Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-29T19:14:43.290Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  14 December 2018

Ralph D. Lorenz
Affiliation:
The Johns Hopkins University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Exploring Planetary Climate
A History of Scientific Discovery on Earth, Mars, Venus and Titan
, pp. 281 - 312
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beech, M. (2010). Atmospheric height by twilight’s glow. Journal of the Royal Astronomical Society of Canada, 104, 147148.Google Scholar
Powell, C. (2014). Did Cosmos pick the wrong hero. Discover Magazine blog.Google Scholar
Tierie, G. (1932). Cornelis Drebbel (1572–1633). Ph.D. Thesis, University of Leiden (available online).Google Scholar
Huygens, C., The Celestial Worlds Discover’d: Or, Conjectures Concerning the Inhabitants, Plants and Productions of the Worlds in the Planets, London: Timothy Childe, 1698.Google Scholar
Wilkins, J., A Discovery of a New World, or A Discourse tending to prove, that ‘tis Probable there may be another Habitable World in the Moon, with a discourse on the probability of a passage thither, London: J. Gillibrand, 1684.Google Scholar
MacDonald, A., The Long Space Age, New Haven, CT: Yale University Press, 2017.Google Scholar
Sobester, A., Stratospheric Flight: Aeronautics at the Limit, Springer, 2011.Google Scholar
Halley, E. (1693). A discourse concerning the proportional heat of the Sun in all latitudes, with the method of collecting the same, as it was read before the Royal Society in one of their Late Meetings. Philosphical Transactions of the Royal Society, 17, 878885.Google Scholar
Halley, E. (1686). An estimate of the quantity of vapour raised out of the sea by the warmth of the Sun; derived from an experiment shown before the Royal Society, at one of Their Late Meetings. Philosphical Transactions of the Royal Society, 1686–1692, 16, 366370, doi:10.1098/rstl.1686.0067Google Scholar
Lorenz, R.D. (2014). The flushing of Ligeia: composition variations across Titan’s seas in a simple hydrological model. Geophysical Research Letters, 41, 57645770, doi:10.1002/2014GL061133.Google Scholar
Halley, E. (1714). A short account of the cause of the saltness of the ocean, and of the several lakes that emit no rivers; with a proposal, by help thereof, to discover the age of the World. Philosphical Transactions of the Royal Society, 29, 296300, doi:10.1098/rstl.1714.0031.Google Scholar
Halley, E. (1686). An historical account of the trade winds, and monsoons, observable in the seas between and near the tropicks, with an attempt to assign the phisical cause of the said winds. Philosophical Transactions of the Royal Society, 16(179–191), 153168.Google Scholar
Hadley, G. (1735). VI. Concerning the cause of the general trade-winds. Philosophical Transactions of the Royal Society, 39(437), 5862.Google Scholar
Persson, A.O. (2006). Hadley’s principle: understanding and misunderstanding the trade winds. History of Meteorology, 3, 1742.Google Scholar
Dalrymple, G.B. ( 1994). The Age of the Earth, Stanford, CA: Stanford University Press.Google Scholar
Franklin, B. (1755). Letter to Peter Collinson, dated Philadelphia, August 25, 1755, quoted in Lorenz, R.D., Balme, M.R., Gu, Z., et al. (2016), History and Applications of Dust Devil Studies. Space Science Reviews, 203, 537.Google Scholar
Jefferson, T. (1787). Notes on the State of Virginia. London: John Stockdale.Google Scholar
Fleming, J.R., Historical Perspectives on Climate Change, New York: Oxford University Press, 1998.Google Scholar
Thompson, K. (1980). Forests and climate change in America: some early views. Climatic Change, 3, 4764.Google Scholar
Herschel, W. (1801). Observations tending to investigate the nature of the Sun, in order to find the causes or symptoms of its variable emission of light and heat; with remarks on the use that may possibly be drawn from solar observations. Philosophical Transactions of the Royal Society of London, 91, 265318.Google Scholar
Hoyt, D.V. & Schatten, K.H. (1997). The Role of the Sun in Climate Change, Oxford: Oxford University Press.CrossRefGoogle Scholar
Wulf, A. (2015). The Invention of Nature: The Adventures of Alexander von Humboldt, the Lost Hero of Science. London: John Murray.Google Scholar
Hamblyn, R. (2011). The Invention of Clouds: How an Amateur Meteorologist Forged the Language of the Skies, London: Pan Macmillan.Google Scholar
Burgess, E. (1837). General remarks on the temperature of the terrestrial globe and the planetary spaces by Baron Fourier. American Journal of Science and Arts, 32, 120.Google Scholar
Fleming, J.R. (1999). Joseph Fourier, the ‘greenhouse effect’, and the quest for a universal theory of terrestrial temperatures. Endeavour, 23, 7275.Google Scholar
Bard, E. (2004). Greenhouse effect and ice ages: historical perspective. Comptes Rendus Geoscience, 336, 603638.Google Scholar
Smyth, C.P. (1856). Note on the constancy of solar radiation. Monthly Notices of the Royal Astronomical Society, 16, 220.Google Scholar
Piazzi-Smyth, C. (1858). Tenerife, An Astronomer’s Experiment: or, Specialities of a Residence above the Clouds, London: Lovell Reeve.Google Scholar
