Dordrecht).Google Scholar
Bardeen, J. (1955). “Theory of the Meissner effect in superconductors,” PR, 97: 17241725.Google Scholar
Bardeen, J. (1957). “Gauge invariance and the energy gap model of superconductivity,” NC, 5: 17661768.Google Scholar
Bardeen, J., Cooper, L. N., and Schrieffer, J. R. (1957). “Theory of superconductivity,” PR, 108: 11751204.Google Scholar
Bardeen, W. (1969). “Anomalous Ward identities in spinor field theories,” PR, 184: 18481859.Google Scholar
Bardeen, W. (1985). “Gauge anomalies, gravitational anomalies, and superstrings,” talk presented at the INS International Symposium, Tokyo, August 1985; Fermilab preprint: Conf. 85/110-T.Google Scholar
Bardeen, W., Fritzsch, H., and Gell-Mann, M. (1973). “Light cone current algebra, π0 decay and e+ e annihilation,” in Scale and Conformal Symmetry in Hadron Physics, ed. Gatto, R. (Wiley, New York), 139153.Google Scholar
Barnes, B. (1977). Interests and the Growth of Knowledge (Routledge and Kegan Paul, London).Google Scholar
Belavin, A. A., Polyakov, A. M., Schwartz, A., and Tyupkin, Y. (1975). “Pseudoparticle solutions of the Yang–Mills equations,” PL, 59B: 8587.Google Scholar
Bell, J. S. (1967a). “Equal-time commutator in a solvable model,” NC, 47A: 616625.Google Scholar
Bell, J. S. (1967b). “Current algebra and gauge invariance,” NC, 50A: 129134.Google Scholar
Bell, J. S., and Berman, S. M. (1967). “On current algebra and CVC in pion beta-decay,” NC, 47A: 807810.Google Scholar
Bell, J. S., and Jackiw, R. (1969). “A PCAC puzzle: π0γγ in the σ-model,” NC, 60A: 4761.Google Scholar
Bell, J. S., and van Royen, R. P. (1968). “Pion mass difference and current algebra,” PL, 25B: 354356.Google Scholar
Bell, J. S., and Sutherland, D. G. (1968). “Current algebra and η → 3π,” NP, B4: 315325.Google Scholar
Bernstein, J. (1968). Elementary Particles and Their Currents (Freeman, San Francisco).Google Scholar
Bernstein, J., Fubini, S., Gell-Mann, M., and Thirring, W. (1960). “On the decay rate of the charged pion,” NC, 17: 758766.Google Scholar
Bethe, H. A. (1947). “The electromagnetic shift of energy levels,” PR, 72: 339341.Google Scholar
Bjorken, J. D. (1966a). “Applications of the chiral U(6) U(6) algebra of current densities,” PR, 148: 14671478.Google Scholar
Bjorken, J. D. (1966b). “Inequality for electron and muon scattering from nucleons,” PRL, 16: 408409.CrossRefGoogle Scholar
Bjorken, J. D. (1969). “Asymptotic sum rules at infinite momentum,” PR, 179: 15471553.Google Scholar
Bjorken, J. D. (1997). “Deep-inelastic scattering: from current algebra to partons,” in The Rise of the Standard Model, eds. Hoddeson, L., Brown, L., Riordan, M., and Dressden, M. (Cambridge University Press, Cambridge), 589599.Google Scholar
Bjorken, J. D., and Glashow, S. L. (1964). “Elementary particles and SU(4),” PL, 11: 255257.Google Scholar
Bjorken, J. D., and Paschos, E. A. (1969). “Inelastic electron–proton and γ–proton scattering and the structure of the nucleon,” PR, 185: 19751982.Google Scholar
Bjorken, J. D., and Paschos, E. A. (1970). “High-energy inelastic neutrino–nucleon interactions,” PR, D1: 31513160.Google Scholar
Blankenbecler, R., Cook, L. F., and Goldberger, M. L. (1962). “Is the photon an elementary particle?PR, 8: 463165.CrossRefGoogle Scholar
Blankenbecler, R., Coon, D. D., and Roy, S. M. (1967). “S-matrix approach to internal symmetry,” PR, 156: 16241636.Google Scholar
Blatt, J. M., Matsubara, T., and May, R. M. (1959). “Gauge invariance in the theory of superconductivity,” PTP, 21: 745757.Google Scholar
Bloom, E. D., et al. (1969). “High energy inelastic e–p scattering at 6° and 10°,” PRL, 23: 930934.Google Scholar
Bloor, D. (1976). Knowledge and Social Imagery (Routledge and Kegan Paul, London).Google Scholar
Bludman, S. A. (1958). “On the universal Fermi interaction,” NC, 9: 433444.CrossRefGoogle Scholar
Bogoliubov, N. N. (1958). “A new method in the theory of superconductivity,” JETP, 34(7): 4146, 51–55.Google Scholar
Bohr, N. (1912). In On the Constitution of Atoms and Molecules, ed. Rosenfeld, L. (Benjamin, New York, 1963), xxxii.Google Scholar
Bohr, N. (1913a, b, c). “On the constitution of atoms and molecules. I, II, III,” Philos. Mag., 26: 125, 476–502, 857–875.CrossRefGoogle Scholar
Bohr, N. (1918). On the Quantum Theory of Line-Spectra, Kgl. Dan. Vid. Seist Skr. Nat-Mat. Afd. series 8, vol. 4, number 1, Part I–III (Høst, Copenhagen).Google Scholar
Bohr, N. (1927). “Atomic theory and wave mechanics,” Nature, 119: 262.Google Scholar
Bohr, N. (1928). “The quantum postulate and the recent development of atomic theory,” (aversion of the Como lecture given in 1927), Nature, 121: 580590.Google Scholar
Bohr, N. (1930). “Philosophical aspects of atomic theory,” Nature, 125: 958.Google Scholar
Bohr, N., Kramers, H. A., and Slater, J. C. (1924). “The quantum theory of radiation,” Philos. Mag., 47: 785802.Google Scholar
Boltzmann, L. (1888). Quoted from R. S. Cohen’s “Dialectical materialism and Carnap’s logical empiricism,” in The Philosophy of Rudolf Carnap, ed. Schilpp, P. A. (Open Court, LaSalle, 1963), 109.Google Scholar
Bopp, F. (1940). “Eine lineare theorie des elektrons,” Ann. Phys., 38: 345384.CrossRefGoogle Scholar
Born, M. (1924). “Über Quantenmechanik,” ZP, 26: 379395.CrossRefGoogle Scholar
Born, M. (1926a). “Zur Quantenmechanik der Stossvorgange,” ZP, 37: 863867.Google Scholar
Born, M. (1926b). “Quantenmechanik der Stossvorgange,” ZP, 38: 803884.Google Scholar
Born, M. (1949). Natural Philosophy of Cause and Chance (Oxford University Press, Oxford).Google Scholar
Born, M. (1956). Physics in My Generation (Pergamon, London).Google Scholar
Born, M., and Jordan, P. (1925). “Zur Quantenmechanik,” ZP, 34: 858888.Google Scholar
Born, M., Heisenberg, W., and Jordan, P. (1926). “Zur Quantenmechnik. II,” ZP, 35: 557615.CrossRefGoogle Scholar
Borrelli, A. (2012). “The case of the composite Higgs: the model as a ‘Rosetta stone’ in contemporary high-energy physics,” Stud. Hist. Philos. Mod. Phys., 43: 195214.CrossRefGoogle Scholar
Bose, S. N. (1924). “Plancks Gesetz und Lichtquantenhypothese,” ZP, 26: 178181.Google Scholar
Bouchiat, C., Iliopoulos, J., and Meyer, Ph. (1972). “An anomaly-free version of Weinberg’s model,” PL, 38B: 519523.Google Scholar
Boulware, D. (1970). “Renormalizability of massive non-Abelian gauge fields: a functional integral approach,” AP, 56: 140171.Google Scholar
Boyd, R. N. (1979). “Metaphor and theory change,” in Metaphor and Thought, ed. Ortony, A. (Cambridge University Press, Cambridge).Google Scholar
Boyd, R. N. (1983). “On the current status of scientific realism,” Erkenntnis, 19: 4590.Google Scholar
Brandt, R. A. (1967). “Derivation of renormalized relativistic perturbation theory from finite local field equations,” AP, 44: 221265Google Scholar
Brandt, R. A., and Orzalesi, C. A. (1967). “Equal-time commutator and zero-energy theorem in the Lee model,” PR, 162: 17471750.Google Scholar
Brans, C. (1962). “Mach’s principle and the locally measured gravitational constant in general relativity,” PR, 125: 388396.Google Scholar
Brans, C., and Dicke, R. H. (1961). “Mach’s principle and a relativistic theory of gravitation,” PR, 124: 925935.CrossRefGoogle Scholar
Braunbeck, W., and Weinmann, E. (1938). “Die Rutherford-Streuung mit Berücksichtigung der Auszahlung,” ZP, 110: 360372.Google Scholar
Breidenbach, M., et al. (1969). “Observed behavior of highly inelastic electron–proton scattering,” PRL, 23: 935999.Google Scholar
Bridgeman, P. W. (1927). The Logic of Modern Physics (Macmillan, New York).Google Scholar
Bromberg, J. (1976). “The concept of particle creation before and after quantum mechanics,” Hist. Stud. Phys. Sci., 7: 161191.Google Scholar
Brown, H. R., and Harré, R. (1988). Philosophical Foundations of Quantum Field Theory (Clarendon, Oxford).Google Scholar
Brown, L. M. (1978). “The idea of the neutrino,” Phys. Today, 31(9): 2327.Google Scholar
Brown, L. M., and Cao, T. Y. (1991). “Spontaneous breakdown of symmetry: its rediscovery and integration into quantum field theory,” Hist. Stud. Phys. Biol. Sci., 21: 211235.Google Scholar
Brown, L. M., and Hoddeson, L. (eds.) (1983). The Birth of Particle Physics (Cambridge University Press, Cambridge).Google Scholar
Brown, L. M., and Rechenberg, H. (1988). “Landau’s work on quantum field theory and high energy physics (1930–1961),” Max Planck Institute, Preprint, MPI-PAE/Pth 42/88 (July 1988).Google Scholar
Brown, L. M., Dresden, M., and Hoddeson, L. (eds.) (1989). Pions to Quarks (Cambridge University Press, Cambridge).Google Scholar
Bucella, F., Veneziano, G., Gatto, R., and Okubo, S. (1966). “Necessity of additional unitary-antisymmetric q-number terms in the commutators of spatial current components,” PR, 149: 12681272.Google Scholar
Buckingham, M. J. (1957). “A note on the energy gap model of superconductivity,” NC, 5: 17631765.Google Scholar
Burtt, E. A. (1932). The Metaphysical Foundations of Modern Physical Science (Doubleday, Garden City). (First edition in 1924, revised version first appeared in 1932.)Google Scholar
Cabibbo, N. (1963). “Unitary symmetry and leptonic decays,” PRL, 10: 531533.Google Scholar
Cabrera, B. (1982). “First results from a superconductive detector for moving magnetic monopoles,” PRL, 48: 13781381.Google Scholar
Callan, C. (1970). “Bjorken scale invariance in scalar field theory,” PR, D2: 15411547.Google Scholar
Callan, C. (1972). “Bjorken scale invariance and asymptotic behavior,” PR, D5: 32023210.Google Scholar
Callan, C., and Gross, D. (1968). “Crucial test of a theory of currents,” PRL, 21: 311313.CrossRefGoogle Scholar
Callan, C., and Gross, D. (1969). “High-energy electroproduction and the constitution of the electric current,” PRL, 22: 156159.Google Scholar
Callan, C., and Gross, D. (1973). “Bjorken scaling in quantum field theory,” PR, D8: 43834394.Google Scholar
Callan, C., Coleman, S., and Jackiw, R. (1970). “A new improved energy-momentum tensor,” AP, 59: 4273.Google Scholar
Callan, C., Dashen, R., and Gross, D. (1976). “The structure of the vacuum,” PL, 63B: 334340.Google Scholar
Carmeli, M. (1976). “Modified gravitational Lagrangian,” PR, D14: 1727.Google Scholar
Carmeli, M. (1977). “SL2C conservation laws of general relativity,” NC, 18: 1720.Google Scholar
Cantor, G. N., and Hodge, M. J. S. (eds.) (1981). Conceptions of Ether (Cambridge University Press, Cambridge).Google Scholar
Cao, T. Y. (1991). “The Reggeization program 1962–1982: attempts at reconciling quantum field theory with S-matrix theory,” Arch. Hist. Exact Sci., 41: 239283.Google Scholar
Cao, T. Y. (1993). “What is meant by social constructivism? A critical exposition,” a talk given at the Dibner Institute, MIT, on October 19, 1993.Google Scholar
Cao, T. Y. (1997). Conceptual Developments of 20th Century Field Theories (Cambridge University Press, Cambridge).Google Scholar
Cao, T. Y. (1999). Conceptual Foundations of Quantum Field Theory (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Cao, T. Y. (2001). “Prerequisites for a consistent framework of quantum gravity,” Stud. Hist. Philos. Mod. Phys., 32(2): 181204.Google Scholar
Cao, T. Y. (2003a). “Can we dissolve physical entities into mathematical structures?Synthese, 136(1): 5771.Google Scholar
Cao, T. Y. (2003b). “What is ontological synthesis? A reply to Simon Saunders,” Synthese, 136(1): 107126.Google Scholar
Cao, T. Y. (2006). “Structural realism and quantum gravity,” in Structural Foundation of Quantum Gravity, eds. Rickles, D. French, S., and Saatsi, J. (Oxford University Press, Oxford).Google Scholar
Cao, T. Y. (2007). “Conceptual issues in quantum gravity,” an invited 50 minute talk delivered, on August 11, 2007, at The 13th International Congress of Logic, Methodology and Philosophy of Science, August 9–15, 2007, Beijing, China (unpublished).Google Scholar
Cao, T. Y. (2010). From Current Algebra to Quantum Chromodynamics—A Case for Structural Realism (Cambridge University Press, Cambridge).Google Scholar
Cao, T. Y. (2014a). “Key steps toward the creation of QCD—notes on the logic and history of the genesis of QCD,” in What We Would Like LHC to Give Us, ed. Zichichi, A. (World Scientific, Singapore), 139153.Google Scholar
Cao, T. Y. (2014b). “Incomplete, but real—a constructivist account of reference,” Epistemol. Philos. Sci., 41(3): 7281.Google Scholar
Cao, T. Y. (2016). “The hole argument and the nature of spacetime—a critical review from a constructivist perspective,” in Einstein, Tagore and the Nature of Reality, ed. Ghose, P. (Routledge, New York), 3744.Google Scholar
Cao, T. Y., and Brown, L. M. (1991). “Spontaneous breakdown of symmetry: its rediscovery and integration into quantum field theory,” Hist. Stud. Phys. Biol. Sci., 21(2): 211235.Google Scholar
Cao, T. Y., and Schweber, S. S. (1993). “The conceptual foundations and the philosophical aspects of renormalization theory,” Synthese, 97: 33108.Google Scholar
Capps, R. H. (1963). “Prediction of an interaction symmetry from dispersion relations, PRL, 10: 312314.Google Scholar
Capra, F. (1979). “Quark physics without quarks: a review of recent developments in S-matrix theory,” AJP, 47: 1123.Google Scholar
Capra, F. (1985). “Bootstrap physics: a conversation with Geoffrey Chew,” in A Passion for Physics: Essays in Honour of Geoffrey Chew, eds. De Tar, C., Finkelstein, J., and Tan, C. I. (Taylor & Francis, Philadelphia), 247286.Google Scholar
Carnap, R. (1929). Der Logisches Aufbau der Welt (Schlachtensee Weltkreis-Verlag, Berlin).Google Scholar
Carnap, R. (1934). Logische Syntax der Sprache. (English trans. 1937, The Logical Syntax of Language. Kegan Paul).Google Scholar
Carnap, R. (1950). “Empirecism, semantics and ontology,” Revue Internationale de Philosophie, 4: 20–40. Also in Carnap (1956), 205–221.Google Scholar
Carnap, R. (1956). Meaning and Necessity, enlarged edition (University of Chicago Press, Chicago).Google Scholar
Cartan, E. (1922). “Sur une géneralisation de la notion de courbure de Riemann et les éspaces à torsion,” Compt. Rend. Acad. Sci. Paris, 174: 593595.Google Scholar
Case, K. M. (1949). “Equivalence theorems for meson–nucleon coupling,” PR, 76: 114.CrossRefGoogle Scholar
Cassidy, D. C., and Rechenberg, H. (1985). “Biographical data, Werner Heisenberg (1901–1976),” in W. Heisenberg, Collected Works, eds. Blum, W. et al., Series A, part I (Berlin), 114.Google Scholar
Castillejo, L., Dalitz, R. H., and Dyson, F. J. (1956). “Low’s scattering equation for the charged and neutral scalar theories,” PR, 101: 453158.Google Scholar
Cauchy, A. L. (1828). “Sur les équations qui expriment les conditions d’équilibre ou les lois du mouvement intérieur d’un corps solide, élastique ou non élastique,” Exercise de Mathématiques, 3: 160187.Google Scholar
Cauchy, A. L. (1830). “Mémoire sur la théorie de la lumière,” Mém. de l’Acad., 10: 293316.Google Scholar
Chadwick, J. (1914). “Intensitätsvertieilung im magnetischen Spektrum der β-strahlen von Radium B + C,” Ber. Deut. Phys. Gens., 12: 383391.Google Scholar
Chadwick, J. (1932). “Possible existence of a neutron,” Nature, 129: 312.Google Scholar
Chambers, R. G. (1960). “Shift of an electron interference pattern by enclosed magnetic flux,” PRL, 5: 35.Google Scholar
Chandler, C. (1968). “Causality in S-matrix theory,” PR, 174: 17491758.CrossRefGoogle Scholar
Chandler, C., and Stapp, H. P. (1969). “Macroscopic causality and properties of scattering amplitudes,” JMP, 10: 826859.Google Scholar
Chandrasekhar, S. (1931). “The maximum mass of ideal white dwarfs,” Astrophys. J., 74: 81.Google Scholar
Chandrasekhar, S. (1934). “Stellar configurations with degenerate cores,” Observatory, 57: 373377.Google Scholar
Chanowitz, M. S., Furman, M. A., and Hinchliffe, Z. (1978). “Weak interactions of ultra heavy fermions,” PR, B78: 285289.Google Scholar
Charap, J. M., and Fubini, S. (1959). “The field theoretic definition of the nuclear potential-Ι,” NC, 14: 540559.Google Scholar
Chew, G. F. (1953a). “Pion–nucleon scattering when the coupling is weak and extended,” PR, 89: 591593.Google Scholar
Chew, G. F. (1953b). “A new theoretical approach to the pion-nucleaon interaction,” PR, 89: 904.Google Scholar
Chew, G. F. (1961). S-Matrix Theory of Strong Interactions (Benjamin, New York).Google Scholar
Chew, G. F. (1962a). “S-matrix theory of strong interactions without elementary particles,” RMP, 34: 394401.Google Scholar
Chew, G. F. (1962b). “Reciprocal bootstrap relationship of the nucleon and the (3, 3) resonance,” PRL, 9: 233235.Google Scholar
Chew, G. F. (1962c). “Strong interaction theory without elementary particles,” in Proceedings of the 1962 International Conference on High Energy Physics at CERN, ed. Prentki, J. (CERN, Geneva), 525530.Google Scholar
Chew, G. F. (1967). “Closure, locality, and the bootstrap,” PRL, 19: 1492.Google Scholar
Chew, G. F. (1989). “Particles as S-matrix poles: hadron democracy,” in Pions to Quarks: Particle Physics in the 1950s, eds. Brown, L. M., Dresden, M., and Hoddeson, L. (Cambridge University Press, Cambridge), 600607.Google Scholar
Chew, G. F., and Frautschi, S. C. (1960). “Unified approach to high- and low-energy strong interactions on the basis of the Mandelstam representation,” PRL, 5: 580583.CrossRefGoogle Scholar
Chew, G. F., and Frautschi, S. C. (1961a). “Dynamical theory for strong interactions at low momentum transfer but arbitrary energies,” PR, 123: 14781486.Google Scholar
Chew, G. F., and Frautschi, S. C. (1961b). “Potential scattering as opposed to scattering associated with independent particles in the S-matrix theory of strong interactions,” PR, 124: 264268.Google Scholar
Chew, G. F., and Frautschi, S. C. (1961c). “Principle of equivalence for all strongly interacting particles within the S-matrix framework,” PRL, 7: 394397.CrossRefGoogle Scholar
Chew, G. F., and Frautschi, S. C. (1962). “Regge trajectories and the principle of maximum strength for strong interactions,” PRL, 8: 4144.Google Scholar
Chew, G. F., and Low, F. E. (1956). “Effective-range approach to the low-energy p-wave pion–nucleon interaction,” PR, 101: 15701579.Google Scholar
Chew, G. F., and Mandelstam, S. (1960). “Theory of low energy pion-pion interaction,” PR, 119: 467477.Google Scholar
Chew, G. F., Goldberger, M. L., Low, F. E., and Nambu, Y. (1957a). “Application of dispersion relations to low-energy meson-nucleon scattering,” PR, 106: 13371344.Google Scholar
Chew, G. F., Goldberger, M. L., Low, F. E., and Nambu, Y. (1957b). “Relativistic dispersion relation approach to photomeson production,” PR, 106: 13451355.Google Scholar
Chihara, C. (1973). Ontology and the Vicious Circle Principle (Cornell University Press, Ithaca).Google Scholar
Cho, Y. M. (1975). “Higher-dimensional unifications of gravitation and gauge theories,” JMP, 16: 20292035.Google Scholar
Cho, Y. M. (1976). “Einstein Lagrangian as the translational Yang-Mills Lagrangian,” PR, D14: 25212525.Google Scholar