Baddeley, P.F.H. (1860). Whirlwinds and Dust Storms of India, London: Bell.Google Scholar
Lorenz, R.D., Balme, M.R., Gu, Z., et al. (2016). History and Applications of Dust Devil Studies. Space Science Reviews, 203, 537.Google Scholar
Monmonier, M. (1999). Air Apparent: How Meteorologists Learned to Map, Predict and Dramatize Weather, Chicago: University of Chicago Press,Google Scholar
Moore, P. (2015). The Weather Experiment, New York: Farrar.Google Scholar
Holmes, R. (2013). Falling Upwards: How We Took to the Air, New York: Pantheon.Google Scholar
Lequex, J. (2009). Early infrared astronomy. Journal of Astronomical History and Heritage, 12(2), 125140.CrossRefGoogle Scholar
Tyndall, J. (1861). The Bakerian Lecture: On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conduction. Philosophical Transactions of the Royal Society of London, 151, 136.Google Scholar
Foote, Eunice (1856). Article XXL – Circumstances affecting the Heat of the Sun’s Rays, read before the American Association, August 23, 1856. The American Journal of Science and Arts, XXII, 382383.Google Scholar
Ebelmen, J.J. (1847). Recherches sur la décomposition des roches, Paris: Carilian-Goeury et Vor. Dalmont.Google Scholar
Berner, R. (2012). Jacques-Joseph Ébelmen, the founder of earth system science. Comptes Rendus Geoscience, 344(11), 544548.Google Scholar
Galvez, M.E. & Gaillardet, J. (2012). Historical constraints on the origins of the carbon cycle concept. Comptes Rendus Geoscience, 344(11), 549567.Google Scholar
Murray, J. et al. (1885). Report on the Scientific Results of the Voyage of H.M.S. Challenger during the years 1873–1876, London: Her Majesty’s Stationery Office.Google Scholar
Roemmich, D. et al. (2012). 135 years of global ocean warming between the Challenger Expedition and the Argo Programme. Nature Climate Change, 2, 425428.Google Scholar
Leitch, W. (1867). God’s Glory in the Heavens, London: Alexander Strahan.Google Scholar
Taylor, H.D. (1895). Mars, A negative optical proof of the absence of seas in Mars. Monthly Notices of the Royal Astronomical Society, 55, 462474.Google Scholar
Poynting, J.H. (1904). Radiation in the Solar System: its effect on temperature and its pressure on small bodies. Philosophical Transactions of the Royal Society of London, Series A, 202, 525552.Google Scholar
Earl of Rosse (1871). On the Radiation of Heat from the Moon. No. II. Proceedings of the Royal Society of London, 19, 914.Google Scholar
Langley, S.P. (1886). The temperature of the Moon. Science, 7(158) 89.Google Scholar
Langley, S.P. (1889). The Temperature of the Moon, Third Memoir, National Academy of Sciences Vol. 4 part 2.Google Scholar
Langley, S.P. (1884). Researches on Solar Heat and Its Absorption by the Earth’s Atmosphere: A Report of the Mount Whitney Expedition. US Government Printing Office.Google Scholar
Arrhenius, S. (1896). On the influence of carbonic acid in the air upon the temperature of the ground. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(251), 237276.Google Scholar
Mellard Reade, T. (1879). Chemical Denudation in Relation to Geological Time, London: D. Bogue.Google Scholar
Chamberlin, T.C. (1898). The influence of great epochs of limestone formation upon the constitution of the atmosphere. The Journal of Geology, 6(6), 609621.Google Scholar
Fleming, J. R. (2000). TC Chamberlin, climate change, and cosmogony. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 31(3), 293308.Google Scholar
Chamberlin, T.C. (1897). A Group of Hypotheses Bearing on Climatic Changes. Journal of Geology, 5, 653683.Google Scholar
Chamberlin, T.C. (1906). On a possible reversal of deep-sea circulation and its influence on geological climates. Journal of Geology, 14, 363373.Google Scholar
Ekholm, N. (1901). On the variations of the climate of the geological and historical past and their causes. Quarterly Journal of the Royal Meteorological Society, 27, 1162.Google Scholar
Walker, G.T. (1923). Correlation in seasonal variations of weather. VIII. A preliminary study of world-weather. Memoirs of the Indian Meteorological Department, 24(Part 4), 75131.Google Scholar
Katz, R.W. (2002). Sir Gilbert Walker and a connection between El Niño and statistics. Statistical Science, 17, 97112.CrossRefGoogle Scholar
Stoney, G.J. (1898). Of atmospheres upon planets and satellites. The Astrophysical Journal, 7, 25.Google Scholar
Hoinka, K.P. (1997). The tropopause: discovery, definition and demarcation. Meteorologische Zeitschrift, N.F., 6, 281303.Google Scholar
Dines, W. (1908). The Registering Balloon Ascents in England of July 22–27, 1907, Preliminary Account. Quarterly Journal of the Royal Meteorological Society, 34, 15.CrossRefGoogle Scholar
Rotch, A.L. (1897). On obtaining meterological records in the upper air by means of kites and balloons. Proceedings of the American Academy of Arts and Sciences, 32, 245251.Google Scholar
Goddard, R.H. (1919). A Method of Reaching Extreme Altitudes, Washington, DC: Smithsonian Institution.Google Scholar
Sheehan, W. (1996). The Planet Mars, A History of Observation and Discovery, Tucson, AZ: University of Arizona Press.Google Scholar
Lorenz, R.D. (1997). Did Comas Sola discover Titan’s atmosphere? Astronomy and Geophysics, 38(3) 1618.CrossRefGoogle Scholar
Lowell, P. (1907). A general method for evaluating the surface-temperature of the planets: with special reference to the temperature of Mars. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 14(79), 161176.Google Scholar
Poynting, J. (1907). On Prof. Lowell’s method for evaluating the surface-temperatures of the planets; with an attempt to represent the effect of day and night on the temperature of the Earth. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 14(84), 749760.Google Scholar
Wallace, A.R. (1907). Is Mars Habitable, London: Macmillan.Google Scholar
Arrhenius, S. (1918). The Destinies of Stars, London: Putnams (translated by J. Fries from the 1915 Swedish publication).Google Scholar
Maunder, E.W. (1913). Are the Planets Inhabited? London: Harper and Brothers.Google Scholar
Pekeris, C. (1933). The Development and Present Status of the Theory of the Heat Balance in the Atmosphere. D.Sc. Thesis, Massachusetts Institute of Technology.Google Scholar
Goody, R. & Yung, Y. (1961). Atmospheric Radiation: Theoretical Basis, Oxford: Oxford University Press.Google Scholar
Simpson, G. (1927). Some studies in terrestrial radiation. Memoirs of the Royal Meteorological Society, 2(16) 6995.Google Scholar
Simpson, G. (1928). Further studies in terrestrial radiation. Memoirs of the Royal Meteorological Society, 3(21) 126.Google Scholar
Simpson, G. (1929). The distribution of terrestrial radiation. Memoirs of the Royal Meteorological Society, 3(23), 5378.Google Scholar
Abbe, C. (1901). The physical basis of long-range weather forecasts. Monthly Weather Review, 29, 551561.Google Scholar
Milanković, Milutin (1879–1958). From his autobiography with comments by his son, Vasko, and a preface by Andre Berger, European Geophysical Society, Kaltenburg-Lindau, 1995.Google Scholar
Milankovitch, M. (1941). Canon of Insolation and the Ice-Age Problem, Belgrade: Royal Serbian Academy.Google Scholar
Imbrie, J. & Imbrie, K., Ice Ages, Solving the Mystery, Cambridge, MA: Harvard University Press, 1979.Google Scholar
Richardson, L.F., Weather Prediction by Numerical Process, Cambridge: Cambridge University Press, 1922.Google Scholar
Pettit, E. & Nicholson, S. (1924). Radiation Measures on the Planet Mars. Publications of the Astronomical Society of the Pacific, 36, 269272.Google Scholar
Sinton, W. (1986). Through the infrared with logbook and lantern slides, a history of infrared astronomy from 1868 to 1960. Publications of the Astronomical Society of the Pacific, 98, 246251.Google Scholar
Harland, D. (2005). Water and the Search for Life on Mars, Springer.Google Scholar
Fleming, J. (2016). Inventing Atmospheric Science: Bjerknes, Rossby, Wexler, and the Foundations of Modern Meteorology, Cambridge, MA: MIT Press.Google Scholar
Flower, W.D. (1936). Sand Devils. Meteorological Office Professional Notes, 5, 116. London: His Majesty’s Stationery Office.Google Scholar
Lorenz, R. (2013). The longevity and aspect ratio of dust devils: effects on detection efficiencies and comparison of landed and orbital imaging at Mars. Icarus, 226(1), 964970.Google Scholar
Courant, R., Friedrichs, K. & Lewy, H. (1928). Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen (in German), 100(1), 3274.Google Scholar
Bretz, J. Harlen (1923). The channeled scabland of the Columbia Plateau. Journal of Geology, 31, 617649.Google Scholar
Soennichsen, J. (2008). Bretz’s Flood: The Remarkable Story of a Rebel Geologist and the World’s Greatest Flood, Seattle, WA: Sasquatch Books.Google Scholar
Baker, V.R. & Nummedal, D. (1978). The channeled scabland: a guide to the geomorphology of the Columbia Basin, Washington. Prepared for the Comparative Planetary Geology Field Conference held in the Columbia Basin, June 5–8, 1978, sponsored by Planetary Geology Program, NASA Office of Space Science.Google Scholar
Köppen, W. & Wegener, A. (1924). Die Klimate der Geologischen Vorzeit, Berlin: Borntraeger. An English translation (Climates of the Geological Past) was published in 2015.Google Scholar
Vernadsky, V. (1998). The Biosphere, Annotated Edition, Springer.Google Scholar
Callendar, G.S. (1938). The artificial production of carbon dioxide and its influence on temperature. Quarterly Journal of the Royal Meteorological Society, 64(275), 223240.Google Scholar
Fleming, J.R. (2007). The Callendar Effect, The Life and Work of Guy Stewart Callendar (1898–1964), Boston, MA: American Meteorological Society.Google Scholar
Hawkins, E. & Jones, P. (2013). On Global Temperatures: 75 years after Callendar. Quarterly Journal of the Royal Meteorological Society, 139, 19611963.Google Scholar
Adams, W.S. & Dunham, T. (1932). Absorption bands in the infra-red spectrum of Venus. Publications of the Astronomical Society of the Pacific, 44, 243245.Google Scholar
Wildt, R. (1940). Note on the surface temperature of Venus. The Astrophysical Journal, 91, 266268.Google Scholar
Jones, H. Spencer (1940). Life on Other Worlds, London: English Universities Press.Google Scholar
Adel, A. & Slipher, V.M. (1934). Concerning the carbon dioxide content of the atmosphere of the planet Venus. Physical Review, 46(3), 240.Google Scholar