Christoffel, E. B. (1869a). “Ueber die Transformation der homogenen Differential-ausdrücke zweiten Grades,” J. r. angew. Math., 70: 4670.Google Scholar
Christoffel, E. B. (1869b). “Ueber ein die Transformation hamogen Differential-ausdrücke zweiten Grades betreffendes Theorem,” J. r. angew. Math., 70: 241245.Google Scholar
Clifford, W. K. (1876). “On the space-theory of matter,” in Mathematical Papers, ed. Tucker, R. (Macmillan, London).Google Scholar
Coleman, S. (1965). “Trouble with relativistic SU(6),” PR, B138: 12621267.Google Scholar
Coleman, S. (1977). “The use of instantons,” a talk later published in The Ways in Subnuclear Physics, ed. Zichichi, A. (Plenum, New York, 1979).Google Scholar
Coleman, S. (1979). “The 1979 Nobel Prize in physics,” Science, 206: 12901292.Google Scholar
Coleman, S. (1985). Aspects of Symmetry (Cambridge University Press, Cambridge).Google Scholar
Coleman, S., and Gross, D. (1973). “Price of asymptotic freedom,” PRL, 31: 851854.Google Scholar
Coleman, S., and Jackiw, R. (1971). “Why dilatation generators do not generate dilatations,” AP, 67: 552598.Google Scholar
Coleman, S., and Mandula, J. (1967). “All possible symmetries of the S matrix,” PR, B159: 12511256.Google Scholar
Coleman, S., and Weinberg, E. (1973). “Radiative corrections as the origin of spontaneous symmetry breaking,” PR, D7: 18881910.Google Scholar
Collins, C. B., and Hawking, S. W. (1973a). “The rotation and distortion of the universe,” Mon. Not. R. Astron. Soc., 162: 307320.Google Scholar
Collins, C. B., and Hawking, S. W. (1973b). “Why is the universe isotropic?,” Astrophys. J., 180: 317334.Google Scholar
Collins, J. C. (1984). Renormalization (Cambridge University Press, Cambridge).Google Scholar
Collins, J. C., Wilczek, F., and Zee, A. (1978). “Low-energy manifestations of heavy particles: application to the neutral current,” PR, D18: 242247.Google Scholar
Collins, P. D. B. (1977). An Introduction to Regge Theory and High Energy Physics (Cambridge University Press, Cambridge).Google Scholar
Compton, A. (1923a). “Total reflection of X-rays,” Philos. Mag., 45: 11211131.Google Scholar
Compton, A. (1923b). “Quantum theory of the scattering of X-rays by light elements,” PR, 21: 483502.Google Scholar
Coster, J., and Stapp, H. P. (1969). “Physical-region discontinuity equations for many-particle scattering amplitudes. I,” JMP, 10: 371396.Google Scholar
Coster, J., and Stapp, H. P. (1970a). “Physical-region discontinuity equations for many-particle scattering amplitudes. II,” JMP, 11: 14411463.Google Scholar
Coster, J., and Stapp, H. P. (1970b). “Physical-region discontinuity equations,” JMP, 11: 27432763.Google Scholar
Creutz, M. (1981). “Roulette wheels and quark confinement,” Comment Nucl. Partic. Phys., 10: 163173.Google Scholar
Crewther, R. J. (1972). Nonperturbative evaluation of the anomalies in low-energy theorems,” PRL, 28: 142.Google Scholar
Crewther, R., Divecchia, P., Veneziano, G., and Witten, E. (1979). “Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics,” PL, 88B: 123127.Google Scholar
Curie, P. (1894). “Sur la symetrie dans les phenomenes physiques, symetrie d’un champ electrique et d’un champ magnetique,” J. Phys. (Paris), 3: 393415.Google Scholar
Cushing, J. T. (1986). “The importance of Heisenberg’s S-matrix program for the theoretical high-energy physics of the 1950’s,” Centaurus, 29: 110149.CrossRefGoogle Scholar
Cushing, J. T. (1990). Theory Construction and Selection in Modern Physics: The S-Matrix Theory (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Cutkosky, R. E. (1960). “Singularities and discontinuities of Feynman amplitudes,” JMP, 1: 429433.Google Scholar
Cutkosky, R. E. (1963a). “A model of baryon states,” AP, 23: 415438.Google Scholar
Cutkosky, R. E. (1963b). “A mechanism for the induction of symmetries among the strong interactions,” PR, 131: 18881890.Google Scholar
Cutkosky, R. E., and Tarjanne, P. (1963). “Self-consistent derivations from unitary symmetry,” PR, 132: 13541361.Google Scholar
Dalitz, R. (1966). “Quark models for the ‘elementary particles,” in High Energy Physics, eds. DeWitt, C., and Jacob, M. (Gordon and Breach, New York), 251324.Google Scholar
Dancoff, S. M. (1939). “On radiative corrections for electron scattering,” PR, 55: 959963.Google Scholar
Daniel, M., and Viallet, C. M. (1980). “The geometrical setting of gauge theories of the Yang–Mills type,” RMP, 52: 175197.Google Scholar
de Broglie, L. (1923a). “Ondes et quanta,” Compt. Rend. Acad. Sci. Paris, 177: 507510.Google Scholar
de Broglie, L. (1923b). “Quanta de lumiere, diffraction et interferences,” Compt. Rend. Acad. Sci. Paris, 177: 548550.Google Scholar
de Broglie, L. (1926). “The new undulatory mechanics,” Compt. Rend. Acad. Sci. Paris, 183: 272274.Google Scholar
de Broglie, L. (1927a). “Possibility of relating interference and diffraction phenomena to the theory of light quanta,” Compt. Rend. Acad. Sci. Paris, 183: 447448.Google Scholar
de Broglie, L. (1927b). “La mécanique ondulatoire et la structure atomique de la matiére et du rayonnement,” J. Phys. Radium, 8: 225241.Google Scholar
de Broglie, L. (1960). Non-linear Wave Mechanics: A Causal Interpretation, trans. Knobel, A. J., and Miller, J. C. (Elsevier, Amsterdam).Google Scholar
de Broglie, L. (1962). New Perspectives in Physics, trans. Pomerans, A. J. (Oliver and Boyd, Edinburgh).Google Scholar
Debye, P. (1910a). Letter to Sommerfeld, March 2, 1910.Google Scholar
Debye, P. (1910b). “Der Wahrscheinlichkeitsbegriff in der Theorie der Strahlung,” Ann. Phys., 33: 14271434.Google Scholar
Debye, P. (1923). “Zerstreuung von Röntgenstrahlen und quantentheorie,” Phys. Z., 24: 161166.Google Scholar
Demopoulos, W., and Friedman, M. (1985). “Critical notice: Bertrand Russell’s The Analysis of Matter: its historical context and contemporary interest,” Philos. Sci., 52: 621639.CrossRefGoogle Scholar
Deser, S. (1970). “Self-interaction and gauge invariance,” Gen. Relat. Gravit., 1: 9.Google Scholar
de Sitter, W. (1916a). “On the relativity of rotation in Einstein’s theory,” Proc. Sect. Sci. (Koninklijke Akademie van Wetenschappen te Amsterdam), 19: 527532.Google Scholar
de Sitter, W. (1916b). “On Einstein’s theory of gravitation and its astronomical consequences. I, II,” Mon. Not. R. Astron. Soc., 76: 699738; 77: 155–183.Google Scholar
de Sitter, W. (1917a). “On the relativity of inertia: remarks concerning Einstein’s latest hypothesis,” Proc. Sect. Sci. (Koninklijke Akademie van Wetenschappen te Amsterdam), 19: 12171225.Google Scholar
de Sitter, W. (1917b). “On the curvature of space,” Proc. Sect. Sci. (Koninklijke Akademie van Wetenschappen te Amsterdam), 20: 229242.Google Scholar
de Sitter, W. (1917c). “On Einstein’s theory of gravitation and its astronomical consequences. Third paper,” Mon. Not. R. Astron. Soc., 78: 328.Google Scholar
de Sitter, W. (1917d). “Further remarks on the solutions of the field equations of Einstein’s theory of gravitation,” Proc. Sect. Sci. (Koninklijke Akademie van Wetenschappen te Amsterdam), 20: 13091312.Google Scholar
de Sitter, W. (1917e). Letter to Einstein, April 1, 1917, EA: 20–551.Google Scholar
de Sitter, W. (1920). Letter to Einstein, November 4, 1920, EA: 20–571.Google Scholar
de Sitter, W. (1931). “Contributions to a British Association discussion on the evolution of the universe,” Nature, 128: 706709.Google Scholar
DeWitt, B. S. (1964). “Theory of radiative corrections for non-Abelian gauge fields,” PRL, 12: 742746.Google Scholar
DeWitt, B. S. (1967a). “Quantum theory of gravity. I. The canonical theory,” PR, 160: 11131148.Google Scholar
DeWitt, B. S. (1967b). “Quantum theory of gravity. II. The manifestly covariant theory,” PR, 162: 11951239.Google Scholar
DeWitt, B. S. (1967c). “Quantum theory of gravity. III. Applications of the covariant theory,” PR, 162: 12391256.Google Scholar
Dirac, P. A. M. (1925). “The fundamental equations of quantum mechanics,” PRS, A109: 642653.Google Scholar
Dirac, P. A. M. (1926a). “Quantum mechanics and a preliminary investigation of the hydrogen atom,” PRS, A110: 561579.Google Scholar
Dirac, P. A. M. (1926b). “On the theory of quantum mechanics,” PRS, A112: 661677.Google Scholar
Dirac, P. A. M. (1927a). “The physical interpretation of the quantum dynamics,” PRS, A113: 621641.Google Scholar
Dirac, P. A. M. (1927b). “The quantum theory of emission and absorption of radiation,” PRS, A114: 243265.Google Scholar
Dirac, P. A. M. (1927c). “The quantum theory of dispersion,” PRS, A114: 710728.Google Scholar
Dirac, P. A. M. (1928a). “The quantum theory of the electron,” PRS, A117: 610624.Google Scholar
Dirac, P. A. M. (1928b). “The quantum theory of the electron. Part II,” PRS, A118: 351361.Google Scholar
Dirac, P. A. M. (1930a). “A theory of electrons and protons,” PRS, A126: 360365.Google Scholar
Dirac, P. A. M. (1930b). The Principles of Quantum Mechanics (Clarendon, Oxford).Google Scholar
Dirac, P. A. M. (1931). “Quantized singularities in the electromagnetic field,” PRS, A133: 6072.Google Scholar
Dirac, P. A. M. (1932). “Relativistic quantum mechanics,” PRS, A136: 453464.Google Scholar
Dirac, P. A. M. (1933). “Théorie du positron,” in Rapport du Septième Conseil de Solvay Physique, Structure et Propriétés des noyaux atomiques (22–29 Oct. 1933) (Gauthier-Villars, Paris), 203212.Google Scholar
Dirac, P. A. M. (1934). “Discussion of the infinite distribution of electrons in the theory of the positron,” Proc. Cam. Philos. Soc., 30: 150163.Google Scholar
Dirac, P. A. M. (1938). “Classical theory of radiating electrons,” PRS, A167: 148169.Google Scholar
Dirac, P. A. M. (1939). “La théorie de l’électron et du champ électromagnétique,” Ann. Inst. Henri Poincaré, 9: 1349.Google Scholar
Dirac, P. A. M. (1942). “The physical interpretation of quantum mechanics,” PRS, A180: 140.Google Scholar
Dirac, P. A. M. (1948). “Quantum theory of localizable dynamic systems,” PR, 73: 10921103.Google Scholar
Dirac, P. A. M. (1951). “Is there an aether?Nature, 168: 906907.Google Scholar
Dirac, P. A. M. (1952). “Is there an aether?Nature, 169: 146, 702.Google Scholar
Dirac, P. A. M. (1963). “The evolution of the physicist’s picture of nature,” Scientific American, 208(5): 4553.Google Scholar
Dirac, P. A. M. (1968). “Methods in theoretical physics,” in Special Supplement of IAEA Bulletin (IAEA, Vienna, 1969), 2128.Google Scholar
Dirac, P. A. M. (1969a). “Can equations of motion be used?,” in Coral Gables Conference on Fundamental Interactions at High Energy, Coral Gables, 22–24 Jan. 1969 (Gordon and Breach, New York), 118.Google Scholar
Dirac, P. A. M. (1969b). “Hopes and fears,” Eureka, 32: 24.Google Scholar
Dirac, P. A. M. (1973a). “Relativity and quantum mechanics,” in The Past Decades in Particle Theory, eds. Sudarshan, C. G., and Neéman, Y. (Gordon and Breach, New York), 741772.Google Scholar
Dirac, P. A. M. (1973b). “Development of the physicist’s conception of nature,” in The Physicist’s Conception of Nature, ed. Mehra, J. (Reidel, Dordrecht), 114.Google Scholar
Dirac, P. A. M. (1977). “Recollections of an exciting era,” in History of Twentieth Century Physics, ed. Weiner, C. (Academic Press, New York), 109146.Google Scholar
Dirac, P. A. M. (1978). Directions in Physics (Wiley, New York).Google Scholar
Dirac, P. A. M. (1981). “Does renormalization make sense?” in Perturbative Quantum Chromodynamics, eds. Duke, D. W., and Owen, J. F. (AIP Conference Proceedings No. 74, American Institute of Physics, New York), 129130.Google Scholar
Dirac, P. A. M. (1983). “The origin of quantum field theory,” in The Birth of Particle Physics, eds. Brown, L. M., and Hoddeson, L. (Cambridge University Press, Cambridge), 3955.Google Scholar
Dirac, P. A. M. (1984a). “The future of atomic physics,” Int. J. Theor. Phys., 23(8): 677681.Google Scholar
Dirac, P. A. M. (1984b). “The requirements of fundamental physical theory,” Eur. J. Phys., 5: 6567.Google Scholar
Dirac, P. A. M. (1987). “The inadequacies of quantum field theory,” in Reminiscences about a Great Physicist: Paul Adrien Maurice Dirac, eds. Kursunoglu, B. N., and Wigner, E. P. (Cambridge University Press, Cambridge).Google Scholar
Dolen, R., Horn, O., and Schmid, C. (1967). “Prediction of Regge parameters of ρ poles from low-energy πΝ data,” PRL, 19: 402407.Google Scholar
Dolen, R., Horn, O., and Schmid, C. (1968). “Finite-energy sum mies and their applications to πN charge exchange,” PR, 166: 17681781.Google Scholar
Doran, B. G. (1975). “Origins and consolidation of field theory in nineteenth century Britain,” Hist. Stud. Phys. Sci., 6: 133260.Google Scholar
Dorfman, J. (1930). “Zur Frage über die magnetischen Momente der Atomkerne,” ZP, 62: 9094.Google Scholar
Duane, W. (1923). “The transfer in quanta of radiation momentum to matter,” Proc. Natl. Acad. Sci., 9: 158164.Google Scholar
Duhem, P. (1906). The Aim and Structure of Physical Theory (Princeton University Press, Princeton, 1954).Google Scholar
Dürr, H. P., and Heisenberg, W. (1961). “Zur theorie der “seltsamen” teilchen,” Z. Naturf., 16A: 726747.Google Scholar
Dürr, H. P., Heisenberg, W., Mitter, H., Schlieder, S., and Yamazaki, K. (1959). “Zur theorie der elementarteilchen,” Z. Naturf., 14A: 441485.Google Scholar
Dyson, F. J. (1949a). “The radiation theories of Tomonaga, Schwinger and Feynman,” PR, 75: 486502.Google Scholar
Dyson, F. J. (1949b). “The S-matrix in quantum electrodynamics,” PR, 75: 17361755.Google Scholar
Dyson, F. J. (1951). “The renormalization method in quantum electrodynamics,” PRS, A207: 395401.Google Scholar
Dyson, F. J. (1952). “Divergence of perturbation theory in quantum electrodynamics,” PR, 85: 631632.Google Scholar
Dyson, F. J. (1965). “Old and new fashions in field theory,” Phys. Today, 18(6): 2124.Google Scholar
Earman, J. (1979). “Was Leibniz a relationist?’ In Studies in Metaphysics, eds. French, P., and Wettstein, H. (University of Minnesota Press, Minneapolis).Google Scholar
Earman, J. (1989). World-Enough and Space-Time (MIT Press, Cambridge, MA).Google Scholar
Earman, J. (2004a). “Curie’s principle and spontaneous symmetry breaking,” Int. Stud. Philos. Sci., 18: 173198.Google Scholar
Earman, J. (2004b). “Laws, symmetry, and symmetry breaking: invariance, conservation principles, and objectivity,” Philos. Sci., 71: 12271241.Google Scholar
Earman, J., and Norton, J. (1987). “What price space-time substantivalism? The hole story,” Brit. J. Philos. Sci., 38: 515525.Google Scholar
Earman, J., Glymore, C., and Stachel, J. (eds.) (1977). Foundations of Space-Time Theories (University of Minnesota Press, Minneapolis).Google Scholar
Eddington, A. S. (1916). Letter to de Sitter, October 13, 1916, Leiden Observatory, quoted by Kerszberg (1989).Google Scholar
Eddington, A. S. (1918). Report on the Relativity Theory of Gravitation (Fleetway, London).Google Scholar
Eddington, A. S. (1921). “A generalization of Weyl’s theory of the electromagnetic and gravitational fields,” PRS, A99: 104122.Google Scholar
Eddington, A. S. (1923). The Mathematical Theory of Gravitation (Cambridge University Press, Cambridge).Google Scholar
Eddington, A. S. (1926). The Internal Constitution of the Stars (Cambridge University Press, Cambridge).Google Scholar
Eddington, A. S. (1930). “On the instability of Einstein’s spherical world,” Mon. Not. R. Astron. Soc., 90: 668678.Google Scholar
Eddington, A. S. (1935). “Relativistic degeneracy,” Observatory, 58: 3739.Google Scholar
Ehrenfest, P. (1906). “Zur Planckschen Strahlungstheorie,” Phys. Z., 7: 528532.Google Scholar
Ehrenfest, P. (1911). “Welche Zuge der lichtquantenhypothese spielen in der Theorie die Wärmestrahlung eine wesentliche Rolle?Ann. Phys., 36: 91118.Google Scholar
Ehrenfest, P. (1916). “Adiabatische invarianten und quantentheorie,” Ann. Phys., 51: 327352.Google Scholar
Ehrenfest, P., and Kamerling-Onnes, H. (1915). “Simplified deduction of the formula from the theory of combinations which Planck uses as the basis for radiation theory,” Proc. Amsterdam Acad., 23: 789792.Google Scholar
Eichten, E., Gottfried, K., Kinoshita, T., Koght, J., Lane, K. D., and Yan, T.-M. (1975). “Spectrum of charmed quark-antiquark bound states,” PRL, 34: 369372.Google Scholar
Einstein, A. (1905a). “Über einen die Erzeugung und Verwandlung des lichtes betreffenden heuristischen Gesichtspunkt,” Ann. Phys., 17: 132148.Google Scholar
Einstein, A. (1905b). “Die von der molekulärkinetischen Theorie der Wärme geforderte bewegung von in ruhenden Flüssigkeiten suspendierten Toilchen,” Ann. Phys., 17: 549560.Google Scholar
Einstein, A. (1905c). “Zur Elektrodynamik bewegter Körper,” Ann. Phys., 17: 891921.Google Scholar
Einstein, A. (1905d). “Ist die Trägheit eines Körpers von seinem Energiegehalt abhängig?,” Ann. Phys., 18: 639641.Google Scholar
Einstein, A. (1906a). “Zur Theorie der Lichterzeugung und Lichtabsorption,” Ann. Phys., 20: 199206.Google Scholar
Einstein, A. (1906b). “Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie,” Ann. Phys., 20: 627633.Google Scholar
Einstein, A. (1907a). “Die vom Relativitätsprinzip geforderte Trägheit der Energie,” Ann. Phys., 23: 371384.Google Scholar
Einstein, A. (1907b). “Über das Relativitätsprinzip und aus demselben gezogenen Folgerungen,” Jahrb. Radioakt. Elektron., 4: 411462.Google Scholar
Einstein, A. (1909a). “Zum gegenwärtigen Stand des Strhlungsproblems,” Phys. Z., 10: 185193.Google Scholar
Einstein, A. (1909b). “Über die Entwicklung unserer Anschauungen über das wesen und die Konstitution der Strahlung,” Phys. Z., 10: 817825.Google Scholar
Einstein, A. (1909c). Letter to Lorentz, May 23, 1909.Google Scholar
Einstein, A. (1911). “Über den Einfluss der Schwerkraft aus die Ausbreitung des Lichtes,” Ann. Phys., 35: 898908.Google Scholar
Einstein, A. (1912a). “Lichtgeschwindigkeit und statik des Gravitationsfeldes,” Ann. Phys., 38: 355369.CrossRefGoogle Scholar
Einstein, A. (1912b). “Zur Theorie des statischen Gravitationsfeldes,” Ann. Phys., 38: 443458.Google Scholar
Einstein, A. (1913a). “Zum gegenwärtigen Stande des Gravitationsproblems,” Phys. Z., 14: 12491266.Google Scholar
Einstein, A. (1913b). “Physikalische Grundlagen einer gravitationstheorie,” Vierteljahrsschr. Naturforsch. Ges. Zürich, 58: 284290.Google Scholar
Einstein, A. (1913c). A letter to Mach, E., June 25, 1913; quoted by Holton, G. (1973).Google Scholar
Einstein, A. (1914a). “Prinzipielles zur verallgeneinerten Relativitästheorie und Gravitationstheorie,” Phys. Z., 15: 176180.Google Scholar
Einstein, A. (1914b). “Die formale Grundlage der allgemeinen Relativitätstheorie,” Preussische Akad. Wiss. Sitzungsber., 1030–1085.Google Scholar
Einstein, A. (1915a). “Zur allgemeinen Relativitätstheorie,” Preussische Akad. Wiss. Sitzungsber., 778–786.Google Scholar
Einstein, A. (1915b). “Zur allgemeinen Relativitätstheorie (Nachtrag),” Preussische Akad. Wiss. Sitzungsber., 799–801.Google Scholar
Einstein, A. (1915c). “Erklärung der perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie,” Preussische Akad. Wiss. Sitzungsber., 831–839.Google Scholar
Einstein, A. (1915d). “Die Feldgleichungen der Gravitation,” Preussische Akad. Wiss. Sitzungsber., 844–847.Google Scholar
Einstein, A. (1915e). Letter to Ehrenfest, P., December 26, 1915. EA: 9–363.Google Scholar
Einstein, A. (1916a). Letter to Besso, M., January 3, 1916, in Speziali, P. (1972).Google Scholar
Einstein, A. (1916b). Letter to Schwarzschild, K., January 9, 1916. EA: 21–516.Google Scholar
Einstein, A. (1916c). “Die Grundlage der allgemeinen Relativitätstheorie,” Ann. Phys., 49: 769822.Google Scholar
Einstein, A. (1916d). “Ernst Mach,” Phys. Z., 17: 101104.Google Scholar
Einstein, A. (1917a). “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie,” Preussische Akad. Wiss. Sitzungsber., 142–152.Google Scholar
Einstein, A. (1917b). “Zur quantentheorie der strahlung,” Phys. Z., 18: 121128.Google Scholar
Einstein, A. (1917c). Letter to de Sitter, March 12, 1917. EA: 20–542.Google Scholar
Einstein, A. (1917d). Letter to de Sitter, June 14, 1917. EA: 20–556.Google Scholar
Einstein, A. (1917e). Letter to de Sitter, August 8, 1917. EA: 20–562.Google Scholar
Einstein, A. (1918a). “Prinzipielles zur allgemeinen Relativitätstheorie,” Ann. Phys., 55: 241244.Google Scholar
Einstein, A. (1918b). “Kritischen zu einer von Herrn de Sitter gegebenen Lösung der Gravitationsgleichungen,” Preussische Akad. Wiss. Sitzungsber., 270–272.Google Scholar
Einstein, A. (1918c). “Dialog über Einwande gegen die Relativitätstheorie,” Naturwissenschaften, 6: 197702.Google Scholar
Einstein, A. (1918d). “‘Nachtrag’ zu H. Weyl: ‘Gravitation und elektrizität’,” Preussische Akad. Wiss. Sitzungsber., 478–480.Google Scholar
Einstein, A. (1919). “Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle?,” Preussische Akad. Wiss. Sitzungsber., 349–356.Google Scholar
Einstein, A. (1920a). Äther und Relativitätstheorie (Springer, Berlin).Google Scholar
Einstein, A. (1920b). Relativity (Methuen, London).Google Scholar
Einstein, A. (1921a). “Geometrie und Erfahrung,” Preussische Akad. Wiss. Sitzungsber., 123–130.Google Scholar
Einstein, A. (1921b). “A brief outline of the development of the theory of relativity,” Nature, 106: 782784.Google Scholar
Einstein, A. (1922). The Meaning of Relativity (Princeton University Press, Princeton).Google Scholar
Einstein, A. (1923a). “Zur affinen Feldtheorie,” Preussische Akad. Wiss. Sitzungsber., 137–140.Google Scholar
Einstein, A. (1923b). “Bietet die Feldtheorie Möglichkeiten für die Lösung des Quanten problems?,” Preussische Akad. Wiss. Sitzungsber., 359–364.Google Scholar
Einstein, A. (1923c). “Notiz zu der Arbeit von A. Friedmann ‘Über die Krümmung des Raumes’,” ZP, 16: 228.Google Scholar
Einstein, A. (1924). “Quantentheorie des einatomigen idealen Gases,” Preussische Akad. Wiss. Sitzungsber., 261–267.Google Scholar
Einstein, A. (1925a). “Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung,” Preussische Akad. Wiss. Sitzungsber., 3–14.Google Scholar
Einstein, A. (1925b). “Non-Euclidean geometry and physics,” Neue Rundschau, 1: 1620.Google Scholar
Einstein, A. (1927). “The meaning of Newton and influence upon the development of theoretical physics,” Naturwissenschaften, 15: 273276.Google Scholar
Einstein, A. (1929a). “Field: old and new,” New York Times, February 3, 1929.Google Scholar
Einstein, A. (1929b). “Zur einheitlichen Feldtheorie,” Preussische Akad. Wiss. Sitzungsber., 2–7.Google Scholar
Einstein, A. (1929c). “Professor Einstein spricht über das physikalische Raum- und Äther-Problem,” Deutsche Bergwerks-Zeitung, December 15, 1929, 11.Google Scholar
Einstein, A. (1930a). “Raum-, Feld- und Äther-Problem in der physik,” in Gesamtbericht, Zweite Weltkraftkonferenz, Berlin, 1930, eds. Neden, F., and Kromer, C. (VDI-Verlag, Berlin), 15.Google Scholar
Einstein, A. (1930b). Letter to Weiner, A., September 18, 1930; quoted by Holton (1973).Google Scholar
Einstein, A. (1931). “Zum kosmologischen problem der allgemeinen Relativitätstheorie,” Preussische Akad. Wiss. Sitzungsber., 235–237.Google Scholar
Einstein, A. (1933a). On the Method of Theoretical Physics (Clarendon, Oxford).Google Scholar
Einstein, A. (1933b). Origins of the General Theory of Relativity (Jackson, Glasgow).Google Scholar
Einstein, A. (1936). “Physics and reality,” J. Franklin Inst., 221: 313347.Google Scholar
Einstein, A. (1945). “A generalization of relativistic theory of gravitation,” Ann. Math., 46: 578584.Google Scholar
Einstein, A. (1948a). A letter to Barnett, L., June 19, 1948, quoted by Stachel. J. in his “Notes on the Andover conference,” in Earman et al. (1977), ix.Google Scholar
Einstein, A. (1948b). “Generalized theory of gravitation,” RMP, 20: 3539.Google Scholar
Einstein, A. (1949). “Autobiographical notes,” in Albert Einstein: Philosopher-Scientist, ed. Schilpp, P. A. (The Library of Living Philosophers, Evanston), 195.Google Scholar
Einstein, A. (1950a). “On the generalized theory of gravitation,” Scientific American, 182(4): 1317.Google Scholar
Einstein, A. (1950b). Letter to Viscount Samuel, October 13, 1950, in In Search of Reality, by Samuel, V. (Blackwell, 1957), 17.Google Scholar
Einstein, A. (1952a). “Relativity and the problem of space,” appendix 5 in the 15th edition of Relativity: The Special and the General Theory (Methuen, London, 1954), 135157.Google Scholar
Einstein, A. (1952b). Preface to the fifteenth edition of Relativity: The Special and the General Theory (Methuen, London, 1954).Google Scholar
Einstein, A. (1952c). Letter to Seelig, C., April 8, 1952, quoted by Holton, G. (1973).Google Scholar
Einstein, A. (1952d). Letter to Max Born, May 12, 1952, in The Born–Einstein Letters (Walker, New York, 1971).Google Scholar
Einstein, A. (1953). Foreword to Concepts of Space, by Jammer, M. (Harvard University Press, Cambridge, MA).Google Scholar
Einstein, A. (1954a). Letter to Pirani, F., February 2, 1954.Google Scholar
Einstein, A. (1954b). “Relativity theory of the non-symmetrical field,” appendix 2 in The Meaning of Relativity (Princeton University Press, Princeton, 1955), 133166.Google Scholar
Einstein, A., and Grossmann, M. (1913). “Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation,” Z. Math. Phys., 62: 225261.Google Scholar
Einstein, A., Infeld, L., and Hoffmann, B. (1938). “Gravitational equations and the problem of motion,” Ann. Math., 39: 65100.Google Scholar
Ellis, G. (1989). “The expanding universe: a history of cosmology from 1917 to 1960,” in Einstein and the History of General Relativity, eds. Howard, D., and Stachel, J. (Birkhäuser, Boston/Basel/Berlin), 367431.Google Scholar
Elsasser, W. (1925). “Bemerkunggen zur Quantenmechanik Elektronen,” Naturwissenschaften, 13: 711.Google Scholar
Engler, F. O., and Renn, J. (2013). “Hume, Einstein und Schlick über die Objektivität der Wissenschaft,” in Moritz Schlick – Die Rostocker Jahre und ihr Einfluss auf die Wiener Zeit, 3. Internationales Rostocker Moritz-Schlick-Symposium, November 2011, eds. Engler, F. O., Iven, M., and Schlickiana (Leipziger Universitätsverlag, Leipzig), vol. 6, 123156.Google Scholar
Englert, F., and Brout, R. (1964). “Broken symmetry and the mass of gauge vector mesons,” PRL, 13: 321323.Google Scholar
Englert, F., Brout, R., and Thiry, M. F. (1966). “Vector mesons in presence of broken symmetry,” NC, 43: 244257.Google Scholar
Essam, J. W., and Fisher, M. E. (1963). “Padé approximant studies of the lattice gas and Ising ferromagnet below the critical point,” J. Chem. Phys., 38: 802812.Google Scholar
Euler, H. (1936). “Über die Streuung von Licht an Licht nach Diracschen Theorie,” Ann. Phys., 21: 398448.Google Scholar
Faddeev, L. D., and Popov, V. N. (1967). “Feynman diagrams for the Yang–Mills field,” PL, 25B: 2930.Google Scholar
Faraday, M. (1844). “A speculation touching electric conduction and the nature of matter,” Philos. Mag., 24: 136144.Google Scholar
Feinberg, G., and Gürsey, F. (1959). “Space-time properties and internal symmetries of strong interactions,” PR, 114: 11531170.Google Scholar
Feldman, D. (1949). “On realistic field theories and the polarization of the vacuum,” PR, 76: 13691375.Google Scholar
Feldman, D. (ed.) (1967). Proceedings of the Fifth Annual Eastern Theoretical Physics Conference (Benjamin, New York).Google Scholar
Fermi, E. (1922). “Sopra i fenomeni che avvengono in vicinanza di una linea oraria,” Accad. Lincei, 311: 184187, 306–309.Google Scholar
Fermi, E. (1929). “Sopra l’electrodinamica quantistica. I,” Rend. Lincei, 9: 881887.Google Scholar
Fermi, E. (1930). “Sopra l’electrodinamica quantistica. II,” Rend. Lincei, 12: 431135.Google Scholar
Fermi, E. (1932). “Quantum theory of radiation,” RMP, 4: 87132.Google Scholar
Fermi, E. (1933). “Tentativo di una teoria del l’emissione dei raggi β’ Ric. Science, 4(2): 491495.Google Scholar
Fermi, E. (1934). “Versuch einer Theorie der β-Strahlen. I,” ZP, 88: 161171.Google Scholar
Feyerabend, P. (1962). “Explanation, reduction and empiricism,” in Scientific Explanation, Space and Time, eds. Feigl, H., and Maxwell, G. (University of Minnesota Press, Minneapolis), 2897.Google Scholar
Feynman, R. P. (1948a). “A relativistic cut-off for classical electrodynamics,” PR, 74: 939946.Google Scholar
Feynman, R. P. (1948b). “Relativistic cut-off for quantum electrodynamics,” PR, 74: 14301438.Google Scholar
Feynman, R. P. (1948c). “Space-time approach to non-relativistic quantum mechanics,” RMP, 20: 367387.Google Scholar
Feynman, R. P. (1949a). “The theory of positrons,” PR, 76: 749768.Google Scholar
Feynman, R.P. (1949b). “The space-time approach to quantum electrodynamics,” PR, 76: 769789.Google Scholar
Feynman, R. P. (1963). “Quantum theory of gravity,” Acta Phys. Polonica, 24: 697722.Google Scholar
Feynman, R. P. (1969). “Very high-energy collisions of hadrons,” PRL, 23: 14151417.Google Scholar
Feynman, R. P. (1973). “Partons,” in The Past Decade in Particle Theory, eds. Sudarshan, C. G., and Ne’eman, Y. (Gordon and Breach, New York), 775.Google Scholar
Feynman, R. P., and Gell-Mann, M. (1958). “Theory of the Fermi interaction,” PR, 109: 193198.Google Scholar
Feynman, R. P., and Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals (McGraw-Hill, New York).Google Scholar
Finkeistein, D. (1958). “Past-future asymmetry of the gravitational field of a point particle,” PR, 110: 965.Google Scholar
Fisher, M. E. (1964). “Correlation functions and the critical region of simple fluids,” JMP, 5: 944962.Google Scholar
FitzGerald, G. E. (1885). “On a model illustrating some properties of the ether,” Proc. Dublin Sci. Soc., 4: 407419. Reprinted in: The Scientific Writings of the late George Francis FitzGerald, ed. Larmor, J. (Longmans, Green, & Co, London, 1902), 142–156.Google Scholar
Fock, V. (1927). “Über die invariante from der Wellen- und der Bewegungs- gleichungen für einen geladenen Massenpunkt,” ZP, 39: 226233.CrossRefGoogle Scholar
Forman, P. (1971). “Weimar culture, causality, and quantum theory, 1918–27: adaptation by German physicists and mathematicians to a hostile intellectual environment,” Hist. Stud. Phys. Sci., 3: 1115.Google Scholar
Forman, P. (2011). “Kausalität, Anschaulichkeit, and Individualität, or, How cultural values prescribed the character and the lessons ascribed to quantum mechanics,” in Weimar Culture and Quantum Mechanics, eds. Carson, C., Kojevnikov, A., and Trischler, H. (World Scientific, Singapore), 203219.Google Scholar
Fradkin, E. S. (1956). “Concerning some general relations of quantum electrodynamics,” JETP, 2: 361363.Google Scholar
Fradkin, E. S., and Tyutin, I. V. (1970). “S matrix for Yang–Mills and gravitational fields,” PR, D2: 28412857.Google Scholar
French, S., and Ladyman, J. (2003a). “Remodelling structural realism: quantum physics and the metaphysics of structure,” Synthese, 136: 3156.Google Scholar
French, S., and Ladyman, J. (2003b). “Between platonism and phenomenalism: Reply to Cao.’ Synthese, 136: 7378.Google Scholar
Frenkel, J. (1925). “Zur elektrodynamik punktfoermiger elektronen,” ZP, 32: 518534.Google Scholar
Friederich, S. (2014). “A philosophical look at the Higgs mechanism,” J. Gen. Philos. Sci., 45(2): 335350.Google Scholar
Friedlander, F. G. (1976). The Wave Equation on a Curved Space-Time (Cambridge University Press, Cambridge).Google Scholar
Friedman, A. (1922). “Über die Krümmung des Raumes,” ZP, 10: 377386.Google Scholar
Friedman, A. (1924). “Über die Möglichkeit einer Welt mit konstant negativer Krümmung des Raumes,” ZP, 21: 326332.Google Scholar
Friedman, M. (1983). Foundations of Space-Time Theories (Princeton University Press, Princeton).Google Scholar
Friedman, M. (2001). Dynamics of Reason: The 1999 Kant Lectures at Stanford University (CSLI Publications, Stanford, CA).Google Scholar
Friedman, M. (2009). “Einstein, Kant, and the relativized a priori,” in Constituting Objectivity: Transcendental Perspectives on Modern Physics, eds. Bitbol, M., Kerszberg, P., and Petitot, J. (Springer, New York), 253267.Google Scholar
Friedman, M. (2010). “Kuhnian approach to the history and philosophy of science,” Monist, 93: 497517.Google Scholar
Friedman, M. (2011). “Extending the dynamics of reason,” Erkenntnis, 75: 431444.Google Scholar
Friedman, M. (2012). “Reconsidering the dynamics of reason,” Stud. Hist. Philos. Sci., 43: 4753.Google Scholar
Friedman, M. (2013). “Neo-Kantianism, scientific realism, and modern physics,” in Scientific Metaphysics, eds. Ross, D., Ladyman, J., and Kincaid, H. (Oxford University Press, Oxford), 182198.Google Scholar
Friedman, M. (2014). A Post-Kuhnian Philosophy of Science (Spinoza Lectures, Van Gorcum).Google Scholar
Frishman, Y. (1971). “Operator products at almost light like distances,” AP, 66: 373389.Google Scholar
Fritzsch, H., and Gell-Mann, M. (1971a), “Scale invariance and the lightcone,” in Proceedings of the 1971 Coral Gables Conference on Fundamental Interactions at High Energy, eds. Dal Cin, M., et al. (Gordon and Breach, New York), 153.Google Scholar
Fritzsch, H., and Gell-Mann, M. (1971b). “Light cone current algebra,” in Proceedings of the International Conference on Duality and Symmetry in Hadron Physics, ed. Gotsman, E. (Weizmann Science Press, Rehovot, Israel), 317374.Google Scholar
Fritzsch, H., and Gell-Mann, M. (1972). “Current algebra, quarks and what else?” in Proceedings of the XVI International Conference on High Energy Physics, September 6–13, 1972, eds. Jackson, J. D., and Roberts, A. (National Accelerator Laboratory, Batavia, IL), vol. 2, 135165.Google Scholar
Fritzsch, H., and Minkowski, P. (1975). “Unified interactions of leptons and hadrons,” AP, 93: 193266.Google Scholar
Fritzsch, H., Gell-Mann, M., and Leutwyler, H. (1973). “Advantages of the color octet gluon picture,” PL, 47B: 365368.Google Scholar
Fubini, S., and Furlan, G. (1965). “Renormalization effects for partially conserved currents,” Physics, 1: 229247.Google Scholar
Fukuda, H., and Miyamoto, Y. (1949). “On the γ-decay of neutral meson,” PTP, 4: 347357.Google Scholar
Furry, W. H., and Neuman, M. (1949). “Interaction of meson with electromagnetic field,” PR, 76: 432.Google Scholar
Furry, W. H., and Oppenheimer, J. R. (1934). “On the theory of the electron and positron,” PR, 45: 245262.Google Scholar
Gasiorowicz, S. G., Yennie, P. R., and Suura, H. (1959). “Magnitude of renormalization constants,” PRL, 2: 513516.Google Scholar
Gauss, C. F. (1827). “Disquisitiones generales circa superficies curvas,” Comm. Soc. reg. Sci. Gött. cl. math., 6: 99146.Google Scholar
Gauss, C. F. (1845). Letter to Weber, March 19, 1845, quoted by Whittaker (1951), 240.Google Scholar
Gell-Mann, M. (1956). “Dispersion relations in pion–pion and photon–nucleon scattering,” in Proceedings of the Sixth Annual Rochester Conference on High Energy Nuclear Physics (Interscience, New York), sect. III, 3036.Google Scholar
Gell-Mann, M. (1958). “Remarks after Heisenberg’s paper,” in 1958 Annual International Conference on High Energy Physics at CERN (CERN, Geneva), 126.Google Scholar
Gell-Mann, M. (1960). Remarks in Proceedings of the 1960 Annual International Conference on High Energy Physics at Rochester (Interscience, New York), 508.Google Scholar
Gell-Mann, M. (1962a). “Symmetries of baryons and mesons,” PR, 125: 10671084.Google Scholar
Gell-Mann, M. (1962b). “Applications of Regge poles,” in 1962 International Conference on High Energy Physics at CERN (CERN, Geneva), 533542.Google Scholar
Gell-Mann, M. (1962c). “Factorization of coupling to Regge poles,” PRL, 81: 263264.Google Scholar
Gell-Mann, M. (1964a). “A schematic model of baryons and mesons,” PL, 8: 214215.Google Scholar
Gell-Mann, M. (1964b). “The symmetry group of vector and axial vector currents,” Physics, 1: 6375.Google Scholar
Gell-Mann, M. (1972a). “Quarks,” Acta Phys. Austr. Suppl., 9: 733761; CERN-TH-1543.Google Scholar
Gell-Mann, M. (1972b). “General status: summary and outlook,” in Proceedings of the XVI International Conference on High Energy Physics, September 6–13, 1972, eds. Jackson, J. D., and Roberts, A. (National Accelerator Laboratory), vol. 4, 333355.Google Scholar
Gell-Mann, M. (1987). “Particle theory from S-matrix to quarks,” in Symmetries in Physics (1600–1980), eds. Doncel, M. G., Hermann, A., Michael, L., and Pais, A. (Bellaterra, Barcelona), 474497.Google Scholar
Gell-Mann, M. (1989). “Progress in elementary particle theory, 1950–1964,” in Pions to Quarks, eds. Brown, L. M., Dresden, M., and Hoddeson, L. (Cambridge University Press, Cambridge), 694709.Google Scholar
Gell-Mann, M. (1997). “Quarks, color, and QCD,” in The Rise of the Standard Model, eds. Hoddeson, L., Brown, L., Riordan, M., and Dresden, M. (Cambridge University Press, Cambridge), 625633.Google Scholar
Gell-Mann, M., and Goldberger, M. L. (1954). “The scattering of low energy photons by particles of spin 1/2,” PR, 96: 14331438.Google Scholar
Gell-Mann, M., and Levy, M. (1960). “The axial vector current in beta decay,” NC, 14: 705725.Google Scholar
Gell-Mann, M., and Low, F. E. (1954). “Quantum electrodynamics at small distances,” PR, 95: 13001312.Google Scholar
Gell-Mann, M., and Ne’eman, Y. (1964). The Eightfold Way (Benjamin, New York).Google Scholar
Gell-Mann, M., and Pais, A. (1954). “Theoretical views on the new particles,” in Proceedings of the Glaskow International Conference on Nuclear Physics, eds. Bellamy, E. H., and Moorhouse, R. G. (Pergamon, Oxford), 342350.Google Scholar
Gell-Mann, M., Goldberger, M. L., and Thirring, W. (1954). “Use of causality conditions in quantum theory,” PR, 95: 16121627.Google Scholar
Gell-Mann, M., Ramond, P., and Slansky, R. (1978). “Color embeddings, charge assignments, and proton stability in unified gauge theories,” RMP, 50: 721744.Google Scholar
Georgi, H. (1989a). “Grand unified field theories,” in The New Physics, ed. Davies, P. (Cambridge University Press, Cambridge), 425445.Google Scholar
Georgi, H. (1989b). “Effective quantum field theories,” in The New Physics, ed. Davies, P. (Cambridge University Press, Cambridge), 446457.Google Scholar