Adel, A. & Slipher, V.M. (1934). The constitution of the atmospheres of the giant planets. Physical Review, 46, 902906.Google Scholar
Livio, M. (2017). Winston Churchill’s essay on alien life found. Nature, 542, 289291.Google Scholar
Harper, K., Weather by the Numbers: The Genesis of Modern Meteorology, Boston, MA: MIT Press, 2012.Google Scholar
Lewis, J.M. (2003). Ooishi’s observation viewed in the context of jet stream discovery. Bulletin of the American Meteorological Society, 84, 357369.Google Scholar
Coen, R. (2014). Fu-go: The Curious History of Japan’s Balloon Bomb Attack on America, Lincoln, NE: University of Nebraska Press.Google Scholar
Drapeau, R.E. (2011). Operation Outward: Britain’s World War II offensive balloons. IEEE Power & Energy Magazine, 9, 94105.Google Scholar
Sverdrup, H.U. & Munk, W.H. (1947). Wind, Sea and Swell: Theory of Relations for Forecasting, US Navy Hydrographic Office Publication No. 601, 44 pp.Google Scholar
Lorenz, R.D. & Hayes, A.G. (2012). The growth of wind-waves in Titan’s hydrocarbon seas. Icarus, 219(1), 468475.Google Scholar
Lorenz, R.D., Dooley, J.M., West, J.D. & Fujii, M. (2003). Backyard spectroscopy and photometry of Titan, Uranus and Neptune. Planetary and Space Science, 51(2), 113125.Google Scholar
Keiffer, H. et al. The planet Mars: from antiquity to the present, in Keiffer, H. et al. (eds.), Mars, Tucson, AZ: University of Arizona Press, 1986.Google Scholar
Harland, D.M., Water and the Search for Life on Mars, Springer, 2005.Google Scholar
Struve, O. (1952). Proposal for a project of high-precision stellar radial velocity work. The Observatory, 72, 199200.Google Scholar
Mayer, C.H., McCullough, T.P. & Sloanaker, R.M. (1958). Observations of Venus at 3.15-cm wave length. The Astrophysical Journal, 127, 1.Google Scholar
Sinton, W.M. & Strong, J. (1960). Radiometric observations of Venus. The Astrophysical Journal, 131, 470.Google Scholar
Pettit, E. & Nicholson, S.B. (1955). Temperatures on the bright and dark sides of Venus. Publications of the Astronomical Society of the Pacific, 67, 293303.CrossRefGoogle Scholar
Franklin, K.L. (1959). An account of the discovery of Jupiter as a radio source. The Astronomical Journal, 64, 3739.Google Scholar
Lynch, P. (2008). The origins of computer weather prediction and climate modeling. Journal of Computational Physics, 227, 34313444.Google Scholar
Charney, J.G., Fjörtoft, R. & Von Neumann, J. (1950). Numerical integration of the barotropic vorticity equation. Tellus A, 2, 237254.Google Scholar
Phillips, N.A. (1956). The general circulation of the atmosphere: a numerical experiment. Quarterly Journal of the Royal Meteorological Society, 82(352), 123164.Google Scholar
Fultz, D. (1949). A preliminary report on experiments with thermally produced lateral mixing in a rotating hemispherical shell of liquid. Journal of Meteorology, 6(1), 1733.Google Scholar
Riehl, H. & Fultz, D. (1957). Jet stream and long waves in a steady rotating‐dishpan experiment: structure of the circulation. Quarterly Journal of the Royal Meteorological Society, 83(356), 215231.Google Scholar
Ghil, M., Read, P. & Smith, L. (2010). Geophysical flows as dynamical systems: the influence of Hide’s experiments. Astronomy & Geophysics, 51(4), 428.Google Scholar
Stommel, H. (1961). Thermohaline circulation with two stable regimes of flow. Tellus, 13, 224241.Google Scholar
Langway, C.C., The History of Early Polar Ice Cores, US Army Cold Regions Research and Engineering Laboratory, ERDC/CRREL TR-08–1, January 2008.CrossRefGoogle Scholar
Sterken, C. (2011). Ernst Julius Opik: Solar variability and climate change. Baltic Astronomy, 20 195203,Google Scholar
Opik, E. (1952). Ice ages. Irish Astronomical Journal, 2, 7184.Google Scholar
Opik, E. (1965). Climatic change in cosmic perspective. Icarus, 4, 289307.CrossRefGoogle Scholar
Wexler, H. (1956). Variations in insolation, general circulation and climate. Tellus A, 8, 480494.Google Scholar
Shapley, H., Climatic Change, Evidence, Causes and Effects, Cambridge, MA: Harvard University Press, 1953.CrossRefGoogle Scholar
Plass, G.N. (1956). The influence of the 15μ carbon‐dioxide band on the atmospheric infra‐red cooling rate. Quarterly Journal of the Royal Meteorological Society, 82(353), 310324.CrossRefGoogle Scholar
Plass, G.N. (1956). Effect of carbon dioxide variations on climate. American Journal of Physics, 24(5), 376387.Google Scholar
Weart, S., The Discovery of Global Warming, Cambridge, MA: Harvard University Press, 2008.Google Scholar
Revelle, R. & Suess, H.E. (1957). Carbon dioxide exchange between atmosphere and ocean, and the question of an increase of atmospheric CO2 during the past decades. Tellus, 9, 1827.Google Scholar
Keeling, C.D. (1960). The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 12(2), 200203.Google Scholar
Strughold, H., The Green and Red Planet, Albuquerque, NM: University of New Mexico Press, 1953.Google Scholar
Cockell, C. (2001). ‘Astrobiology’ and the ethics of new science. Interdisciplinary Science Reviews, 26, 9096.Google Scholar
Spinrad, H., Münch, G. & Kaplan, L.D. (1963). Letter to the Editor: The detection of water vapor on Mars. The Astrophysical Journal, 137, 1319.Google Scholar