Georgi, H., and Glashow, S. L. (1974). “Unity of all elementary particles,” PRL, 32: 438441.Google Scholar
Georgi, H., Quinn, H. R., and Weinberg, S. (1974). “Hierarchy of interactions in unified gauge theories,” PRL, 33: 451454.Google Scholar
Gershstein, S., and Zel’dovich, J. (1955). “On corrections from mesons to the theory of β-decay,” Zh. Eksp. Teor. Fiz., 29: 698699. (English trans.: JETP, 2: 576).Google Scholar
Gerstein, I., and Jackiw, R. (1969). “Anomalies in Ward identities for three-point functions,” PR, 181: 19551963.Google Scholar
Gervais, J. L., and Lee, B. W. (1969). “Renormalization of the σ-model (II) Fermion fields and regularization,” NP, B12: 627646.Google Scholar
Giedymin, J. (1982). Science and Convention (Pergamon, Oxford).Google Scholar
Gilbert, W. (1964). “Broken symmetries and massless particles,” Phys. Rev. Lett., 12: 713714.Google Scholar
Ginzburg, V. L., and Landau, L. D. (1950). “On the theory of superconductivity,” Zh. Eksp. Teor. Fiz., 20: 1064.Google Scholar
Glashow, S. L. (1959). “The renormalizability of vector meson interactions,” NP, 10: 107117.Google Scholar
Glashow, S. L. (1961). “Partial symmetries of weak interactions,” NP, 22: 579588.Google Scholar
Glashow, S. L. (1980). “Toward a unified theory: threads in a tapestry,” RMP, 52: 539543.Google Scholar
Glashow, S. L., Iliopoulos, J., and Maiani, L. (1970). “Weak interactions with lepton–hadron symmetry,” PR, D2: 12851292.Google Scholar
Glauser, R. J. (1953). “On the gauge invariance of the neutral vector meson theory,” PTP, 9: 295298.Google Scholar
Glimm, J., and Jaffe, A. (1987). Quantum Physics, section 6.6 (Springer-Verlag).Google Scholar
Gödel, K. (1949). “An example of a new type of cosmological solution of Einstein’s field equations of gravitation,” RMP, 21: 447450.Google Scholar
Gödel, K. (1952). “Rotating universes in general relativity theory,” Proceedings of the International Congress of Mathematicians, Cambridge, Mass. 1950 (American Mathematical Society, Providence, RI), vol. I, 175181.Google Scholar
Goldberger, M. L. (1955a). “Use of causality conditions in quantum theory,” PR, 97: 508510.Google Scholar
Goldberger, M. L. (1955b). “Causality conditions and dispersion relations. I. Boson fields,” PR, 99: 979985.Google Scholar
Goldberger, M. L., and Treiman, S. B. (1958a). “Decay of the pi meson,” PR, 110: 11781184.Google Scholar
Goldberger, M. L., and Treiman, S. B. (1958b). “Form factors in β decay and v capture,” PR, 111: 354361.Google Scholar
Goldhaber, G., et al. (1976). Observation in e+ e annihilation of a narrow state at 1865 Mev/c2 decaying to Kπ and Κπππ,” PRL, 37: 255259.Google Scholar
Goldstone, J. (1961). “Field theories with “superconductor” solutions,” NC, 19: 154164.Google Scholar
Goldstone, J., Salam, A., and Weinberg, S. (1962). “Broken symmetries,” PR, 127: 965970.Google Scholar
Goto, T., and Imamura, T. (1955). “Note on the non-perturbation-approach to quantum field theory,” PTP, 14: 396397.Google Scholar
Green, M. B. (1985). “Unification of forces and particles in superstring theories,” Nature, 314: 409414.Google Scholar
Green, M. B., and Schwarz, J. H. (1985). “Infinity cancellations in SO(32) superstring theory,” PL, 151B: 2125.Google Scholar
Green, M. B., Schwarz, J. H., and Witten, E. (1987). Superstring Theory (Cambridge University Press, Cambridge).Google Scholar
Greenberg, O. W. (1964). “Spin and unitary-spin independence in a paraquark model of baryons and mesons,” PRL, 13: 598.Google Scholar
Greenberg, O. W., and Zwanziger, D. (1966). “Saturation in triplet models of hadrons,” PR, 150: 1177.Google Scholar
Gross, D. (1985). “Beyond quantum field theory,” in Recent Developments in Quantum Field Theory, eds. Ambjorn, J. Durhuus, B. J., and Petersen, J. L. (Elsevier, New York), 151168.Google Scholar
Gross, D. (1992). “Asymptotic freedom and the emergence of QCD’ (a talk given at the Third International Symposium on the History of Particle Physics, June 26, 1992; Princeton Preprint PUPT 1329).Google Scholar
Gross, D., and Jackiw, R. (1972). “Effect of anomalies on quasi-renormalizable theories,” PR, D6: 477493.Google Scholar
Gross, D., and Llewellyn Smith, C. H. (1969). “High-energy neutrino–nucleon scattering, current algebra and partons,” NP, B14: 337347.Google Scholar
Gross, D., and Treiman, S. (1971). “Light cone structure of current commutators in the gluon–quark model,” PR, D4: 10591072.Google Scholar
Gross, D., and Wilczek, F. (1973a). “Ultraviolet behavior of non-Abelian gauge theories,” PRL, 30: 13431346.Google Scholar
Gross, D., and Wilczek, F. (1973b). “Asymptotic free gauge theories: I,” PR, D8: 36333652.Google Scholar
Gross, D., and Wilczek, F. (1973c). “Asymptotically free gauge theories. II,” PR, D9: 980.Google Scholar
Gulmanelli, P. (1954). Su una Teoria dello Spin Isotropico (Pubblicazioni della Sezione di Milano dell’istituto Nazionale di Fisica Nucleare, Casa Editrice Pleion, Milano).Google Scholar
Guralnik, G. S. (2011). “The beginnings of spontaneous symmetry breaking in particle physics,” Proceedings of the DPF-2011 Conference, Providence, RI, 8–13, August 2011. Ar1110.2253v1 [physics, hist-ph].Google Scholar
Guralnik, G. S. (2013). “Heretical ideas that provided the cornerstone for the standard model of particle physics,” SPG MITTEILUNGEN March 2013, No. 39 (p. 14).Google Scholar
Guralnik, G. S., Hagen, C. R., and Kibble, T. W. B. (1964). “Global conservation laws and massless particles,” PRL, 13: 585587.Google Scholar
Gürsey, F. (1960a). “On the symmetries of strong and weak interactions,” NC, 16: 230240.Google Scholar
Gürsey, F. (1960b). “On the structure and parity of weak interaction currents,” Proceedings of 10th International High Energy Physics Conference, 570–577.Google Scholar
Gürsey, F., and Radicati, L. A. (1964). “Spin and unitary spin independence,” PRL, 13: 173175.Google Scholar
Gürsey, F., and Sikivie, P. (1976). “E7 as a unitary group,” PRL, 36: 775778.Google Scholar
Haag, R. (1958). “Quantum field theories with composite particles and asymptotic conditions,” PR, 112: 669673.Google Scholar
Haas, A. (1910a). “Über die elektrodynamische Bedeutung des Planck’schen strahlungsgesetzes und über eine neue Bestimmung des elektrischen Elementarquantums und der Dimensionen des Wasserstoffatoms,” Wiener Ber II, 119: 119144.Google Scholar
Haas, A. (1910b). “Über eine neue theoretische Methode zur Bestmmung des elektrischen Elementarquantums und des Halbmessers des Wasserstoffatoms,” Phys. Z., 11: 537538.Google Scholar
Haas, A. (1910c). “Der zusammenhang des Planckschen elementaren Wirkungsquantums mit dem Grundgrössen der Elektronentheorie,” J. Radioakt., 7: 261268.Google Scholar
Haag, R. (1955). “On quantum field theories,” Det Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske Meddelelser 29(12): 137.Google Scholar
Hacking, I. (1983). Representing and Intervening (Cambridge University Press, Cambridge).Google Scholar
Hamprecht, B. (1967). “Schwinger terms in perturbation theory,” NC, 50A: 449457.Google Scholar
Han, M. Y., and Nambu, Y. (1965). “Three-triplet model with double SU(3) symmetry,” PR, B139: 10061010.Google Scholar
Hanson, N. R. (1958). Patterns of Discovery (Cambridge University Press, Cambridge).Google Scholar
Hara, Y. (1964). “Unitary triplets and the eightfold way,” PR, B134: 701704.Google Scholar
Harman, P. M. (1982a). Energy, Force, and Matter: The Conceptual Development of Nineteenth-Century Physics (Cambridge University Press, Cambridge).Google Scholar
Harman, P. M. (1982b). Metaphysics and Natural Philosophy: The Problem of Substance in Classical Physics (Barnes and Noble, Totowa, NJ).Google Scholar
Harrington, B. J., Park, S. Y., and Yildiz, A. (1975). “Spectrum of heavy mesons in e+ e annihilation,” PRL, 34: 168171.Google Scholar
Hartle, J. B., and Hawking, S. W. (1983). “Wave function of the universe,” PR, D28: 29602975.Google Scholar
Hasert, F. J., et al. (1973a). “Search for elastic muon-neutrino electron scattering,” PL, 46B: 121124.Google Scholar
Hasert, F. J., et al. (1973b). “Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment,” PL, 46B: 138140.Google Scholar
Hawking, S. (1975). “Particle creation by black holes,” CMP, 43: 199220.Google Scholar
Hawking, S. (1979). “The path-integral approach to quantum gravity,” in General Relativity: An Einstein Centenary Survey, eds. Hawking, S., and Israel, W. (Cambridge University Press, Cambridge).Google Scholar
Hawking, S. (1980). Is the End in Sight for Theoretical Physics? (Cambridge University Press, Cambridge).Google Scholar
Hawking, S. (1987). “Quantum cosmology,” in Three Hundred Years of Gravitation, eds. Hawking, S. W., and Israel, W. (Cambridge University Press, Cambridge), 631.Google Scholar
Hawking, S., and Ellis, G. (1968). “The cosmic black body radiation and the existence of singularities in our universe,” Astrophys. J., 152: 2536.Google Scholar
Hawking, S., and Penrose, R. (1970). “The singularities of gravitational collapse and cosmology,” PRS, A314: 529548.Google Scholar
Hayakawa, S. (1983). “The development of meson physics in Japan,” in The Birth of Particle Physics, eds. Brown, L. M., and Hoddeson, L. (Cambridge University Press, Cambridge), 82107.Google Scholar
Hayashi, K., and Bregman, A. (1973). “Poincaré gauge invariance and the dynamical role of spin in gravitational theory,” AP, 75: 562600.Google Scholar
Hehl, F. W (2014). “Gauge theory of gravity and spacetime,” arXiv:1204.3672.Google Scholar
Hehl, F. W., et al. (1976). “General relativity with spin and torsion: foundations and prospects,” RMP, 48: 393416.Google Scholar
Heilbron, J. L. (1981). “The electric field before Faraday,” in Conceptions of Ether, eds. Cantor, G. N., and Hodge, M. J. S. (Cambridge University Press, Cambridge), 187213.Google Scholar
Heisenberg, W. (1925). “Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehung,” ZP, 33: 879883.Google Scholar
Heisenberg, W. (1926a). “Über die spektra von Atomsystemen mit zwei Elektronen,” ZP, 39: 499518.Google Scholar
Heisenberg, W. (1926b). “Schwankungserscheinungen und Quantenmechanik,” ZP, 40: 501.Google Scholar
Heisenberg, W. (1926c). “Quantenmechanik,” Naturwissenschaften, 14: 989994.Google Scholar
Heisenberg, W. (1926d). Letters to Pauli, W.: 28 Oct. 1926, 4 Nov. 1926, 23 Nov. 1926, in Pauli, W., Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg, u. A., Band I: 1919–1929, eds. Hermann, A., Meyenn, K. V., and Weisskopf, V. E. (Springer-Verlag, Berlin, 1979).Google Scholar
Heisenberg, W. (1927). “Über den anschaulichen Inhalt der quantentheoretischen kinematik u. mechanik,” ZP, 43: 172198.Google Scholar
Heisenberg, W. (1928). “Zur Theorie des Ferromagnetismus,” ZP, 49: 619636.Google Scholar
Heisenberg, W. (1932a). “Über den Bau der Atomkerne,” ZP, 77: 111.Google Scholar
Heisenberg, W. (1932b). “Über den Bau der Atomkerne,” ZP, 78: 156164.Google Scholar
Heisenberg, W. (1933). “Über den Bau der Atomkerne,” ZP, 80: 587596.Google Scholar
Heisenberg, W. (1934). “Remerkung zur Diracschen Theorie des Positrons,” ZP, 90: 209231.Google Scholar
Heisenberg, W. (1943a). “Die “beobachtbaren Grössen” in der Theorie der Elementarteilchen,” ZP, 120: 513538.Google Scholar
Heisenberg, W. (1943b). “Die “beobachtbaren Grössen” in der Theorie der Elementarteilchen. II,” ZP, 120: 673702.Google Scholar
Heisenberg, W. (1944). “Die “beobachtbaren Grössen” in der Theorie der Elementarteilchen. III,” ZP, 123: 93112.Google Scholar
Heisenberg, W. (1955). “The development of the interpretation of the quantum theory,” in Niels Bohr and the Development of Physics, ed. Pauli, W. (McGraw-Hill, New York), 1229.Google Scholar
Heisenberg, W. (1957). “Quantum theory of fields and elementary particles,” RMP, 29: 269278.Google Scholar
Heisenberg, W. (1958). “Research on the non-linear spinor theory with indefinite metric in Hilbert space,” in 1958 Annual International Conference on High Energy Physics at CERN (CERN, Geneva), 119126.Google Scholar
Heisenberg, W. (1960). “Recent research on the nonlinear spinor theory of elementary particles,” in Proceedings of the 1960 Annual International Conference on High Energy Physics at Rochester (Interscience, New York), 851857.Google Scholar
Heisenberg, W. (1961). “Planck’s discovery and the philosophical problems of atomic physics,” in On Modern Physics (by Heisenberg and others), trans. Goodman, M., and Binns, J. W. (C. N. Potter, New York).Google Scholar
Heisenberg, W. (1966). Introduction to the Unified Field Theory of Elementary Particles (Interscience, New York).Google Scholar
Heisenberg, W. (1971). Physics and Beyond: Encounters and Conversations (Harper and Row, New York).Google Scholar
Heisenberg, W., and Pauli, W. (1929). “Zur Quantenelektrodynamik der Wellenfelder. I,” ZP, 56: 161.Google Scholar
Heisenberg, W., and Pauli, W. (1930). “Zur Quantenelektrodynamik der Wellenfelder. II,” ZP, 59: 168190.Google Scholar
Heisenberg, W., et.al. (1959). “Zur theorie der elementarteilchen,” Z. Naturfor., 14A: 441–485.Google Scholar
Heitler, W. (1936). The Quantum Theory of Radiation (Clarendon, Oxford).Google Scholar
Heitler, W. (1961). “Physical aspects in quantum-field theory,” in The Quantum Theory of Fields, ed. Stoops, R. (Interscience, New York), 3760.Google Scholar
Heitler, W., and Herzberg, G. (1929). “Gehorchen die Stickstoffkerne der Boseschen Statistik?Naturwissenschaften, 17: 673.Google Scholar
Hendry, J. (1984). The Creation of Quantum Mechanics and the Bohr–Pauli Dialogue (Reidel, Dordrecht/Boston/Lancaster).Google Scholar
Hertz, H. (1894). Die Prinzipien der Mechanik in neuem Zusammenhang Dargestellt (Barth, Leipzig).Google Scholar
Hesse, M. B. (1961). Forces and Fields (Nelson, London).Google Scholar
Hesse, M. B. (1974). The Structure of Scientific Inference (Macmillan, London).Google Scholar
Hesse, M. B. (1980). Revolutions and Reconstructions in the Philosophy of Science (Harvester, Brighton, Sussex).Google Scholar
Hesse, M. B. (1981). “The hunt for scientific reason,” in PSA 1980 (Philosophy of Science Association, East Lansing, MI, 1981), vol. 2, 322.Google Scholar
Hesse, M. B. (1985). “Science beyond realism and relativism” (unpublished manuscript).Google Scholar
Hessenberg, G. (1917). “Vektorielle Begründung der Differentialgeometrie,” Math. Ann., 78: 187.Google Scholar
Higgs, P. W. (1964a). “Broken symmetries, massless particles and gauge fields,” PL, 12: 132133.Google Scholar
Higgs, P. W. (1964b). “Broken symmetries and the masses of gauge bosons,” PRL, 13: 508509.Google Scholar
Higgs, P. W. (1966). “Spontaneous symmetry breakdown without massless bosons,” Phys. Rev., 145: 11561163.Google Scholar
Hilbert, D. (1915). “Die Grundlagen der Physik,” Nachr. Ges. Wiss. Göttingen Math.- phys. Kl., 395–407.Google Scholar
Hilbert, D. (1917). “Die Grundlagen der Physik: zweite Mitteilung,” Nachr. Ges. Wiss. Göttingen. Math.-phys. Kl., 55 –76(201): 477480.Google Scholar
Holton, G. (1973). Thematic Origins of Scientific Thought: Kepler to Einstein (Harvard University Press, Cambridge, MA).Google Scholar
Hosotani, Y. (1983). “Dynamical gauge symmetry breaking as the Casimir effect,” PL, 129B: 193197.Google Scholar
Houard, J. C., and Jouvet, B. (1960). “Etude d’un modèle de champ à constante de renormalisation nulle,” NC, 18: 466481.Google Scholar
Houtappel, R. M. F., Van Dam, H., and Wigner, E. P. (1965). “The conceptual basis and use of the geometric invariance principles,” RMP, 37: 595632.Google Scholar
Hubble, E. P. (1929). “A relation between distance and radial velocity among extra-galactic nebulae,” Proc. Natl. Acad. Sci. USA, 15: 169173.Google Scholar
Hurst, C. A. (1952). “The enumeration of graphs in the Feynman–Dyson technique,” PRS, A214: 4461.Google Scholar
Iagolnitzer, D., and Stapp, H. P. (1969). “Macroscopic causality and physical region analyticity in the S-matrix theory,” CMP, 14: 1555.Google Scholar
Isham, C. (1990). “An introduction to general topology and quantum topology,” in Physics, Geometry, and Topology, ed. Lee, H. C. (Plenum, New York), 129189.Google Scholar
Ito, D., Koba, Z., and Tomonaga, S. (1948). “Corrections due to the reaction of “cohesive force field” to the elastic scattering of an electron. I,” PTP, 3: 276289.Google Scholar
Iwanenko, D. (1932a). “The neutron hypothesis,” Nature, 129: 798.Google Scholar
Iwanenko, D. (1932b). “Sur la constitution des noyaux atomiques,” Compt. Rend. Acad. Sci. Paris, 195: 439141.Google Scholar
Iwanenko, D. (1934). “Interaction of neutrons and protons,” Nature, 133: 981982.Google Scholar
Jackiw, R. (1972). “Field investigations in current algebra,” in Lectures on Current Algebra and Its Applications, by Treiman, S. B., Jackiw, R., and Gross, D. J. (Princeton University Press, Princeton), 97254.Google Scholar
Jackiw, R. (1975). “Dynamical symmetry breaking,” in Laws of Hadronic Matter, ed. Zichichi, A. (Academic Press, New York).Google Scholar
Jackiw, R. (1985). “Topological investigations of quantified gauge theories,” in Current Algebra and Anomalies, eds. Treiman, S. B., Jackiw, R., Zumino, B., and Witten, E. (Princeton University Press, Princeton), 211359.Google Scholar
Jackiw, R. (1991). “Breaking of classical symmetries by quantum effects,” MIT preprint CTP #1971 (May 1991).Google Scholar
Jackiw, R., and Johnson, K. (1969). “Anomalies of the axial-vector current,” PR, 182: 14591469.Google Scholar
Jackiw, R., and Preparata, G. (1969). “Probe for the constituents of the electromagnetic current and anomalous commutators,” PRL, 22: 975977.Google Scholar
Jackiw, R., and Rebbi, C. (1976). “Vacuum periodicity in a Yang–Mills quantum theory,” PRL, 37: 172175.Google Scholar
Jackiw, R., Van Royen, R., and West, G. (1970). “Measuring light-cone singularities,” PR, D2: 24732485.Google Scholar
Jacob, M. (1974). Dual Theory (North-Holland, Amsterdam).Google Scholar
Jaffe, A. (1965). “Divergence of perturbation theory for bosons,” CMP, 1: 127149.Google Scholar
Jaffe, A. (1995). Conversation with Schweber, S. S. and Cao, T. Y. on February 9, 1995.Google Scholar
Jammer, M. (1974). The Philosophy of Quantum Mechanics (McGraw-Hill, New York).Google Scholar
Johnson, K. (1961). “Solution of the equations for the Green’s functions of a two dimensional relativistic field theory,” NC, 20: 773790.Google Scholar
Johnson, K. (1963). “γ5 Invariance,” PL, 5: 253254.Google Scholar
Johnson, K., and Low, F. (1966). “Current algebra in a simple model,” PTP, 37 –38: 7493.Google Scholar
Jordan, P. (1925). “Über das thermische Gleichgewicht zwischen quantenatomen und Hohlraumstrahlung,” ZP, 33: 649655.Google Scholar
Jordan, P. (1927a). “Zur quantenmechanik der gasentartung,” ZP, 44: 473480.Google Scholar
Jordan, P. (1927b). “Über Wellen und Korpuskeln in der quantenmechanik,” ZP, 45: 766775.Google Scholar
Jordan, P. (1928). “Der Charakter der quantenphysik,” Naturwissenschaften, 41: 765772. (English trans. taken from J. Bromberg, 1976).Google Scholar
Jordan, P. (1973). “Early years of quantum mechanics: some reminiscences,” in The Physicists Conception of Nature, ed. Mehra, (Reidel, Dordrecht), 294300.Google Scholar
Jordan, P., and Klein, O. (1927). “Zum Mehrkörperproblem der Quantentheorie,” ZP, 45: 751765.Google Scholar
Jordan, P., and Wigner, E. (1928). “Über das Paulische Äquivalenzverbot,” ZP, 47: 631651.Google Scholar
Jost, R. (1947). “Über die falschen Nullstellen der Eigenwerte der S-matrix,” Helv. Phys. Acta., 20: 256266.Google Scholar
Jost, R. (1965). The General Theory of Quantum Fields (American Mathematical Society, Providence, RI).Google Scholar
Jost, R. (1972). “Foundation of quantum field theory,” in Aspects of Quantum Theory, eds. Salam, A., and Wigner, E. P. (Cambridge University Press, Cambridge), 6177.Google Scholar
Kadanoff, L. P. (1966). “Scaling laws for Ising models near Tc,” Physics, 2 : 263272.Google Scholar
Kadanoff, L. P., Götze, W., Hamblen, D., Hecht, R., Lewis, E., Palciauskas, V., Rayl, M., Swift, J., Aspnes, D., and Kane, J. (1967). “Static phenomena near critical points: theory and experiment,” RMP, 39: 395431.Google Scholar
Källen, G. (1953). “On the magnitude of the renormalization constants in quantum electrodynamics,” Dan. Mat.-Fys. Medd., 27: 118.Google Scholar
Källen, G. (1966). “Review of consistency problems in quantum electrodynamics,” Acta Phys. Austr. Suppl., 2: 133161.Google Scholar
Kaluza, T. (1921). “Zum Unitätsproblem der Physik,” Preussische Akad. Wiss. Sitzungsber, 54: 966972.Google Scholar
Kamefuchi, S. (1951). “Note on the direct interaction between spinor fields,” PTP, 6: 175181.Google Scholar
Kamefuchi, S. (1960). “On Salam’s equivalence theorem in vector meson theory,” NC, 18: 691696.Google Scholar
Kant, I. (1783). Prolegomena zu einer jeden künftigen Metaphysik die als Wissenschaft wird auftreten können (J. F. Hartknoch, Riga), English trans. revised by Ellington, J. W. (Hackett, Indianapolis, 1977).Google Scholar
Karaca, K. (2013). “The construction of the Higgs mechanism and the emergence of the electroweak theory,” Stud. Hist. Philos. Mod. Phys., 44: 116.Google Scholar
Kastrup, H. A. (1966). “Conformal group in space-time,” PR, 142: 10601071.Google Scholar
Kemmer, N. (1938). “The charge-dependence of nuclear forces,” Proc. Cam. Philos. Soc., 34: 354364.Google Scholar
Kerr, R. P. (1963). “Gravitational field of a spinning mass as an example of algebraically special metrics,” PRL, 11: 237238.Google Scholar
Kerszberg, P. (1989). “The Einstein–de Sitter controversy of 1916–1917 and the rise of relativistic cosmology,” in Einstein and the History of General Relativity, eds. Howard, D., and Stachel, J. (Birkhäuser, Boston/Basel/Berlin), 325366.Google Scholar
Kibble, T. W. B. (1961). “Lorentz invariance and the gravitational field,” JMP, 2: 212.Google Scholar
Kibble, T. W. B. (1967). “Symmetry breaking in non-Abelian gauge theories,” PR, 155: 15541561.Google Scholar
Kinoshita, T. (1950). “A note on the C meson hypothesis,” PTP, 5: 535536.Google Scholar
Klein, A., and Lee, B. W. (1964). “Does spontaneous breakdown of symmetry imply zero-mass particles?Phys. Rev. Lett., 12: 266268.Google Scholar
Klein, F. (1872). “A comparative review of recent researches in geometry,” English trans., in N. Y. Math. Soc. Bull., 2(1893): 215249.Google Scholar
Klein, O. (1926). “Quantentheorie und fündimentionale Relativitätstheorie,” ZP, 37: 895906.Google Scholar
Klein, O. (1927). “Zur fundimentionalen Darstellung der Relativitästheorie,” ZP, 46: 188.Google Scholar
Klein, O. (1939). “On the theory of charged fields,” in New Theories in Physics, Conference organized in collaboration with the International Union of Physics and the Polish Intellectual Co-operation Committee, Warsaw, May 30–June 3, 1938 (International Institute of Intellectual Cooperation, Paris, 1939), 7793.Google Scholar
Kline, M. (1972). Mathematical Thought from Ancient to Modern Times (Oxford University Press, Oxford).Google Scholar
Koba, Z., and Tomonaga, S. (1947). “Application of the ‘self-consistent’ subtraction method to the elastic scattering of an electron,” PTP, 2: 218.Google Scholar
Koester, D., Sullivan, D., and White, D. H. (1982). “Theory selection in particle physics: a quantitative case study of the evolution of weak-electromagnetic unification theory,” Social Stud. Sci., 12: 73100.Google Scholar
Kogut, J., and Susskind, L. (1975). “Hamiltonian formulation of Wilson’s lattice gauge theories,” PR, D11: 395408.Google Scholar
Komar, A., and Salam, A. (1960). “Renormalization problem for vector meson theories,” NP, 21: 624630.Google Scholar
Komar, A., and Salam, A. (1962). “Renormalization of gauge theories,” PR, 127: 331334.Google Scholar
Koyré, A. (1965). Newtonian Studies (Harvard University Press, Cambridge, MA).Google Scholar
Krajewski, W. (1977). Correspondence Principle and Growth of Science (Reidel, Dordrecht).Google Scholar
Kramers, H. (1924). “The law of dispersion and Bohr’s theory of spectra,” Nature, 113: 673674.Google Scholar
Kramers, H. (1938a). Quantentheorie des Elektrons und der Strahlung, part 2 of Hand- und Jahrbuch der Chemische Physik. I (Akad. Verlag, Leipzig).Google Scholar
Kramers, H. (1938b). “Die Wechselwirkung zwischen geladenen Teilchen und Strahlungsfeld,” NC, 15: 108114.Google Scholar
Kramers, H. (1944). “Fundamental difficulties of a theory of particles,” Ned. Tijdschr. Natuurk., 11: 134147.Google Scholar
Kramers, H. (1947). A review talk at the Shelter Island conference, June 1947 (unpublished). For its content and significance in the development of renormalization theory, see Schweber, S. S.: “A short history of Shelter Island I,” in Island, Shelter II, eds. Jackiw, R., Khuri, N. N., Weinberg, S., and Witten, E. (MIT Press, Cambridge, MA, 1985).Google Scholar
Kramers, H., and Heisenberg, W. (1925). “Über die Streuung von Strahlen durch Atome,” ZP, 31: 681708.Google Scholar
Kretschmann, E. (1917). “Über den Physikalischen Sinn der Relativitats-postulaten,” Ann. Phys., 53: 575614.Google Scholar
Kripke, (1972). “Naming and necessity,” in Semantics of Natural Language, eds. Davidson, D., and Harman, G. (Reidel, Dordrecht).Google Scholar
Kronig, R. (1946). “A supplementary condition in Heisenberg’s theory of elementary particles,” Physica, 12: 543544.Google Scholar
Kruskal, M. D. (1960). “Minimal extension of the Schwarzschild metric,” PR, 119: 17431745.Google Scholar
Kuhn, T. S. (1962). The Structure of Scientific Revolutions (University of Chicago Press, Chicago).Google Scholar
Kuhn, T. S. (1970). The Structure of Scientific Revolutions, second enlarged edition (University of Chicago Press, Chicago).Google Scholar
Kuhn, T. S. (1976). “Theory-change as structure-change: comments on the Sneed formalism,” Erkenntnis, 10: 179199.Google Scholar
Kuhn, T. S. (1990). “The road since structure,” in PSA 1990 (Philosophy of Science Association, East Lansing, MI), vol. 2, 313.Google Scholar
Kuhn, T. S. (1991). “The trouble with the historical philosophy of science,” Robert and Maurine Rothschild Distinguished Lecture delivered at Harvard University on 19 November 1991.Google Scholar
Kuhn, T. S. (1993). Afterwords to World Changes – Thomas Kuhn and the Nature of Science, ed. Horwich, P. (MIT Press, Cambridge, MA).Google Scholar
Kuhn, T. S. (2000). The Road since Structure (University of Chicago Press, Chicago).Google Scholar
Lamb, W. E., and Retherford, R. C. (1947). “Fine structure of the hydrogen atom by a microwave method,” PR, 72: 241243.Google Scholar
Lagrange, J. L. (1788). Mécanique analytique (République, Paris).Google Scholar
Lagrange, J. L. (1797). Théorie des fonctions analytiques (République, Paris).Google Scholar
Landau, L. D. (1937). “On the theory of phase transitions,” Phys. Z. Sowjetunion, 11: 2647, 545–555; also in Collected Papers (of Landau, L. D.), ed. ter Haar, D. (New York, 1965), 193–216.Google Scholar
Landau, L. D. (1955). “On the quantum theory of fields,” in Niels Bohr and the Development of Physics, ed. Pauli, W. (Pergamon, London), 5269.Google Scholar
Landau, L. D. (1958). Letter to Heisenberg, Feb. 1958, quoted by Brown, L. M. and Rechenberg, H. (1988): “Landau’s work on quantum field theory and high energy physics (1930–1961),” Max Planck Institute Preprint MPI-PAE/Pth 42/88 (July 1988), 30.Google Scholar
Landau, L. D. (1959). “On analytic properties of vertex parts in quantum field theory,” NP, 13: 181192.Google Scholar
Landau, L. D. (1960a). “On analytic properties of vertex parts in quantum field theory,” in Proceedings of the Ninth International Annual Conference on High Energy Physics (Moscow), II, 95–101.Google Scholar
Landau, L. D. (1960b). “Fundamental problems,” in Theoretical Physics in the Twentieth Century, eds. Fierz, M., and Weisskopf, V. F. (Interscience, New York).Google Scholar
Landau, L. D. (1965). Collected Papers (Pergamon, Oxford).Google Scholar
Landau, L. D., and Pomeranchuck, I. (1955). “On point interactions in quantum electrodynamics,” DAN, 102: 489491.Google Scholar
Landau, L. D., Abrikosov, A. A., and Khalatnikov, I. M. (1954a). “The removal of infinities in quantum electrodynamics,” DAN, 95: 497499.Google Scholar
Landau, L. D., Abrikosov, A. A., and Khalatnikov, I. M. (1954b). “An asymptotic expression for the electro Green function in quantum electrodynamics,” DAN, 95: 773776.Google Scholar
Landau, L. D., Abrikosov, A. A., and Khalatnikov, I. M. (1954c). “An asymptotic expression for the photon Green function in quantum electrodynamics,” DAN, 95: 11171120.Google Scholar
Landau, L. D., Abrikosov, A. A., and Khalatnikov, I. M. (1954d). “The electron mass in quantum electrodynamics,” DAN, 96: 261263.Google Scholar
Landau, L. D., Abrikosov, A. A., and Khalatnikov, I. M. (1956). “On the quantum theory of fields,” NC (Suppl.), 3: 80104.Google Scholar
Larmor, J. (1894). “A dynamical theory of the electric and luminiferous medium,” Philos. Trans. Roy. Soc., 185: 719822.Google Scholar
Lasenby, A., Doran, C., and Gull, S. (1998). “Gravity, gauge theories and geometric algebra,” Philos. Trans. R. Soc. Lond., A356: 487582.Google Scholar
Laudan, L. (1981). “A confutation of convergent realism,” Philos. Sci., 48: 1949.Google Scholar
Lee, B. W. (1969). “Renormalization of the σ-model,” NP, B9: 649672.Google Scholar
Lee, B. W. (1972). “Perspectives on theory of weak interactions,” In Proceedings of High Energy Physics Conference (1972), ed. Jacob, M. (National Accelerator Laboratory, Batavia, IL), vol. 4, 249306.Google Scholar
Lee, T. D. (1954). “Some special examples in renormalizable field theory,” PR, 95: 13291334.Google Scholar
Lee, T. D., and Wick, G. C. (1974). “Vacuum stability and vacuum excitation in a spin-0 field theory,” PR, D9: 22912316.Google Scholar
Lee, T. D., and Yang, C. N. (1962). “Theory of charge vector mesons interacting with the electromagnetic field,” PR, 128: 885898.Google Scholar
Lee, Y. K., Mo, L. W., and Wu, C. S. (1963). “Experimental test of the conserved vector current theory on the beta spectra of B12 and N12,” PRL, 10: 253258.Google Scholar
Lehmann, H., Symanzik, K., and Zimmerman, W. (1955). “Zur Formalisierung quantisierter Feldtheorie,” NC, 1(10): 205225.Google Scholar
Lehmann, H., Symanzik, K., and Zimmerman, W. (1957). “On the formulation of quantized field theories,” NC, 6(10): 319333.Google Scholar
Lemaître, G. (1925). “Note on de Sitter’s universe,” J. Math. Phys., 4: 189192.Google Scholar
Lemaître, G. (1927). “Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nebuleues extragalactiques,” Ann. Soc. Sci. Bruxelles, A47: 4959. (English trans.: Monthly Notices of the Royal Astronomical Society, 91(1931): 483–490).Google Scholar
Lemaître, G. (1932). “La expansion de l’espace,” Rev. Quest. Sci., 20: 391410.Google Scholar
Lemaître, G. (1934). “Evolution of the expanding universe,” Proc. Natl. Acad. Sci., 20: 1217.Google Scholar
Lense, J., and Thirring, H. (1918). “Ueber den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie,” Phys. Z., 19: 156163.Google Scholar
Lepage, G.P. (1989). “What is renormalization?,” Cornell University preprint CLNS 89/970, also in From Action to Answers, eds. DeGrand, T., and Toussaint, T. (World Scientific, Singapore, 1990), 446457.Google Scholar
Leutwyler, H. (1968). “Is the group SU(3)l an exact symmetry of one-particle-states?” Preprint, University of Bern, unpublished.Google Scholar
Leutwyler, H., and Stern, J. (1970). “Singularities of current commutators on the light cone,” NP, B20: 77101.Google Scholar
Levi-Civita, T. (1917). “Nozione di parallelismo in una varietà qualunque,” Rend. Circ. Mat. Palermo, 42: 173205.Google Scholar
Lewis, G. N. (1926). “The conservation of photons,” Nature, 118: 874875.Google Scholar
Lewis, H. W. (1948). “On the reactive terms in quantum electrodynamics,” PR, 73: 173176.Google Scholar
Lie, S., and Engel, F. (1893). Theorie der Transformationsgruppen (Teubner, Leipzig).Google Scholar
Lipanov, L. N. (ed.) (2001) The Creation of Quantum Chromodynamics and the Effective Energy (World Scientific, Singapore).Google Scholar
Lodge, O. (1883). “The ether and its functions,” Nature, 27: 304306, 328–330.Google Scholar
London, F. (1927). “Quantenmechanische Deutung der Theorie von Weyl,” ZP, 42: 375389.Google Scholar
Lorentz, H. A. (1892). “La théorie électromagnetique de Maxwell et son application aux corps mouvants,” Arch. Néerlandaises, 25: 363552.Google Scholar
Lorentz, H. A. (1895). Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpen (Brill, Leiden).Google Scholar
Lorentz, H. A. (1899). “Théorie simplifiée des phénomènes électriques et optiques dans les corps en mouvement,” Versl. K. Akad. Wet. Amst., 7: 507522; reprinted in Collected Papers (Nijhoff, The Hague, 1934–1939), 5: 139–155.Google Scholar
Lorentz, H. A. (1904). “Electromagnetic phenomena in a system moving with any velocity less than that of light,” Proc. K. Akad. Amsterdam, 6: 809830.Google Scholar
Lorentz, H. A. (1915). The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat, second edition (Dover, New York).Google Scholar
Lorentz, H. A. (1916). Les Théories Statistiques et Thermodynamique (Teubner, Leipzig and Berlin).Google Scholar
Low, F. E. (1954). “Scattering of light of very low frequency by system of spin 1/2,” PR, 96: 14281432.Google Scholar
Low, F. E. (1962). “Bound states and elementary particles,” NC, 25: 678684.Google Scholar
Low, F. E. (1967). “Consistency of current algebra,” in Proceedings of Fifth Annual Eastern Theoretical Physics Conference, ed. Feldman, D. (Benjamin, New York), 75.Google Scholar
Low, F. E. (1988). An interview at MIT, July 26, 1988.Google Scholar
Ludwig, G. (1968). Wave Mechanics (Pergamon, Oxford).Google Scholar
Lyre, H. (2008). “Does the Higgs mechanism exist?Int. Stud. Philos. Sci., 22: 119133.Google Scholar
Mach, E. (1872). Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit (Calve, Prague).Google Scholar
Mach, E. (1883). Die Mechanik in ihrer Entwicklung. Historisch-Kritisch dargestellt (Brockhaus, Leipzig).Google Scholar
Mack, G. (1968). “Partially conserved dilatation current,” NP, B5: 499507.Google Scholar
Majorana, E. (1933). “Über die Kerntheorie,” ZP, 82: 137145.Google Scholar
Mandelstam, S. (1958). “Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity. General theory,” PR, 112: 13441360.Google Scholar
Mandelstam, S. (1968a). “Feynman rules for electromagnetic and Yang-Mills fields from the gauge-independent field-theoretic formalism,” PR, 175: 15801603.Google Scholar
Mandelstam, S. (1968b). “Feynman rules for the gravitational field from the coordinate-independent field-theoretic formalism,” PR, 175: 16041623.Google Scholar
Marciano, W., and Pagels, H. (1978). “Quantum chromodynamics,” Phys. Rep., 36: 137276.Google Scholar
Marshak, R. E., and Bethe, H. A. (1947). “On the two-meson hypothesis,” PR, 72: 506509.Google Scholar
Massimi, M. (ed.) (2008). Kant and Philosophy of Science Today (Cambridge University Press, Cambridge).Google Scholar
Matthews, P. T. (1949). “The S-matrix for meson-nucleon interactions,” PR, 76: 12541255.Google Scholar
Maxwell, G. (1971). “Structural realism and the meaning of theoretical terms,” in Minnesota Studies in the Philosophy of Science, vol. 4 (University of Minnesota Press, Minneapolis).Google Scholar
Maxwell, J. C. (1861/62). “On physical lines of force,” Philos. Mag., 21(4): 162175, 281–291, 338–348; 23: 12–24, 85–95.Google Scholar
Maxwell, J. C. (1864). “A dynamical theory of the electromagnetic field,” Scientific Papers, I: 526597.Google Scholar
Maxwell, J. C. (1873). A Treatise on Electricity and Magnetism (Clarendon, Oxford).Google Scholar
McGlinn, W. D. (1964). “Problem of combining interaction symmetries and relativistic invariance,” PRL, 12: 467469.Google Scholar
McGuire, J. E. (1974). “Forces, powers, aethers and fields,” in Methodological and Historical Essays in the Natural and Social Sciences, eds. Cohen, R. S., and Wartofsky, M. W. (Reidel, Dordrecht), 119159.Google Scholar
McMullin, E. (1982). “The motive for metaphor,” Proc. Am. Cathol. Philos. Assoc., 55: 27.Google Scholar
McMullin, E. (1984). “A case for scientific realism,” in Scientific Realism, ed. Leplin, J. (University of California Press, Berkeley/Los Angeles/London).Google Scholar
Merton, R. (1938). “Science, technology and society in seventeenth century England,” Osiris, 4: 360632.Google Scholar
Merz, J. T. (1904). A History of European Thought in the Nineteenth Century (W. Blackwood, Edinburgh, 1904–1912).Google Scholar
Meyerson, É. (1908). Identité et Reálité (Labrairie Félix Alcan, Paris).Google Scholar
Michell, J. (1784). “On the means of discovering the distance, magnitude, etc., of the fixed stars,” Philos. Trans. R. Soc. Lond., 74: 3557.Google Scholar
Mie, G. (1912a, b; 1913). “Grundlagen einer Theorie der Materie,” Ann. Phys., 37(4): 511534; 39: 1–10; 40: 1–66.Google Scholar
Miller, A. (1975). “Albert Einstein and Max Wertheimer: a gestalt psychologist’s view of the genesis of special relativity theory,” Hist. Sci., 13: 75103.Google Scholar
Mills, R. L., and Yang, C. N. (1966). “Treatment of overlapping divergences in the photon self-energy function,” PTP (Suppl.), 37/38: 507511.Google Scholar
Minkowski, H. (1907). “Das Relativitätsprinzip,” Ann. Phys., 47: 921.Google Scholar
Minkowski, H. (1908). “Die grundgleichungen für die elektromagnetischen vorguge in bewegten körper,” Gött. Nachr., 53–111.Google Scholar
Minkowski, H. (1909). “Raum und Zeit,” Phys. Z., 10: 104111.Google Scholar
Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation (Freeman, San Francisco).Google Scholar
Moulines, C. U. (1984). “Ontological reduction in the natural sciences,” in Reduction in Science, eds. Balzer, et al. (Reidel, Dordrecht), 5170.Google Scholar
Moyer, D. F. (1978). “Continuum mechanics and field theory: Thomson and Maxwell,” Stud. Hist. Philos. Sci., 9: 3550.Google Scholar
Nagel, E. (1961). The Structure of Science (Harcourt, New York).Google Scholar
Nambu, Y. (1955). “Structure of Green’s functions in quantum field theory,” PR, 100: 394411.Google Scholar