Kaplan, L.D., Münch, G. & Spinrad, H. (1964). An analysis of the spectrum of Mars. The Astrophysical Journal, 139, 115.Google Scholar
Latil, P. & Mar, T. (1959). Planetary observations by the multi-balloon technique. New Scientist, 7 May, 1005–1007.Google Scholar
Dollfus, A., Observations of water vapor on Mars and Venus. In The Origin and Evolution of Atmospheres and Oceans, Proceedings of a Conference, held at the Goddard Institute for Space Studies, NASA, New York, April 8–9, 1963. Edited by Brancazio, P.J. & Cameron, A.G.W., New York: Wiley, 1964, p. 257.Google Scholar
House, F.B., Gruber, A., Hunt, G.E. & Mecherikunnel, A.T. (1986). History of satellite missions and measurements of the Earth radiation budget (1957–1984). Reviews of Geophysics, 24(2), 357377.Google Scholar
Wexler, H. (1954). Observing the weather from a satellite vehicle. Journal of the British Interplanetary Society, 13, 269276.Google Scholar
Sagan, C., The Radiation Balance of Venus. JPL Technical Report 32–34, September 1960.Google Scholar
Kuzmin, A. & Clark, B. (1965). The polarization measurement and the brightness temperature of Venus at 10.6 cm wavelength. The Astronomical Journal, 43, 595617.Google Scholar
Öpik, E.J. (1961). The aeolosphere and atmosphere of Venus. Journal of Geophysical Research, 66(9), 28072819.Google Scholar
Hansen, J.E. & Matsushima, S. (1967). The atmosphere and surface temperature of Venus: a dust insulation model. The Astrophysical Journal, 150, 1139.Google Scholar
Samuelson, R.E. (1967). Greenhouse effect in semi-infinite scattering atmospheres: application to Venus. The Astrophysical Journal, 147, 782.Google Scholar
Danielson, R.E., Caldwell, J.J. & Larach, D.R. (1973). An inversion in the atmosphere of Titan. Icarus, 20(4), 437443.Google Scholar
Zellner, B. (1973). The polarization of Titan. Icarus, 18(4), 661664.CrossRefGoogle Scholar
Hunten, D. (Ed.), The Atmosphere of Titan: A Workshop held at Ames Research Center, July 1973, NASA SP-340.Google Scholar
Kliore, A., Cain, D.L., Levy, G.S., Eshleman, V.R., Fjeldbo, G. & Drake, F.D. (1965). Occultation experiment: results of the first direct measurement of Mars’s atmosphere and ionosphere. Science, 149(3689), 12431248.Google Scholar
Fjeldbo, G., Fjeldbo, W.C. & Eshleman, V.R. (1966). Models for the atmosphere of Mars based on the Mariner 4 occultation experiment. Journal of Geophysical Research, 71(9), 23072316.Google Scholar
Leighton, R.B. & Murray, B.C. (1966). Behavior of carbon dioxide and other volatiles on Mars. Science, 153(3732), 136144.Google Scholar
Manabe, S. & Strickler, R.F. (1964). Thermal equilibrium of the atmosphere with a convective adjustment. Journal of the Atmospheric Sciences, 21(4), 361385.Google Scholar
Restoring the Quality of Our Environment. Report of the Environment Pollution Panel, President’s Science Advisory Committee, The White House, November 1965.Google Scholar
Möller, F. (1963). On the influence of changes in the CO2 concentration in air on the radiation balance of the Earth’s surface and on the climate. Journal of Geophysical Research, 68(13), 38773886.Google Scholar
Manabe, S. & Wetherald, R.T. (1967). Thermal equilibrium of the atmosphere with a given distribution of relative humidity. Journal of Atmospheric Sciences, 24, 241259.Google Scholar
Lorenz, E.N. (1963). Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2), 130148.Google Scholar
Gleick, J., Chaos: Making a New Science, New York: Viking, 1987.Google Scholar
Manabe, S. & Bryan, K. (1969). Climate calculations with a combined ocean-atmosphere model. Journal of Atmospheric Science, 26, 786789.Google Scholar
Leovy, C. & Mintz, Y. (1969). Numerical simulation of the atmospheric circulation and climate of Mars. Journal of the Atmospheric Sciences, 26(6), 11671190.Google Scholar
Opik, E. (1965). Climatic change in cosmic perspective. Icarus, 4, 289307.Google Scholar
Eriksson, E., Air-ocean-icecap interactions in relation to climatic fluctuations and glaciation cycles. In Mitchell, J.M. (Ed.), Causes of Climatic Change. Meteorological Monographs, 8(30), Boston, MA: American Meteorological Society, 1968, pp. 6892.CrossRefGoogle Scholar
Fritz, S., The heating distribution in the atmosphere and climatic change. In Pfeffer, R. (Ed.), Dynamics of Climate: The Proceedings of a Conference on the Application of Numerical Integration Techniques to the Problem of the General Circulation, October 26–28, 1955, New York: Pergamon Press, 1955, pp. 96102.Google Scholar
Cobb, W.E. & Wells, H.J. (1970). The electrical conductivity of oceanic air and its correlation to global atmospheric pollution. Journal of the Atmospheric Sciences, 27(5), 814819.Google Scholar
Rasool, S.I. & Schneider, S.H. (1971). Atmospheric carbon dioxide and aerosols: effects of large increases on global climate. Science, 173(3992), 138141.Google Scholar
Peterson, T.C., Connolley, W.M & Fleck, J. (2008). The myth of the 1970s global cooling scientific consensus. Bulletin of the American Meteorological Society, 89(9), 13251337.Google Scholar
Goldblatt, C. & Watson, A.J. (2012). The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 370(1974), 41974216.Google Scholar