Nambu, Y. (1956). “Structure of Green’s functions in quantum field theory. II,” PR, 101: 459467.Google Scholar
Nambu, Y. (1957). “Parametric representations of general Green’s functions. II,” NC, 6: 10641083.Google Scholar
Nambu, Y. (1957a). “Possible existence of a heavy neutral meson,” PR, 106: 13661367.Google Scholar
Nambu, Y. (1959). Discussion remarks, Proceedings of the International Conference on High Energy Physics, IX (1959) (Academy of Science, Moscow, 1960), vol. 2, 121122.Google Scholar
Nambu, Y. (1960a). “Dynamical theory of elementary particles suggested by superconductivity,” in Proceedings of the 1960 Annual International Conference on High Energy Physics at Rochester (Interscience, New York), 858866.Google Scholar
Nambu, Y. (1960b). “Quasi-particles and gauge invariance in the theory of superconductivity,” PR, 117: 648663.Google Scholar
Nambu, Y. (1960c). “A ‘superconductor’ model of elementary particles and its consequences,” in Proceedings of the Midwest Conference on Theoretical Physics (Purdue University, West Lafayette).Google Scholar
Nambu, Y. (1960d). “Axial vector current conservation in weak interactions,” PRL, 4: 380382.Google Scholar
Nambu, Y. (1965). “Dynamical symmetries and fundamental fields,” in Symmetry Principles at High Energies, eds. Kursunoglu, B., Perlmutter, A., and Sakmar, A. (Freeman, San Francisco and London), 274285.Google Scholar
Nambu, Y. (1966). “A systematics of hadrons in subnuclear physics,” in Preludes in Theoretical Physics, eds. De Shalit, A., Feshbach, H., and Van Hove, L. (North-Holland, Amsterdam), 133142.Google Scholar
Nambu, Y. (1989). “Gauge invariance, vector-meson dominance, and spontaneous symmetry breaking,” in Pions to Quarks, eds. Brown, L. M., Dresden, M., and Hoddeson, L. (Cambridge University Press, Cambridge), 639642.Google Scholar
Nambu, Y., and Jona-Lasinio, G. (1961a). “A dynamical model of elementary particles based on an analogy with superconductivity. I,” PR, 122: 345358.Google Scholar
Nambu, Y., and Jona-Lasinio, G. (1961b). “A dynamical model of elementary particles based on an analogy with superconductivity. II,” PR, 124: 246254.Google Scholar
Nambu, Y., and Lurie, D. (1962). “Chirality conservation and soft pion production,” PR, 125: 14291436.Google Scholar
Navier, C. L. (1821). “Sur les lois de l’equilibre et du mouvement des corps solides elastiques,” Mém. Acad. (Paris), 7: 375.Google Scholar
Nersessian, N. J. (1984). Faraday to Einstein: Constructing Meaning in Scientific Theories (Martinus Nijhoff, Dordrecht).Google Scholar
Neumann, C. (1868). “Resultate einer Untersuchung über die Prinzipien der elektrodynamik,” Nachr. Ges. Wiss. Göttingen. Math.-phys. Kl., 20: 223235.Google Scholar
Neveu, A., and Scherk, J. (1972). “Connection between Yang–Mills fields and dual models,” NP, B36: 155161.Google Scholar
Neveu, A., and Schwarz, J. H. (1971a). “Factorizable dual model of pions,” NP, B31: 86112.Google Scholar
Neveu, A., and Schwarz, J. H. (1971b). “Quark model of dual pions,” PR, D4: 11091111.Google Scholar
Newman, J. R. (ed.) (1946). The Common Sense of the Exact Sciences (by W. K. Clifford) (Simon and Schuster, New York).Google Scholar
Newton, I. (1934). Sir Isaac Newton’s Mathematical Principle of Natural Philosophy and His System of the World, ed. Cajori, F. (University of California Press, Berkeley).Google Scholar
Newton, I. (1978). Unpublished Scientific Papers of Isaac Newton, eds. Hall, A. R., and Hall, M. B. (Cambridge University Press, Cambridge).Google Scholar
Nishijima, K. (1957). “On the asymptotic conditions in quantum field theory,” PTP, 17: 765802.Google Scholar
Nishijima, K. (1958). “Formulation of field theories of composite particles,” PR, 111: 9951011.Google Scholar
Nissani, N. (1984). “SL(2, C) gauge theory of gravitation: conservation laws,” Phys. Rep., 109: 95130.Google Scholar
Norton, J. (1984). “How Einstein found his field equations, 1912–1915,” Hist. Stud. Phys. Sci., 14: 253316.Google Scholar
Norton, J. (1985). “What was Einstein’s principle of equivalence?Stud. Hist. Philos. Sci., 16: 203246.Google Scholar
Norton, J. (1989). “Coordinates and covariance: Einstein's view of spacetime and the modern view," Foundat. Phys., 19, 12151263.Google Scholar
Okubo, S. (1966). “Impossibility of having the exact U6 group based upon algebra of currents,” NC, 42A: 10291034.Google Scholar
Olive, D. I. (1964). “Exploration of S-matrix theory,” PR, 135B: 745760.Google Scholar
Oppenheimer, J. R. (1930a). “Note on the theory of the interaction of field and matter,” PR, 35: 461477.Google Scholar
Oppenheimer, J. R. (1930b). “On the theory of electrons and protons,” PR, 35: 562563.Google Scholar
Oppenheimer, J. R., and Snyder, H. (1939). “On continued gravitational contraction,” PR, 56: 455.Google Scholar
Oppenheimer, J. R., and Volkoff, G. (1939). “On massive neutron cores,” PR, 54: 540.Google Scholar
O’Raifeartaigh, L. (1965). “Mass difference and Lie algebras of finite order,” PRL, 14: 575577.Google Scholar
Pais, A. (1945). “On the theory of the electron and of the nucleon,” PR, 68: 227228.Google Scholar
Pais, A. (1953). “Isotopic spin and mass quantization,” Physica, 19: 869887.Google Scholar
Pais, A. (1964). “Implications of Spin-Unitary Spin Independence,” PRL, 13: 175.Google Scholar
Pais, A. (1966). “Dynamical symmetry in particle physics,” RMP, 368: 215255.Google Scholar
Pais, A. (1986). Inward Bound (Oxford University Press, Oxford).Google Scholar
Pais, A., and Treiman, S. (1975). “How many charm quantum numbers are there?,” PRL, 35: 15561559.Google Scholar
Papapetrou, A. (1949). “Non-symmetric stress-energy-momentum tensor and spin-density,” Philos. Mag., 40: 937.Google Scholar
Parisi, G. (1973). “Deep inelastic scattering in a field theory with computable large-momenta behavior,” NC, 7: 8487.Google Scholar
Pasternack, S. (1938). “Note on the fine structure of Hα and Dα,” PR, 54: 11131115.Google Scholar
Pati, J. C., and Salam, A. (1973a). “Unified lepton–hadron symmetry and a gauge theory of the basic interactions,” PR, D8: 12401251.Google Scholar
Pati, J. C., and Salam, A. (1973b). “Is baryon number conserved?,” PRL, 31: 661664.Google Scholar
Pauli, W. (1926). Letter to Heisenberg, October 19, 1926, in Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg, U. A., Band I: 1919–1929, eds. Hermann, A., Meyenn, K. V., and Weisskopf, V. E. (Springer-Verlag, Berlin, 1979).Google Scholar
Pauli, W. (1930). A letter of 4 December 1930, in Collected Scientific Papers, eds. Kronig, R., and Weisskopf, V. F. (Interscience, New York, 1964), vol. II, 1313.Google Scholar
Pauli, W. (1933). Pauli’s remarks at the seventh Solvay conference, Oct. 1933, in Rapports du Septième Conseil de Physique Solvay, 1933 (Gauthier-Villarw, Paris, 1934).Google Scholar
Pauli, W. (1941). “Relativistic field theories of elementary particles,” RMP, 13: 203232.Google Scholar
Pauli, W. (1953a). Two letters to Abraham Pais, in Wissenschaftlicher Briefwechsel, ed. Meyenn, K. V. (Springer-Verlag), vol. IV, Part II. Letter [1614]: to A. Pais (July 25, 1953); letter [1682]: to A. Pais (December 6, 1953).Google Scholar
Pauli, W. (1953b). Two seminar lectures, reported in Paolo Gulmanelli (1954), “Su una Teoria dello Spin Isotropico” (Pubblicazioni della Sezione di Milano dell’istituto Nazionale di Fisica Nucleare, 1999).Google Scholar
Pauli, W., and Fierz, M. (1938). “Zur Theorie der Emission langwelliger Lichtquanten,” NC, 15: 167188.Google Scholar
Pauli, W., and Villars, F. (1949). “On the invariant regularization in relativistic quantum theory,” RMP, 21: 434444.Google Scholar
Pauli, W., and Weisskopf, V. (1934). “Über die quantisierung der skalaren relativistischen wellengleichung,” Helv. Phys. Acta., 7: 709731.Google Scholar
Pavelle, R. (1975). “Unphysical solutions of Yang’s gravitational-field equations,” PRL, 34: 1114.Google Scholar
Peierls, R. (1934). “The vacuum in Dirac’s theory of the positive electron,” PRS, A146: 420441.Google Scholar
Penrose, R. (1967a). “Twistor algebra,” JMP, 8: 345.Google Scholar
Penrose, R. (1967b). “Twistor quantization and curved space-time,” Int. J. Theor. Phys., 1: 6199.Google Scholar
Penrose, R. (1968). “Structure of space-time,” in Lectures in Mathematics and Physics (Battele Rencontres), eds. DeWitt, C. M., and Wheeler, J. A. (Benjamin, New York), 121235.Google Scholar
Penrose, R. (1969). “Gravitational collapse: the role of general relativity,” NC, 1: 252276.Google Scholar
Penrose, R. (1972). “Black holes and gravitational theory,” Nature, 236: 377380.Google Scholar
Penrose, R. (1975). “Twistor theory,” in Quantum Gravity, eds. Isham, C. J., Penrose, R., and Sciama, J. W. (Clarendon, Oxford).Google Scholar
Penrose, R. (1987). Three Hundred Years of Gravitation, eds. Hawking, S. W., and Israel, W. (Cambridge University Press, Cambridge).Google Scholar
Perez, A. (2003). “Spin foam models for quantum gravity Class,” Quant. Grav., 20: R43R104.Google Scholar
Perez, A. (2013). “The spin foam approach to quantum gravity,” Living Rev. Rel., 16.Google Scholar
Perring, F. (1933). “Neutral particles of intrinsic mass 0,” Compt. Rend. Acad. Sci. Paris, 197: 16251627.Google Scholar
Peruzzi, I., et al. (1976). “Observation of a narrow charged state at 1875 Mev/c2 decaying to an exotic combination of Kππ,” PRL, 37: 569571.Google Scholar
Peterman, A. (1953a). “Divergence of perturbation expression,” PR, 89: 11601161.Google Scholar
Peterman, A. (1953b). “Renormalisation dans les séries divergentes,” Helv. Phys. Acta., 26: 291299.Google Scholar
Peterman, A., and Stueckelberg, E. C. G. (1951). “Restriction of possible interactions in quantum electrodynamics,” PR, 82: 548549.Google Scholar
Pickering, A. (1984). Constructing Quarks: A Sociological History of Particle Physics (Edinburgh University Press, Edinburgh).Google Scholar
Pines, D., and Schrieffer, L. R. (1958). “Gauge invariance in the theory of superconductivity,” NC, 10: 407408.Google Scholar
Planck, M. (1900). “Zur Theorie des Gesetzes der Energieverteilung im Normal-spectrum,” Verh. Deutsch. Phys. Ges., 2 : 237245.Google Scholar
Poincaré, H. (1890). Electricité et optique: les théories de Maxwell et la théorie électromagnétique de la lumière, ed. Blondin, (G. Carré, Paris).Google Scholar
Poincaré, H. (1895). “A propos de la theorie de M. Larmor,” in Oeuvres (Gauthier-Villars, Paris), vol. 9, 369426.Google Scholar
Poincaré, H. (1897). “Les idées de Hertz sur la méchanique,” in Oeuvres (Gauthier-Villars, Paris), vol. 9, 231250.Google Scholar
Poincaré, H. (1898). “De la mesure du temps,” Rev. Métaphys. Morale, 6: 113.Google Scholar
Poincaré, H. (1899). “Des fondements de la géométrie, a propos d’un livre de M. Russell,” Rev. Métaphys. Morale, 7: 251279.Google Scholar
Poincaré, H. (1900). “La théorie de Lorentz et le principe de la réaction,” Arch. Néerlandaises, 5: 252278.Google Scholar
Poincaré, H. (1902). La science et l’hypothèse (Flammarion, Paris).Google Scholar
Poincaré, H. (1904). “The principles of mathematical physics,” in Philosophy and Mathematics, Volume I of Congress of Arts and Sciences: Universal Exposition, St. Louis, 1904, ed. Rogers, H. (H. Mifflin, Boston, 1905), 604622.Google Scholar
Poincaré, H. (1905). “Sur la dynamique de l’électron,” Compt. Rend. Acad. Sci., 140: 15041508.Google Scholar
Poincaré, H. (1906). “Sur la dynamique de l’électron,” Rend. Circ. Mat. Palermo, 21: 129175.Google Scholar
Polchinski, J. (1984). “Renormalization and effective Lagrangians,” NP, B231: 269295.Google Scholar
Politzer, H. D. (1973). “Reliable perturbative results for strong interactions?,” PRL, 30: 13461349.Google Scholar
Polkinghorne, J. C. (1958). “Renormalization of axial vector coupling,” NC, 8: 179180, 781.Google Scholar
Polkinghorne, J. C. (1967). “Schwinger terms and the Johnson–Low model,” NC, 52A: 351358.Google Scholar
Polkinghorne, J. C. (1989). Private correspondence, October 24, 1989.Google Scholar
Polyakov, A. M. (1974). “Particle spectrum in quantum field theory,” JETP (Lett.), 20: 194195.Google Scholar
Popper, K. (1970). “A realist view of logic, physics, and history,” in Physics, Logic, and History, eds. Yourgrau, W., and Breck, A. D. (Plenum, New York), 139.Google Scholar
Popper, K. (1974). “Scientific reduction and the essential incompleteness of all science,” in Studies in the Philosophy of Biology, Reduction and Related Problems, eds. Ayala, F. J., and Dobzhansky, T. (Macmillan, London), 259284.Google Scholar
Post, H. R. (1971). “Correspondence, invariance and heuristics,” Stud. Hist. Philos. Sci., 2: 213255.Google Scholar
Putnam, H. (1975). Mind, Language and Reality (Cambridge University Press, Cambridge).Google Scholar
Putnam, H. (1978). Meaning and the Moral Sciences (Routledge and Kegan Paul, London).Google Scholar
Putnam, H. (1981). Reason, Truth and History (Cambridge University Press, Cambridge).Google Scholar
Radicati, L. A. (1987). “Remarks on the early development of the notion of symmetry breaking,” in Symmetries in Physics (1600–1980), eds. Doncel, M. G., Hermann, A., Michael, L., and Pais, A. (Bellaterra, Barcelona), 197207.Google Scholar
Raine, D. J. (1975). “Mach’s principle in general relativity,” Mon. Not. R. Astron. Soc., 171: 507528.Google Scholar
Raine, D. J. (1981). “Mach’s principle and space-time structure,” Rep. Prog. Phys., 44: 11511195.Google Scholar
Ramond, P. (1971a). “Dual theory for free fermions,” PR, D3: 24152418.Google Scholar
Ramond, P. (1971b). “An interpretation of dual theories,” NC, 4A: 544548.Google Scholar
Rasetti, F. (1929). “On the Raman effect in diatomic gases. II,” Proc. Natl. Acad. Sci., 15: 515519.Google Scholar
Rayski, J. (1948). “On simultaneous interaction of several fields and the self-energy problem,” Acta Phys. Polonica, 9: 129140.Google Scholar
Redhead, M. L. G. (1983). “Quantum field theory for philosophers,” in PSA 1982 (Philosophy of Science Association, East Lansing, MI, 1983), 5799.Google Scholar
Redhead, M. L. G. (2001). “The intelligibility of the universe,” in Philosophy at the New Millennium, ed. O’Hear, A. (Cambridge University Press, Cambridge), 7390.Google Scholar
Regge, T. (1958a). “Analytic properties of the scattering matrix,” NC, 8: 671679.Google Scholar
Regge, T. (1958b). “On the analytic behavior of the eigenvalue of the S-matrix in the complex plane of the energy,” NC, 9: 295302.Google Scholar
Regge, T. (1959). “Introduction to complex orbital momenta,” NC, 14: 951976.Google Scholar
Regge, T. (1960). “Bound states, shadow states and Mandelstam representation,” NC, 18: 947956.Google Scholar
Reiff, J., and Veltman, M. (1969). “Massive Yang–Mills fields,” NP, B13: 545564.Google Scholar
Reinhardt, M. (1973). “Mach’s principle – a critical review,” Z. Naturf., 28A: 529537.Google Scholar
Renn, J., and Stachel, J. (2007). “Hilbert's foundation of physics: from a theory of everything to a constituent of general relativity,” in The Genesis of General Relativity, Vol. 4 Gravitation in the Twilight of Classical Physics: The Promise of Mathematics, ed. Renn, J. (Springer, Berlin).Google Scholar
Resnik, M. (1981). “Mathematics as a science of patterns: ontology and reference,” Nous, 15: 529550.Google Scholar
Resnik, M. (1982). “Mathematics as a science of patterns: epistemology,” Nous, 16: 95105.Google Scholar
Riazuddin, A., and Sarker, A. Q. (1968). “Some radiative meson decay processes in current algebra,” PRL, 20: 14551458.Google Scholar
Ricci, G., and Levi-Civita, T. (1901). “Méthodes de calcul differentiel absolu et leurs applications,” Math. Ann., 54: 125201.Google Scholar
Rickaysen, J. G. (1958). “Meissner effect and gauge invariance,” PR, 111: 817821.Google Scholar
Riemann, B. (1853, 1858, 1867). In his Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass., ed. Weber, H. (Teubner, Leipzig, 1892).Google Scholar
Riemann, B. (1854). “Über die Hypothesen, welche der Geometrie zu Grunde liegen,” Ges. Wiss. Göttingen. Abhandl., 13(1867): 133152.Google Scholar
Riemann, B. (1861a). Schwere, Elektricität, und Magnetismus: nach den Vorlesungen von Bernhard Riemann, ed. Hattendoff, K. (Carl Rümpler, Hannover, 1876).Google Scholar
Riemann, B. (1861b). Quoted by Kline (1972), 894–896.Google Scholar
Rindler, W. (1956). “Visual horizons in world models,” Mon. Not. R. Astron. Soc., 116: 662677.Google Scholar
Rindler, W. (1977). Essential Relativity (Springer-Verlag, New York).Google Scholar
Rivier, D., and Stueckelberg, E. C. G. (1948). “A convergent expression for the magnetic moment of the neutron,” PR, 74: 218.Google Scholar
Robertson, H. P. (1939). Lecture notes, printed posthumously in Relativity and Cosmology, eds. Robertson, H. P., and Noonan, T. W. (Saunders, Philadelphia, 1968).Google Scholar
Rodichev, V. I. (1961). “Twisted space and non-linear field equations,” Zh. Eksp. Ther. Fiz., 40: 1469.Google Scholar
Rohrlich, F. (1973). “The electron: development of the first elementary particle theory,” in The Physicist’s Conception of Nature, ed. Mehra, J. (Reidel, Dordrecht), 331369.Google Scholar
Rohrlich, F., and Hardin, L. (1983). “Established theories,” Philos. Sci., 50: 603617.Google Scholar
Rosenberg, L. (1963). “Electromagnetic interactions of neutrinos,” PR, 129: 27862788.Google Scholar
Rosenfeld, L. (1963). Interview with Rosenfeld on 1 July 1963; Archive for the History of Quantum Physics.Google Scholar
Rosenfeld, L. (1968). “The structure of quantum theory,” in Selected Papers, eds. Cohen, R. S., and Stachel, J. J. (Reidel, Dordrecht, 1979).Google Scholar
Rosenfeld, L. (1973). “The wave-particle dilemma,” in The Physicist’s Conception of Nature, ed. Mehra, J. (Reidel, Dordrecht), 251263.Google Scholar
Rovelli, C. (2004). Quantum Gravity (Cambridge University Press, Cambridge).Google Scholar
Rovelli, C., and Vidotto, F. (2014). Covariant Loop Quantum Gravity (Cambridge University Press, Cambridge).Google Scholar
Russell, B. (1927). The Analysis of Matter (Allen & Unwin, London).Google Scholar
Sakata, S. (1947). “The theory of the interaction of elementary particles,” PTP, 2 : 145147.Google Scholar
Sakata, S. (1950). “On the direction of the theory of elementary particles,” Iwanami, II: 100103. (English trans. PTP (Suppl.), 50(1971): 155–158).Google Scholar
Sakata, S. (1956). “On the composite model for the new particles,” PTP, 16: 686688.Google Scholar
Sakata, S., and Hara, O. (1947). “The self-energy of the electron and the mass difference of nucleons,” PTP, 2: 3031.Google Scholar
Sakata, S., and Inoue, T. (1943). First published in Japanese in Report of Symposium on Meson Theory, then in English, “On the correlations between mesons and Yukawa particles,” PTP, 1: 143150.Google Scholar
Sakata, S., and Tanikawa, Y. (1940). “The spontaneous disintegration of the neutral mesotron (neutretto),” PR, 57: 548.Google Scholar
Sakata, S., Umezawa, H., and Kamefuchi, S. (1952). “On the structure of the interaction of the elementary particles,” PTP, 7: 377390.Google Scholar