Komabayashi, M. (1967). Discrete equilibrium temperatures of a hypothetical planet with the atmosphere and the hydrosphere of a one component–two phase system under constant solar radiation. Journal of the Meteorological Society of Japan, 45, 137139.Google Scholar
Ingersoll, A.P. (1969). The runaway greenhouse: a history of water on Venus. Journal of the Atmospheric Sciences, 26(6), 11911198.2.0.CO;2>CrossRefGoogle Scholar
Rasool, S.I. & de Bergh, C. (1970). The runaway greenhouse and the accumulation of CO2 in the Venus atmosphere. Nature, 226, 10371039.Google Scholar
Lorenz, E. (1970). Climatic change as a mathematical problem, Journal of Applied Meteorology, 9, 325329.Google Scholar
Feagre, A. (1972). An intransitive model of the Earth–atmosphere–ocean system, Journal of Applied Meteorology, 11, 46.Google Scholar
Pollack, J.B. (1969). A nongray CO2-H2O greenhouse model of Venus. Icarus, 10(2), 314341.Google Scholar
Morrison, D., Cruikshank, D.P. & Murphy, R.E. (1972). Temperatures of Titan and the Galilean satellites at 20 microns. The Astrophysical Journal, 173, L143.Google Scholar
Gillett, F.C., Forrest, W.J. & Merrill, K.M. (1973). 8–13 micron observations of Titan. The Astrophysical Journal, 184, L93.Google Scholar
Gillett, F.C. (1975). Further observations of the 8–13 micron spectrum of Titan. The Astrophysical Journal, 201, L41L43.Google Scholar
Sagan, C. (1973). The greenhouse of Titan. Icarus, 18(4), 649656.Google Scholar
Low, F.J. & Rieke, G.H. (1974). Infrared photometry of Titan. The Astrophysical Journal, 190, L143.Google Scholar
Murray, B.C., Ward, W.R. & Yeung, S.C. (1973). Periodic insolation variations on Mars. Science, 180(4086), 638640.Google Scholar
Ward, W.R. (1974). Climatic variations on Mars: 1. Astronomical theory of insolation. Journal of Geophysical Research, 79(24), 33753386.Google Scholar
Byrne, S. (2009) The polar deposits of Mars. Annual Reviews of Earth and Planetary Science, 37, 8.18.26.Google Scholar
Sagan, C. and Mullen, G. (1972). Earth and Mars: evolution of atmospheres and surface temperatures. Science, 177(4043), 5256.Google Scholar
Henderson-Sellers, A. & Meadows, A.J. (1979). A simplified model for deriving planetary surface temperatures as a function of atmospheric chemical composition. Planetary and Space Science, 27(8), 10951099.Google Scholar
Henderson-Sellers, A. & Meadows, A.J. (1976). The evolution of the surface temperature of Mars. Planetary and Space Science, 24(1), 4144.Google Scholar
Dickinson, R.E. & Cicerone, R.J. (1986). Future global warming from atmospheric trace gases. Nature, 319, 109115.Google Scholar
Lovelock, J.E. (1965). A physical basis for life detection experiments. Nature, 207(997), 568570.Google Scholar
Hitchcock, D.R. & Lovelock, J.E. (1967). Life detection by atmospheric analysis. Icarus, 7(1), 149159.Google Scholar
Lovelock, J.E. (1972). Gaia as seen through the atmosphere. Atmospheric Environment, 6(8), 579580.Google Scholar
Lovelock, J.E. & Margulis, L. (1974). Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus: Series A (Stockholm: International Meteorological Institute), 26(1–2), 210.Google Scholar
Margulis, L. & Lovelock, J.E. (1974). Biological modulation of the Earth’s atmosphere. Icarus, 21(4), 471489.Google Scholar
Schwartzman, D., Life, Temperature and The Earth, New York: Columbia University Press, 1999.Google Scholar
Lovelock, J.E., The Ages of Gaia, New York: Norton, 1988.Google Scholar
Lovelock, J.E., Homage to Gaia, Oxford: Oxford University Press, 2001.Google Scholar
Hansen, J.E. & Hovenier, J. (1974). Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31(4), 11371160.Google Scholar
Gierasch, P.J. (1975). Meridional circulation and the maintenance of the Venus atmospheric rotation. Journal of the Atmospheric Sciences, 32(6), 10381044.Google Scholar
Fels, S.B. & Lindzen, R.S. (1974). The interaction of thermally excited gravity waves with mean flows. Geophysical and Astrophysical Fluid Dynamics, 6(2), 149191.Google Scholar
Schubert, G. & Whitehead, J.A. (1969). Moving flame experiment with liquid mercury: possible implications for the Venus atmosphere. Science, 163(3862), 7172.Google Scholar
Kálnay De Rivas, E. (1973). Numerical models of the circulation of the atmosphere of Venus. Journal of the Atmospheric Sciences, 30(5), 763779.Google Scholar
Pollack, J.B., Toon, O.B. & Boese, R. (1980). Greenhouse models of Venus’ high surface temperature, as constrained by Pioneer Venus measurements. Journal of Geophysical Research, 85, A13, 82238231.Google Scholar
McCrea, W. (1975). Ice ages and the Galaxy. Nature, 255, 607609.Google Scholar
Shapley, H. (1921). Note on a possible factor in changes of geological climate. Journal of Geology, 29, 502204.Google Scholar
Hays, J.D., Imbrie, J. & Shackleton, N.J. (1976). Variations in the Earth’s orbit: pacemaker of the ice ages. Science, 194(4270), 11211132.Google Scholar
Henderson-Sellers, A. (1979). Clouds and the long-term stability of the Earth’s atmosphere and climate. Nature, 279, 786788.Google Scholar
Rossow, W.B., Henderson-Sellers, A. & Weinreich, S.K. (1982). Cloud feedback: a stabilizing effect for the early Earth? Science, 217(4566), 12451247.Google Scholar
Hess, S.L., Henry, R.M., Leovy, C.B., Ryan, J.A. & Tillman, J.E. (1977). Meteorological results from the surface of Mars: Viking 1 and 2. Journal of Geophysical Research, 82(28), 45594574.Google Scholar
Nakamura, Y. & Anderson, D.L. (1979). Martian wind activity detected by a seismometer at Viking lander 2 site. Geophysical Research Letters, 6(6), 499502.Google Scholar
Lorenz, R.D. (1996). Martian surface wind speeds described by the Weibull distribution. Journal of Spacecraft and Rockets, 33(5), 754756.Google Scholar
Pollack, J.B., Leovy, C.B., Mintz, Y.H. & Van Camp, W. (1976). Winds on Mars during the Viking season: predictions based on a general circulation model with topography. Geophysical Research Letters, 3(8), 479482.Google Scholar
Wall, S.D. (1981). Analysis of condensates formed at the Viking 2 Lander site: the first winter. Icarus, 47(2), 173183.Google Scholar
Hansen, J., Johnson, D., Lacis, A., et al. (1981). Climate impact of increasing atmospheric carbon dioxide. Science, 213(4511), 957966.Google Scholar
Lindzen, R.S., Hou, A.Y. & Farrell, B.F. (1982). The role of convective model choice in calculating the climate impact of doubling CO2. Journal of the Atmospheric Sciences, 39(6), 11891205.Google Scholar
Schneider, S.H. & Thompson, S.L. (1980). Cosmic conclusions from climatic models: can they be justified? Icarus, 41(3), 456469.Google Scholar
Hoffert, M.I., Callegari, A.J., Hsieh, C.T. & Ziegler, W. (1981). Liquid water on Mars: an energy balance climate model for CO2/H2O atmospheres. Icarus, 47(1), 112129.Google Scholar
James, P.B. & North, G.R. (1982). The seasonal CO2 cycle on Mars: an application of an energy balance climate model. Journal of Geophysical Research: Solid Earth, 87(B12), 1027110283.Google Scholar
Paltridge, G.W. (1975). Global dynamics and climate: a system of minimum entropy exchange. Royal Meteorological Society, Quarterly Journal, 101, 475484.Google Scholar
Paltridge, G.W. (1978). The steady-state format of global climate. Quarterly Journal of the Royal Meteorological Society, 104(442), 927945.Google Scholar
Lorenz, E.N., Generation of available potential energy and the intensity of the general circulation. In Pfeffer, H. (ed.) Dynamics of Climate: Proceedings of a Conference. Symposium Publications Division, Pergamon Press, 1960.Google Scholar
Hoffert, M.I., Callegari, A.J., Hsieh, C.T. & Ziegler, W. (1981). Liquid water on Mars: an energy balance climate model for CO2/H2O atmospheres. Icarus, 47(1), 112129.Google Scholar
James, P.B. & North, G.R. (1982). The seasonal CO2 cycle on Mars: an application of an energy balance climate model. Journal of Geophysical Research: Solid Earth, 87(B12), 1027110283.Google Scholar
François, L.M., Walker, J.C.G. & Kuhn, W.R. (1990). A numerical simulation of climate changes during the obliquity cycle on Mars. Journal of Geophysical Research: Solid Earth, 95(B9), 1476114778.Google Scholar
Jaffe, W., Caldwell, J. & Owen, T. (1980). Radius and brightness temperature observations of Titan at centimeter wavelengths by the Very Large Array. The Astrophysical Journal, 242, 806811.Google Scholar
Lindal, G.F., Wood, G.E., Hotz, H.B., et al. (1983). The atmosphere of Titan: an analysis of the Voyager 1 radio occultation measurements. Icarus, 53(2), 348363. (Gunnar Fjeldbo at Stanford University, who had been part of the team executing the Mariner 4 experiment at Mars, had changed his name to Gunnar Lindal.)Google Scholar
Hunten, D.M.. In Gehrels, T. and Matthews, M. Shapley (eds.), Saturn, Tucson, AZ: University of Arizona Press, 1984.Google Scholar
Samuelson, R.E. (1983). Radiative equilibrium model of Titan’s atmosphere. Icarus, 53(2), 364387.Google Scholar
Pollack, J.B., Kasting, J.F., Richardson, S.M. & Poliakoff, K. (1987). The case for a wet, warm climate on early Mars. Icarus, 71(2), 203224.Google Scholar
Squyres, S.W. & Carr, M.H. (1986). Geomorphic evidence for the distribution of ground ice on Mars. Science, 231(4735), 249252.Google Scholar
Clow, G.D. (1987). Generation of liquid water on Mars through the melting of a dusty snowpack. Icarus, 72(1), 95127.Google Scholar
Carr, M.H. (1979). Formation of Martian flood features by release of water from confined aquifers. Journal of Geophysical Research, 84(13), 29953007.Google Scholar
Clifford, S.M. (1993). A model for the hydrologic and climatic behavior of water on Mars. Journal of Geophysical Research, 98(E6), 10973.CrossRefGoogle Scholar
Parker, T.J., Saunders, R.S. & Schneeberger, D.M. (1989). Transitional morphology in West Deuteronilus Mensae, Mars: implications for modification of the lowland/upland boundary. Icarus, 82(1), 111145.Google Scholar
Baker, V.R., Strom, R.G., Gulick, V.C., Kargel, J.S. & Komatsu, G. (1991). Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature, 352, 589594.Google Scholar
Carr, M. (1987). Water on Mars. Nature, 326(6108), 3035.Google Scholar
Carr, M., Water on Mars, Oxford: Oxford University Press, 1996.Google Scholar
Esposito, L.W. (1984). Sulfur dioxide: episodic injection shows evidence for active Venus volcanism. Science, 223(4640), 10721074.Google Scholar
Marov, M. & Grinspoon, D., The Planet Venus, New Haven, CT: Yale University Press, 1998.Google Scholar
Moroz, V. (2001). Spectra and spacecraft. Planetary and Space Science, 49, 173190.Google Scholar