Sakita, B. (1964). “Supermultiplets of elementary particles,” PR, B136: 17561760.Google Scholar
Sakurai, J. J. (1960). “Theory of strong interactions,” AP, 11: 148.Google Scholar
Salam, A. (1951a). “Overlapping divergences and the S-matrix,” PR, 82: 217227.Google Scholar
Salam, A. (1951b). “Divergent integrals in renormalizable field theories,” PR, 84: 426431.Google Scholar
Salam, A. (1960). “An equivalence theorem for partially gauge-invariant vector meson interactions,” NP, 18: 681690.Google Scholar
Salam, A. (1962a). “Lagrangian theory of composite particles,” NC, 25: 224227.Google Scholar
Salam, A. (1962b). “Renormalizability of gauge theories,” PR, 127: 331334.Google Scholar
Salam, A. (1968). “Weak and electromagnetic interactions,” in Elementary Particle Theory: Relativistic Group and Analyticity. Proceedings of Nobel Conference VIII, ed. Svartholm, N. (Almqvist and Wiksell, Stockholm), 367377.Google Scholar
Salam, A., and Ward, J. C. (1959). “Weak and electromagnetic interactions,” NC, 11: 568577.Google Scholar
Salam, A., and Ward, J. C. (1961). “On a gauge theory of elementary interactions,” NC, 19: 165170.Google Scholar
Salam, A., and Ward, J. C. (1964). “Electromagnetic and weak interactions,” PL, 13: 168171.Google Scholar
Salam, A., and Wigner, E. P. (eds.) (1972). Aspects of Quantum Theory (Cambridge University Press, Cambridge).Google Scholar
Scadron, M., and Weinberg, S. (1964b). “Potential theory calculations by the quasi-particle method,” PR, B133: 15891596.Google Scholar
Schafroth, M. R. (1951). “Bemerkungen zur Frohlichsen theorie der Supraleitung,” Helv. Phys. Acta., 24: 645662.Google Scholar
Schafroth, M. R. (1958). “Remark on the Meissner effect,” PR, 111: 7274.Google Scholar
Scherk, J. (1975). “An introduction to the theory of dual models and strings,” RMP, 47: 123164.Google Scholar
Schlick, M. (1918). General Theory of Knowledge, trans. Blumberg, A. E. and Feigl, H. (Springer-Verlag, New York).Google Scholar
Schmidt, B. G. (1971). “A new definition of singular points in general relativity,” Gen. Relat. Gravit., 1: 269280.Google Scholar
Schrödinger, E. (1922). “Über eine bemerkenswerte Eigenschaft der Quantenbahnen eine einzelnen Elektrons,” ZP, 12: 1323.Google Scholar
Schrödinger, E. (1926a). “Zur Einsteinschen Gastheorie,” Phys. Z., 27: 95101.Google Scholar
Schrödinger, E. (1926b). “Quantisierung als Eigenwertproblem, Erste Mitteilung,” Ann. Phys., 79: 361376.Google Scholar
Schrödinger, E. (1926c). “Quantisierung, Zweite Mitteilung,” Ann. Phys., 79: 489527.Google Scholar
Schrödinger, E. (1926d). “Über das Verhältnis der Heisenberg–Born–Jordanschen Quantenmechanik zu der meinen,” Ann. Phys., 79: 734756.Google Scholar
Schrödinger, E. (1926e). “Quantisierung, Dritte Mitteilung,” Ann. Phys., 80: 437490.Google Scholar
Schrödinger, E. (1926f). “Quantisierung, Vierte Mitteilung,” Ann. Phys., 81: 109139.Google Scholar
Schrödinger, E. (1926g). Letter to Max Planck, May 31, 1926, in Letters on Wave Mechanics, ed. Przibram, K., trans. Klein, M. (Philosophical Library, New York, 1967), 811.Google Scholar
Schrödinger, E. (1950). Spacetime Structure (Cambridge University Press, Cambridge).Google Scholar
Schrödinger, E. (1961). “Wave field and particle: their theoretical relationship’, “Quantum steps and identity of particles’, and ‘Wave identity’,” in On Modern Physics (by Heisenberg and others), trans. Goodman, M., and Binns, J. W. (C. N. Potter, New York), 4854.Google Scholar
Schwarzschild, K. (1916a). “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie,” Preuss. Akad. Wiss. Sitzungsber., 189–196.Google Scholar
Schwarzschild, K. (1916b). “Über das Gravitationsfeld eines Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie,” Preuss. Akad. Wiss. Sitzungsber., 424–434.Google Scholar
Schweber, S. S. (1961). Relativistic Quantum Field Theory (Harper and Row, New York).Google Scholar
Schweber, S. S. (1985). “A short history of Shelter Island I,” in Shelter Island I, eds. Jackiw, R.; Khuri, N. N.; Weinberg, S., and Witten, E. (MIT Press, Cambridge, MA), 301343.Google Scholar
Schweber, S. S. (1986). “Shelter Island, Pocono, and Oldstone: the emergence of American quantum electrodynamics after World War II,” Osiris, second series, 2: 65302.Google Scholar
Schweber, S. S., Bethe, H. A., and de Hoffmann, F. (1955). Mesons and Fields, vol. I (Row, Peterson and Co., New York).Google Scholar
Schwinger, J. (1948a). “On quantum electrodynamics and the magnetic moment of the electron,” PR, 73: 416417.Google Scholar
Schwinger, J. (1948b). “Quantum electrodynamics. I. A covariant formulation,” PR, 74: 14391461.Google Scholar
Schwinger, J. (1949a). “Quantum electrodynamics. II. Vacuum polarization and self energy,” PR, 75: 651679.Google Scholar
Schwinger, J. (1949b). “Quantum electrodynamics. III. The electromagnetic properties of the electro-radiative corrections to scatteringPR, 76: 790817.Google Scholar
Schwinger, J. (1951). “On gauge invariance and vacuum polarization,” PR, 82: 664679.Google Scholar
Schwinger, J. (1957). “A theory of the fundamental interactions,” AP, 2: 407434.Google Scholar
Schwinger, J. (1959). “Field theory commutators,” PRL, 3: 296297.Google Scholar
Schwinger, J. (1962a). “Gauge invariance and mass,” PR, 125: 397398.Google Scholar
Schwinger, J. (1962b). “Gauge invariance and mass. II,” PR, 128: 24252429.Google Scholar
Schwinger, J. (1966). “Relativistic quantum field theory. Nobel lecture,” Science, 153: 949953.Google Scholar
Schwinger, J. (1967). “Chiral dynamics,” PL, 24B: 473176.Google Scholar
Schwinger, J. (1970). Particles, Sources and Fields (Addison-Wesley, Reading, MA).Google Scholar
Schwinger, J. (1973a). Particles, Sources and Fields, vol. 2 (Addison-Wesley, Reading, MA).Google Scholar
Schwinger, J. (1973b). “A report on quantum electrodynamics,” in The Physicist’s Conception of Nature, ed. Mehra, J. (Reidel, Dordrecht), 413429.Google Scholar
Schwinger, J. (1983). “Renormalization theory of quantum electrodynamics: an individual view,” in The Birth of Particle Physics, eds. Brown, L. M., and Hoddeson, L. (Cambridge University Press, Cambridge), 329375.Google Scholar
Sciama, D. W. (1958). “On a non-symmetric theory of the pure gravitational field,” Proc. Cam. Philos. Soc., 54: 72.Google Scholar
Seelig, C. (1954). Albert Einstein: Eine dokumentarische Biographie (Europa-Verlag, Zürich).Google Scholar
Sellars, W. (1961). “The language of theories,” in Current Issues in the Philosophy of Science, eds. Feigl, H., and Maxwell, G. (Holt, Rinehart, and Winston, New York), 57.Google Scholar
Sellars, W. (1963). “Theoretical explanation,” Philos. Sci., 2 : 61.Google Scholar
Sellars, W. (1965). “Scientific realism or irenic instrumentalism,” in Boston Studies in the Philosophy of Science, eds. Cohen, R. S., and Wortofsky, M. W. (Humanities Press, New York), vol. 2, 171.Google Scholar
Shaw, R. (1955). Invariance under general isotopic spin transformations, Part II, chapter III of Cambridge Ph.D. thesis, 34–46 (reprinted in Gauge Theories in The Twentieth Century, ed. Taylor, J. C., Imperial College Press, 2001), 100108.Google Scholar
Shimony, A. (1978). “Metaphysical problems in the foundations of quantum mechanics,” Int. Philos. Quart., 18: 317.Google Scholar
Simons, P. (1994). “Particulars in particular clothing: three trope theories of substance,” Philos. Phenomenol. Res., 54(3): 553575.Google Scholar
Slater, J. C. (1924). “Radiation and atoms,” Nature, 113: 307308.Google Scholar
Slavnov, A. A. (1972). “Ward identities in gauge theories,” Theor. Math. Phys., 19: 99104.Google Scholar
Slavnov, A. A., and Faddeev, L. D. (1970). “Massless and massive Yang-Mills field,” (in Russian) Theor. Math. Phys., 3: 312316.Google Scholar
Smeenk, C. (2006). “The elusive mechanism,” Philos. Sci., 73: 487499.Google Scholar
Sneed, J. D. (1971). The Logical Structure of Mathematical Physics (Reidel, Dordrecht).Google Scholar
Sneed, J. D. (1979). “Theoritization and invariance principles,” in The Logic and Epistemology of Scientific Change (North-Holland, Amsterdam), 130178.Google Scholar
Sommerfeld, A. (1911a). Letter to Planck, M., April 24, 1911.Google Scholar
Sommerfeld, A. (1911b). Die Theorie der Strahlung und der Quanten, ed. Eucken, A. (Halle, 1913), 303.Google Scholar
Spector, M. (1978). Concept of Reduction in Physical Science (Temple University Press, Philadelphia).Google Scholar
Speziali, P. (ed.) (1972). Albert Einstein–Michele Besso. Correspondence 1903–1955 (Hermann, Paris).Google Scholar
Stachel, J. (1980a). “Einstein and the rigidly rotating disk,” in General Relativity and Gravitation One Hundred Years after the Birth of Albert Einstein, ed. Held, A. (Plenum, New York), vol. 1, 115.Google Scholar
Stachel, J. (1980b). “Einstein’s search for general covariance, 1912–1915,” Paper presented to the 9th International Conference on General Relativity and Gravitation, Jena, 1980; later printed in Einstein and the History of General Relativity, eds. Howard, D., and Stachel, J. (Birkhäuser, Boston), 63100.Google Scholar
Stachel, J. (1993). “The meaning of general covariance: the hole story,” in Philosophical Problems of the Internal and External Worlds: Essays Concerning the Philosophy of Adolf Grübaum, eds. Janis, A. I., Rescher, N., and Massey, G. J. (University of Pittsburgh Press, Pittsburgh), 129160.Google Scholar
Stachel, J. (1994). “Changes in the concepts of space and time brought about by relativity,” in Artifacts, Representations, and Social Practice, eds. Gould, C. C., and Cohen, R. S. (Kluwer, Dordrecht/Boston/London), 141162.Google Scholar
Stapp, H. P. (1962a). “Derivation of the CPT theorem and the connection between spin and statistics from postulated of the S-matrix theory,” PR, 125: 21392162.Google Scholar
Stapp, H. P. (1962b). “Axiomatic S-matrix theory,” RMP, 34: 390394.Google Scholar
Stapp, H. P. (1965). “Space and time in S-matrix theory,” PR, B139: 257270.Google Scholar
Stapp, H. P. (1968). “Crossing, Hermitian analyticity, and the connection between spin and statistics,” JMP, 9: 15481592.Google Scholar
Stark, J. (1909). “Zur experimentellen Entscheidung zwischen Ätherwellen- und Lichtquantenhypothese. I. Röntgenstrahlen,” Phys. Z., 10: 902913.Google Scholar
Stegmüller, W. (1976). The Structure and Dynamics of Theories (Springer-Verlag, New York).Google Scholar
Stegmüller, W. (1979). The Structuralist View of Theories (Springer-Verlag, New York).Google Scholar
Stein, H. (1981). “'Subtle forms of matter’ in the period following Maxwell,” in Conceptions of Ether, eds. Cantor, G. N., and Hodge, M. J. S. (Cambridge University Press, Cambridge), 309340.Google Scholar
Steinberger, J. (1949). “On the use of subtraction fields and the lifetimes of some types of meson decay,” PR, 70: 11801186.Google Scholar
Strawson, P. T. (1950). “On referring,” Mind, 54: 320344.Google Scholar
Straumann, N. (2000). “On Pauli’s invention of non-abelian Kaluza-Klein theory in 1953,” in The Ninth Marcel Grossman Meeting. Proceedings of the MGIXMM Meeting held at the University of Rome “La Sapienza”, July 2-8 2000, eds. Gurzadyan, V. G., Jantzen, R. T., and Remo Ruffini, R. (World Scientific, Singapore), part B, 10631066.Google Scholar
Streater, R. F. (1965). “Generalized Goldstone theorem,” Phys. Rev. Lett., 15: 475476.Google Scholar
Streater, R. F., and Wightman, A. S. (1964). PTC, Spin and Statistics, and All That (Benjamin, New York).Google Scholar
Struyve, W. (2011). “Gauge invariant account of the Higgs mechanism,” Stud. Hist. Philos. Mod. Phys., 42: 226236.Google Scholar
Stueckelberg, E. C. G. (1938). “Die Wechselwirkungskräfte in der Elektrodynamik und in der Feldtheorie der Kern kräfte,” Helv. Phys. Acta., 11: 225244, 299–329.Google Scholar
Stueckelberg, E. C. G., and Peterman, A. (1953). “La normalisation des constances dans la théorie des quanta,” Helv. Phys. Acta., 26: 499520.Google Scholar
Sudarshan, E. C. G., and Marshak, R. E. (1958). “Chirality invariance and the universal Fermi interaction,” PR, 109: 18601862.Google Scholar
Sullivan, D., Koester, D., White, D. H., and Kern, K. (1980). “Understanding rapid theoretical change in particle physics: a month-by-month co-citation analysis,” Scientometrics, 2: 309319.Google Scholar
Susskind, L. (1968). “Model of self-induced strong interactions,” PR, 165: 1535.Google Scholar
Susskind, L. (1979). “Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory,” Phys. Rev. D, 20: 26192625.Google Scholar
Sutherland, D. G. (1967). “Current algebra and some non-strong mesonic decays,” NP, B2: 473440.Google Scholar
Symanzik, K. (1969). “Renormalization of certain models with PCAC,” (Lett.) NC, 2: 1012.Google Scholar
Symanzik, K. (1970). “Small distance behavior in field theory and power counting,” CMP, 18: 227246.Google Scholar
Symanzik, K. (1971). “Small-distance behavior analysis and Wilson expansions,” CMP, 23: 4986.Google Scholar
Symanzik, K. (1972). Renormalization of Yang–Mills Fields and Applications to Particle Physics (the Proceedings of the Marseille Conference, 19–23 June 1972), ed. Korthals-Altes, C. P. (Centre de Physique Théorique, CNRS, Marseille).Google Scholar
Symanzik, K. (1973). “Infrared singularities and small-distance-behavior analysis,” CMP, 34: 736.Google Scholar
Symanzik, K. (1983). “Continuum limit and improved action in lattice theories,” NP, B226: 187227.Google Scholar
Takabayasi, T. (1983). “Some characteristic aspects of early elementary particle theory in Japan,” in The Birth of Particle Physics, eds. Brown, L. M., and Hoddeson, L. (Cambridge University Press, Cambridge), 294303.Google Scholar
Takahashi, Y. (1957). “On the generalized Ward Identity,” NC, 6: 371375.Google Scholar
Tamm, I. (1934). “Exchange forces between neutrons and protons, and Fermi’s theory,” Nature, 133: 981.Google Scholar
Tanikawa, Y. (1943). First published in Japanese in Report of the Symposium on Meson Theory, then in English, “On the cosmic-ray meson and the nuclear meson,” PTP, 2: 220.Google Scholar
Taylor, J. C. (1958). “Beta decay of the pion,” PR, 110: 1216.Google Scholar
Taylor, J. C. (1971). “Ward identities and the Yang–Mills field,” NP, B33: 436444.Google Scholar
Taylor, J. C. (1976). Gauge Theories of Weak Interactions (Cambridge University Press, Cambridge).Google Scholar
Thirring, H. (1918). “Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie,” Phys. Z., 19: 3339.Google Scholar
Thirring, H. (1921). “Berichtigung zu meiner Arbeit: ‘Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie’,” Phys. Z., 22: 2930.Google Scholar
Thirring, W. (1953). “On the divergence of perturbation theory for quantum fields,” Helv. Phys. Acta., 26: 3352.Google Scholar
Thomson, J. J. (1881). “On the electric and magnetic effects produced by the motion of electrified bodies,” Philos. Mag., 11: 227249.Google Scholar
Thomson, J. J. (1904). Electricity and Matter (Charles Scribner’s Sons, New York).Google Scholar
Thomson, W. (1884). Notes of Lectures on Molecular Dynamics and the Wave Theory of Light (Johns Hopkins University, Baltimore).Google Scholar
’t Hooft, G. (1971a). “Renormalization of massless Yang–Mills fields,” NP, B33: 173199.Google Scholar
’t Hooft, G. (1971b). “Renormalizable Lagrangians for massive Yang–Mills fields,” NP, B35: 167188.Google Scholar
’t Hooft, G. (1971c). “Prediction for neutrino-electron cross-sections in Weinberg’s model of weak interactions,” PL, 37B: 195196.Google Scholar
’t Hooft, G. (1972c). Remarks after Symansik’s presentation, in Renormalization of Yang–Mills Fields and Applications to Particle Physics (the Proceedings of the Marseille Conference, 19–23 June 1972), ed. Korthals-Altes, C. P. (Centre de Physique Théorique, CNRS, Marseille).Google Scholar
’t Hooft, G. (1973). “Dimensional regularization and the renormalization group,” CERN Preprint Th.1666, May 2, 1973, and NP, B61: 455, in which his unpublished remarks at the Marseille Conference (1972c) were publicized.Google Scholar
’t Hooft, G. (1974). “Magnetic monopoles in unified gauge theories,” NP, B79: 276284.Google Scholar
’t Hooft, G. (1976a). “Symmetry breaking through Bell–Jackiw anomalies,” PRL, 37: 811.Google Scholar
’t Hooft, G. (1976b). “Computation of the quantum effects due to a four-dimensional pseudoparticle,” PR, D14: 34323450.Google Scholar
’t Hooft, and Veltman, M. (1972a). “Renormalization and regularization of gauge fields,” NP, B44: 189213.Google Scholar
’t Hooft, and Veltman, M. (1972b). “Combinatorics of gauge fields,” NP, B50: 318353.Google Scholar
Toll, J. (1952). “The dispersion relation for light and its application to problems involving electron pairs,” unpublished PhD dissertation, Princeton University.Google Scholar
Toll, J. (1956). “Causality and the dispersion relation: logical foundations,” PR, 104: 17601770.Google Scholar
Tomonaga, S. (1943). “On a relativistic reformulation of quantum field theory,” Bull. IPCR (Rikeniko), 22: 545557. (In Japanese; the English trans. appeared in PTP, 1: 1–13).Google Scholar
Tomonaga, S. (1946). “On a relativistically invariant formulation of the quantum theory of wave fields,” PTP, 1: 2742.Google Scholar
Tomonaga, S. (1948). “On infinite reactions in quantum field theory,” PR, 74: 224225.Google Scholar
Tomonaga, S. (1966). “Development of quantum electrodynamics. Personal recollections,” Noble Lectures (Physics): 1963–1970 (Elsevier, Amsterdam/London/New York), 126136.Google Scholar
Tomonaga, S., and Koba, Z. (1948). “On radiation reactions in collision processes. I,” PTP, 3: 290303.Google Scholar
Torretti, R. (1983). Relativity and Geometry (Pergamon, Oxford).Google Scholar
Toulmin, S. (1961). Foresight and Understanding (Hutchinson, London).Google Scholar
Touschek, B. F. (1957). “The mass of the neutrino and the nonconservation of parity,” NC, 5: 12811291.Google Scholar
Trautman, A. (1980). “Fiber bundles, gauge fields, and gravitation,” in General Relativity and Gravitation, vol. 1. One Hundred Years after the Birth of Albert Einstein, ed. Held, A. (Plenum Press, New York), 287308.Google Scholar
Umezawa, H. (1952). “On the structure of the interactions of the elementary particles, II,” PTP, 7: 551562.Google Scholar
Umezawa, H., and Kamefuchi, R. (1951). “The vacuum in quantum field theory,” PTP, 6: 543558.Google Scholar
Umezawa, H., and Kamefuchi, S. (1961). “Equivalence theorems and renormalization problem in vector field theory (the Yang–Mills field with non-vanishing masses),” NP, 23: 399429.Google Scholar
Umezawa, H., and Kawabe, R. (1949a). “Some general formulae relating to vacuum polarization,” PTP, 4: 423442.Google Scholar
Umezawa, H., and Kawabe, R. (1949b). “Vacuum polarization due to various charged particles,” PTP, 4: 443460.Google Scholar
Umezawa, H., Yukawa, J., and Yamada, E. (1948). “The problem of vacuum polarization,” PTP, 3: 317318.Google Scholar
Utiyama, R. (1956). “Invariant theoretical interpretation of interaction,” PR, 101: 15971607.Google Scholar
Valatin, J. G. (1954a). “Singularities of electron kernel functions in an external electromagnetic field,” PRS, A222: 93108.Google Scholar
Valatin, J. G. (1954b). “On the Dirac–Heisenberg theory of vacuum polarization,” PRS, A222: 228239.Google Scholar
Valatin, J. G. (1954c). “On the propagation functions of quantum electrodynamics,” PRS, A225: 535548.Google Scholar
Valatin, J. G. (1954d). “On the definition of finite operator quantities in quantum electrodynamics,” PRS, A226: 254265.Google Scholar
van Dam, H., and Veltman, M. (1970). “Massive and massless Yang–Mills and gravitational fields,” NP, B22: 397411.Google Scholar
van der Waerden, B. L. (1967). Sources of Quantum Mechanics (North-Holland, Amsterdam).Google Scholar
van Nieuwenhuizen, P. (1981). “Supergravity,” PL (Rep.), 68: 189398.Google Scholar
Vaughn, M. T., Aaron, R., and Amado, R. D. (1961). “Elementary and composite particles,” PR, 124: 12581268.Google Scholar
Veblen, O., and Hoffmann, D. (1930). “Projective relativity,” PR, 36: 810822.Google Scholar
Velo, G., and Wightman, A. (eds.) (1973). Constructive Quantum Field Theory (Springer-Verlag, Berlin and New York).Google Scholar
Veltman, M. (1963a). “Higher order corrections to the coherent production of vector bosons in the Coulomb field of a nucleus,” Physica, 29: 161185.Google Scholar
Veltman, M. (1963b). “Unitarity and causality in a renormalizable field theory with unstable particles,” Physica, 29: 186207.Google Scholar
Veltman, M. (1966). “Divergence conditions and sum rules,” PRL, 17: 553556.Google Scholar
Veltman, M. (1967). “Theoretical aspects of high energy neutrino interactions,” PRS, A301: 107112.Google Scholar
Veltman, M. (1968a). “Relations between the practical results of current algebra techniques and the originating quark model,” Copenhagen Lectures, July 1968, reprinted in Gauge Theory – Past and Future, eds. Akhoury, R., DeWitt, B., Van Nieuwenhuizen, P., and Veltman, H. (World Scientific, Singapore, 1992).Google Scholar
Veltman, M. (1968b). “Perturbation theory of massive Yang–Mills fields,” NP, B7: 637650.Google Scholar
Veltman, M. (1969). “Massive Yang-Mills fields,” in Proceedings of Topical Conference on Weak Interactions (CERN Yellow Report 69–7), 391–393.Google Scholar
Veltman, M. (1970). “Generalized Ward identities and Yang–Mills fields,” NP, B21: 288302.Google Scholar
Veltman, M. (1973). “Gauge field theories (with an appendix “Historical review and bibliography,” in The Proceedings of the 6th International Symposium on Electron and Photon Interactions at High Energies, eds. Rollnik, H., and Pheil, W. (North-Holland, Amsterdam).Google Scholar
Veltman, M. (1977). “Large Higgs mass and μ-e universality,” PL, 70B: 253254.Google Scholar
Veltman, M. (1991). Interview with the author, December 9–11, 1991.Google Scholar
Veltman, M. (1992). “The path to renormalizability,” a talk given at the Third International Symposium on the History of Particle Physics, SLAC, 24–27 June 1992.Google Scholar
Waller, I. (1930). “Bemerküngen über die Rolle der Eigenenergie des Elektrons in der Quantentheorie der Strahlung,” ZP, 62: 673676.Google Scholar
Ward, J. C. (1950). “An identity in quantum electrodynamics,” PR, 78: 182.Google Scholar
Ward, J. C. (1951). “On the renormalization of quantum electrodynamics,” Proc. Phys. Soc. London, A64: 5456.Google Scholar
Ward, J. C., and Salam, A. (1959). “Weak and electromagnetic interaction,” NC, 11: 568577.Google Scholar
Weinberg, S. (1960). “High energy behavior in quantum field theory,” PR, 118: 838849.Google Scholar
Weinberg, S. (1964a). “Systematic solution of multiparticle scattering problems,” PR, B133: 232256.Google Scholar
Weinberg, S. (1964b). “Derivation of gauge invariance and the equivalence principle from Lorentz invariance of the S-matrix,” PL, 9: 357359.Google Scholar
Weinberg, S. (1964c). “Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass,” PR, B135: 10491056.Google Scholar
Weinberg, S. (1965a). Lectures on Particles and Field Theories, eds. Deser, S., and Ford, K. W. (Prentice-Hall, Englewood Cliffs, NJ).Google Scholar
Weinberg, S. (1965b). “Photons and gravitons in perturbation theory: derivation of Maxwell’s and Einstein’s equations,” PR, B138: 9881002.Google Scholar
Weinberg, S. (1967a). “Dynamical approach to current algebra,” PRL, 18: 188191.Google Scholar
Weinberg, S. (1967b). “A model of leptons,” PRL, 19: 12641266.Google Scholar
Weinberg, S. (1968). “Nonlinear realizations of chiral symmetry,” PR, 166: 15681577.Google Scholar
Weinberg, S. (1976). “Implications of dynamical symmetry breaking,” Phys. Rev. D, 13: 974996.Google Scholar
Weinberg, S. (1977). “The search for unity: notes for a history of quantum field theory,” Daedalus, 106: 1735.Google Scholar
Weinberg, S. (1978). “Critical phenomena for field theorists,” in Understanding the Fundamental Constituents of Matter, ed. Zichichi, A. (Plenum, New York), 152.Google Scholar
Weinberg, S. (1979). “Phenomenological Lagrangian,” Physica, 96A: 327340.Google Scholar
Weinberg, S. (1980a). “Conceptual foundations of the unified theory of weak and electromagnetic interactions,” RMP, 52: 515523.Google Scholar
Weinberg, S. (1980b). “Effective gauge theories,” PL, 91B: 5155.Google Scholar
Weinberg, S. (1983). “Why the renormalization group is a good thing,” in Asymptotic Realms of Physics: Essays in Honor of Francis. E. Low, eds. Guth, A. H., Huang, K., and Jaffe, R. L. (MIT Press, Cambridge, MA), 119.Google Scholar
Weinberg, S. (1985). “The ultimate structure of matter,” in A Passion for Physics: Essays in Honor of Jeffrey Chew, eds. De Tar, C., Finkelstein, J., and Tan, C. I. (Taylor & Francis, Philadelphia), 114127.Google Scholar
Weinberg, S. (1986a). “Particle physics: past and future,” Int. J. Mod. Phys. A1/1: 135145.Google Scholar
Weinberg, S. (1986b). “Particles, fields, and now strings,” in The Lesson of Quantum Theory, eds. De Boer, J., Dal, E., and Ulfbeck, O. (Elsevier, Amsterdam), 227239.Google Scholar
Weinberg, S. (1987). “Newtonianism, reductionism and the art of congressional testimony,” in Three Hundred Years of Gravitation, eds. Hawking, S. W., and Israel, W. (Cambridge University Press, Cambridge).Google Scholar
Weinberg, S. (1992). Dreams of a Final Theory (Pantheon, New York).Google Scholar
Weinberg, S. (1995). The Quantum Theory of Fields (Cambridge University Press, Cambridge).Google Scholar
Weinberg, S. (1996). The Quantum Theory of Fields (Cambridge University Press), sections 19.2 and 21.1, especially 299300.Google Scholar
Weisberger, W. I. (1965). “Renormalization of the weak axial-vector coupling constant,” PRL, 14: 10471055.Google Scholar
Weisberger, W. I. (1966). “Unsubstracted dispersion relations and the renormalization of the weak axial-vector coupling constants,” PR, 143: 13021309.Google Scholar
Weisskopf, V. F. (1934). “Über die Selbstenergie des Elektrons,” ZP, 89: 2739.Google Scholar
Weisskopf, V. F. (1936). “Über die Elektrodynamic des Vakuums auf Grund der Quantentheorie des Elektrons,” K. Danske Vidensk. Selsk., Mat.-Fys. Medd., 14: 139.Google Scholar
Weisskopf, V. F. (1939). “On the self-energy and the electromagnetic field of the electron,” PR, 56: 7285.Google Scholar
Weisskopf, V. F. (1949). “Recent developments in the theory of the electron,” RMP, 21: 305328.Google Scholar
Weisskopf, V. F. (1972). Physics in the Twentieth Century (MIT Press, Cambridge, MA).Google Scholar
Weisskopf, V. F. (1983). “Growing up with field theory: the development of quantum electrodynamics,” in The Birth of Particle Physics, eds. Brown, L. M., and Hoddeson, L. (Cambridge University Press, Cambridge), 5681.Google Scholar
Welton, T. A. (1948). “Some observable effects of the quantum-mechanical fluctuations of the electromagnetic field,” PR, 74: 11571167.Google Scholar
Wentzel, G. (1933a, b; 1934). “Über die Eigenkräfte der Elementarteilchen. I, II and III,” ZP, 86: 479494, 635–645; 87: 726–733.Google Scholar
Wentzel, G. (1943). Einführung in der Quantentheorie der Wellenfelder (Franz Deuticke, Vienna); English trans.: Quantum Theory of Fields (Interscience, New York, 1949).Google Scholar
Wentzel, G. (1956). “Discussion remark,” in Proceedings of 6th Rochester Conference on High Energy Nuclear Physics (Interscience Publishers, New York), VIII-15 to VIII-17.Google Scholar
Wentzel, G. (1958). “Meissner effect,” PR, 112: 14881492.Google Scholar
Wentzel, G. (1959). “Problem of gauge invariance in the theory of the Meissner effect,” PRL, 2: 3334.Google Scholar
Wentzel, G. (1960). “Quantum theory of fields (until 1947),” in Theoretical Physics in the Twentieth Century: A Memorial Volume to Wolfgang Pauli (Interscience, New York), 4467.Google Scholar
Wess, J. (1960). “The conformal invariance in quantum field theory,” NC, 13: 1086.Google Scholar
Wess, J., and Zumino, B. (1971). “Consequences of anomalous Ward identities,” PL, 37B: 9597.Google Scholar
Wess, J., and Zumino, B. (1974). “Supergauge transformations in four dimensions,” NP, B70: 3950.Google Scholar
Weyl, H. (1918a). Raum-Zeit-Materie (Springer, Berlin).Google Scholar
Weyl, H. (1918b). “Gravitation und Elektrizität,” Preussische Akad. Wiss. Sitzungsber., 465–478.Google Scholar
Weyl, H. (1921). “Electricity and gravitation,” Nature, 106: 800802.Google Scholar
Weyl, H. (1922). “Gravitation and electricity,” in The Principle of Relativity (Methuen, London, 1923), 201216.Google Scholar
Weyl, H. (1929). “Elektron und Gravitation. I,” ZP, 56: 330352.Google Scholar
Weyl, H. (1930). Gruppentheorie und Quantenmechanik (translated by Robertson as The Theory of Groups and Quantum Mechanics (E. P. Dutton, New York, 1931).Google Scholar
Wheeler, J. (1962). Geometrodynamics (Academic Press, New York).Google Scholar
Wheeler, J. (1964a). “Mach’s principle as a boundary condition for Einstein’s equations,” in Gravitation and Relativity, eds. Chiu, H.-Y., and Hoffman, W. F. (Benjamin, New York), 303349.Google Scholar
Wheeler, J. (1964b). “Geometrodynamics and the issue of the final state,” in Relativity, Group and Topology, eds. DeWitt, C., and DeWitt, B. (Gordon and Breach, New York), 315.Google Scholar
Wheeler, J. (1973). “From relativity to mutability,” in The Physicist’s Conception of Nature, ed. Mehra, J. (Reidel, Dordrecht), 202247.Google Scholar
Whewell, W. (1847). The Philosophy of the Inductive Sciences, second edition (Parker & Son, London).Google Scholar
Whittaker, E. (1951). A History of the Theories of Aether and Electricity (Nelson, London).Google Scholar
Widom, B. (1965a). “Surface tension and molecular correlations near the critical point,” J. Chem. Phys., 43: 38923897.Google Scholar
Widom, B. (1965b). “Equation of state in the neighborhood of the critical point,” J. Chem. Phys., 43: 38983905.Google Scholar
Wien, W. (1909). Encykl. der Math. Wiss (B. G. Teubner, Leipzig), vol. 3, 356.Google Scholar
Wightman, A. S. (1956). “Quantum field theories in terms of expectation values,” PR, 101: 860866.Google Scholar
Wightman, A. S. (1976). “Hilbert’s sixth problem: mathematical treatment of the axioms of physics,” in Mathematical Developments Arising from Hilbert Problems, ed. Browder, F. E. (American Mathematical Society, Providence, RI), 147240.Google Scholar
Wightman, A. S. (1978). “Field theory, Axiomatic,” in the Encyclopedia of Physics (McGraw-Hill, New York), 318321.Google Scholar
Wightman, A. S. (1986). “Some lessons of renormalization theory,” in The Lesson of Quantum Theory, eds. de Boer, J., Dal, E., and Ulfbeck, D. (Elsevier, Amsterdam), 201225.Google Scholar
Wightman, A. S. (1989). “The general theory of quantized fields in the 1950s,” in Pions to Quarks, eds. Brown, L. M., Dresden, M., and Hoddeson, L. (Cambridge University Press, Cambridge), 608629.Google Scholar
Wightman, A. S. (1992). Interview with the author on July 15 and 16, 1992 in Professor Wightman’s Office, Princeton University.Google Scholar
Wigner, E. P. (1931). Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren (Friedr.Vieweg & Sohn Akt. Ges., Braunschweig).Google Scholar
Wigner, E. (1937). “On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei,” PR, 51: 106119.Google Scholar
Wigner, E. (1949). “Invariance in physical theory,” Proc. Amer. Philos. Soc., 93: 521526.Google Scholar
Wigner, E. (1960). “The unreasonable effectiveness of mathematics in the natural sciences,” Commun. Pure. Appl. Math., 13: 114.Google Scholar
Wigner, E. (1963). Interview with Wigner on 4 Dec 1963; Archive for the History of Quantum Physics.Google Scholar
Wigner, E. (1964a). “Symmetry and conservation laws,” Proc. Natl. Acad. Sci., 5: 956965.Google Scholar
Wigner, E. (1964b). “The role of invariance principles in natural philosophy,” in Proceedings of the Enrico Fermi International School of Physics (XXIX), ed. Wigner, E. (Academic Press, New York), ixxvi.Google Scholar
Wigner, E. P., and Witmer, E. E. (1928). “Über die Struktur der zweiatomigen Molekulspektren nach der Quantenmechanik,” ZP, 51: 859886.Google Scholar
Wilson, K. G. (1965). “Model Hamiltonians for local quantum field theory,” PR, B140: 445457.Google Scholar
Wilson, K. G. (1969). “Non-Lagrangian models of current algebra,” PR, 179: 14991512.Google Scholar
Wilson, K. G. (1970a). “Model of coupling-constant renormalization,” PR, D2: 14381472.Google Scholar
Wilson, K. G. (1970b). “Operator-product expansions and anomalous dimensions in the Thirring model,” PR, D2: 14731477.Google Scholar
Wilson, K. G. (1970c). “Anomalous dimensions and the breakdown of scale invariance in perturbation theory,” PR, D2: 14781493.Google Scholar
Wilson, K. G. (1971a). “The renormalization group and strong interactions,” PR, D3: 18181846.Google Scholar
Wilson, K. G. (1971b). “Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture,” PR, B4: 31743183.Google Scholar
Wilson, K. G. (1971c). “Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior,” PR, B4: 31843205.Google Scholar
Wilson, K. G. (1972). “Renormalization of a scalar field in strong coupling,” PR, D6: 419426.Google Scholar
Wilson, K. G. (1974). “Confinement of quarks,” PR, D10: 24452459.Google Scholar
Wilson, K. G. (1975). “The renormalization group: critical phenomena and the Kondo problem,” RMP, 47: 773840.Google Scholar
Wilson, K. G. (1979). “Problems in physics with many scales of length,” Scientific American, 241(2): 140157.Google Scholar
Wilson, K. G. (1983). “The renormalization group and critical phenomena,” RMP, 55: 583600.Google Scholar
Wilson, K. G., and Fisher, M. E. (1972). “Critical exponents in 3.99 dimensions,” PRL, 28: 240243.Google Scholar
Wilson, K. G., and Kogut, J. (1974). “The renormalization group and the є expansion,” PL (Rep.), 12C: 75199.Google Scholar
Wimsatt, W.C. (2003). “Evolution, entrenchnebt, and innateness,” in Reductionism and the Development of Knowledge, ed. Brown, T., and Smith, L. (Mahwah).Google Scholar
Wise, N. (1981). “German concepts of force, energy and the electromagnetic ether: 1845–1880,” in Contor and Hodge (1981), 269–308.Google Scholar
Worrall, J. (1989). “Structural realism: the best of both worlds?Dialectica, 43: 99124.Google Scholar
Worrall, J. (2007). Reason in Revolution: A Study of Theory-Change in Science (Oxford University Press, Oxford).Google Scholar
Wu, T. T., and Yang, C. N. (1967). “Some solutions of the classical isotopic gauge field equations,” in Properties of Matter under Unusual Conditions, eds. Mark, H., and Fernbach, S. (Wiley, New York), 349354.Google Scholar
Wu, T. T., and Yang, C. N. (1975). “Concept of nonintegrable phase factors and global formulation of gauge fields,” PR, D12: 38453857.Google Scholar
Wuthrich, A. (2012). “Eating Goldstone bosons in a phase transition: a critical review of Lyre’s analysis of the Higgs mechanism,” J. Gen. Philos. Sci., 43: 281287.Google Scholar
Yang, C. N. (1970). “Charge quantization of the gauge group, and flux quantization,” PR, D1: 8.Google Scholar
Yang, C. N. (1974). “Integral formalism for gauge fields,” PRL, 33: 445447.Google Scholar
Yang, C. N. (1977). “Magnetic monopoles, fiber bundles, and gauge fields,” Ann. N. Y. Acad. Sci., 294: 8697.Google Scholar
Yang, C. N. (1980). “Einstein’s impact on theoretical physics,” Phys. Today, 33(6): 4249.Google Scholar
Yang, C. N. (1983). Selected Papers (1945–1980) (Freeman, New York).Google Scholar
Yang, C. N., and Mills, R. L. (1954a). “Isotopic spin conservation and a generalized gauge invariance,” PR, 95: 631.Google Scholar
Yang, C. N., and Mills, R. L. (1954b). “Conservation of isotopic spin and isotopic gauge invariance,” PR, 96: 191195.Google Scholar
Yates, F. (1964). Giordano Bruno and the Hermetic Tradition (Routledge and Kegan Paul, London).Google Scholar
Yoshida, R. (1977). Reduction in the Physical Sciences. (Dalhousie University Press, Halifax).Google Scholar
Yoshida, R. (1981). “Reduction as replacement,” Brit. J. Philos. Sci., 32: 400.Google Scholar
Yukawa, H. (1935). “On the interaction of elementary particles,” Proc. Phys.-Math. Soc. Japan, 17: 4857.Google Scholar
Yukawa, H., and Sakata, S. (1935a). “On the theory of internal pair production,” Proc. Phys.-Math. Soc. Japan, 17: 397407.Google Scholar
Yukawa, H., and Sakata, S. (1935b). “On the theory of the β-disintegration and the allied phenomenon,” Proc. Phys.-Math. Soc. Japan, 17: 467479.Google Scholar
Zachariasen, F., and Zemach, C. (1962). “Pion resonances,” PR, 128: 849858.Google Scholar
Zahar, E. (1982). “Poincaré et la découverte du Principe de Relativité,” LSE-Preprint, February 6, 1982.Google Scholar
Zilsel, E. (1942). “The sociological roots of science,” Amer. J. Sociology, 47: 544562.Google Scholar
Zimmermann, W. (1958). “On the bound state problem in quantum field theory,” NC, 10: 597614.Google Scholar
Zimmermann, W. (1967). “Local field equation for A4-coupling in renormalized perturbation theory,” CMP, 6: 161188.Google Scholar
Zumino, B. (1975). “Supersymmetry and the vacuum,” NP, B89: 535546.Google Scholar
Zweig, G. (1964a). “An SU3 model for strong interaction symmetry and its breaking: I and II,” CERN preprint TH401 (January 17, 1964) and TH 412 (February 21, 1964).Google Scholar
Zweig, G. (1964b). “Fractionally charged particles and SU(6),” in Symmetries in Elementary Particle Physics, ed. Zichichi, A. (Academic Press, New York), 192243.Google Scholar
Zwicky, F. (1935). “Stellar guests,” Scientific Monthly, 40: 461.Google Scholar
Zwicky, F. (1939). “On the theory and observation of highly collapsed stars,” PR, 55: 726743.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Tian Yu Cao, Boston University
  • Book: Conceptual Developments of 20th Century Field Theories
  • Online publication: 01 October 2019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Tian Yu Cao, Boston University
  • Book: Conceptual Developments of 20th Century Field Theories
  • Online publication: 01 October 2019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Tian Yu Cao, Boston University
  • Book: Conceptual Developments of 20th Century Field Theories
  • Online publication: 01 October 2019
Available formats
×