Krasnopolsky, V.A. (2006). Chemical composition of Venus atmosphere and clouds: some unsolved problems. Planetary and Space Science, 54(13), 13521359.Google Scholar
Sagdeev, R.Z., et al. (1986). Overview of VEGA Venus balloon in situ meteorological measurements. Science, 231, 14111414.Google Scholar
Crisp, D., Ingersoll, A.P., Hildebrand, C.E. & Preston, R.A. (1990). VEGA balloon meteorological measurements. Advances in Space Research, 10(5), 109124.Google Scholar
Kasting, J.F., Pollack, J.B. & Ackerman, T.P. (1984). Response of Earth’s atmosphere to increases in solar flux and implications for loss of water from Venus. Icarus, 57(3), 335355.Google Scholar
Watson, A.J., Donahue, T.M. & Kuhn, W.R. (1984). Temperatures in a runaway greenhouse on the evolving Venus: implications for water loss. Earth and Planetary Science Letters, 68(1), 16.Google Scholar
Donahue, T.M., Hoffman, J.H, Hodges, R.R. & Watson, A.J. (1982). Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science, 216(4546), 630633.Google Scholar
Kasting, J.F. & Pollack, J.B. (1983). Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus, 53(3), 479508.Google Scholar
Grinspoon, D.H. (1987). Was Venus wet? Deuterium reconsidered. Science, 238(4834), 17021704.Google Scholar
Watson, A.J. & Lovelock, J.E. (1983). Biological homeostasis of the global environment: the parable of Daisyworld. Tellus B, 35(4), 284289.Google Scholar
Wood, A.J., Ackland, G.J., Dyke, J.G., Williams, H.T. & Lenton, T. M. (2008). Daisyworld: a review. Reviews of Geophysics, 46(1) RG1001.Google Scholar
Koeslag, J.H., Saunders, P.T. & Wessels, J.A. (1997). Glucose homeostasis with infinite gain: further lessons from the Daisyworld parable? Journal of Endocrinology, 154(2), 187192.Google Scholar
Walker, J.C.G., Hays, P.B. & Kasting, J.F. (1981). A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. Journal of Geophysical Research: Oceans, 86(C10), 97769782.Google Scholar
Turco, R.P., Toon, O.B., Ackerman, T.P., Pollack, J.B. & Sagan, C. (1983). Nuclear winter: global consequences of multiple nuclear explosions. Science, 222(4630), 12831292.Google Scholar
McKay, C.P., Pollack, J. B. & Courtin, R. (1989). The thermal structure of Titan’s atmosphere. Icarus, 80(1), 2353.Google Scholar
Lemmon, M.T., Karkoschka, E. & Tomasko, M. (1993). Titan’s rotation: surface feature observed. Icarus, 103, 329332.Google Scholar
McKay, C.P., Pollack, J.B. & Courtin, R. (1991). The greenhouse and antigreenhouse effects on Titan. Science, 253(5024), 11181121.Google Scholar
Thatcher, M., Speech to United Nations General Assembly (Global Environment), November 8, 1989.Google Scholar
Robinson, T.D. & Catling, D.C. (2014). Common 0.1-bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 1215.Google Scholar
Hillier, J., Helfenstein, P., Verbiscer, A., et al. (1990). Voyager disk-integrated photometry of Triton. Science, 250(4979), 419421.Google Scholar
Tyler, G.L., Sweetnam, D.N., Anderson, J.D., et al. (1989). Voyager radio science observations of Neptune and Triton. Science, 246(4936), 14661473.CrossRefGoogle ScholarPubMed
Hansen, C.J. & Paige, D.A. (1992). A thermal model for the seasonal nitrogen cycle on Triton. Icarus, 99(2), 273288.Google Scholar
Zalucha, A.M. & Michaels, T.I. (2013). A 3D general circulation model for Pluto and Triton with fixed volatile abundance and simplified surface forcing. Icarus, 223(2), 819831.Google Scholar
Stansberry, J.A., Pisano, D.J. & Yelle, R.V. (1996). The emissivity of volatile ices on Triton and Pluto. Planetary and Space Science, 44(9), 945955.Google Scholar
Stansberry, J.A. & Yelle, R.V. (1999). Emissivity and the fate of Pluto’s atmosphere. Icarus, 141(2), 299306.Google Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., et al. (1992). Irregular glacial interstadials recorded in a new Greenland ice core. Nature, 359(6393), 311313.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735), 429436.Google Scholar
Hong, S., Candelone, J.P., Patterson, C.C. & Boutron, C.F. (1994). Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science, 265(5180), 18411843.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., et al. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364(6434), 218220.Google Scholar
Alley, R.B. & MacAyeal, D.R. (1994). Ice-rafted debris associated with binge/purge oscillations of the Laurentide Ice Sheet. Paleoceanography, 9(4), 503511.Google Scholar
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29(2), 142152.Google Scholar
Rahmstorf, S. (1994). Rapid climate transitions in a coupled ocean–atmosphere model. Nature, 372(6501), 8285.CrossRefGoogle Scholar
Ganopolski, A., Rahmstorf, S., Petoukhov, V. & Claussen, M. (1998). Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature, 391(6665), 351356.Google Scholar
Ganopolski, A. & Rahmstorf, S. (2001). Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409(6817), 153158.Google Scholar
Yung, Y.L., Allen, M. & Pinto, J.P. (1984). Photochemistry of the atmosphere of Titan: comparison between model and observations. The Astrophysical Journal Supplement Series, 55, 465506.Google Scholar
Yung, Y.L. & Pinto, J.P. (1978). Primitive atmosphere and implications for the formation of channels on Mars. Nature, 273(5665), 730732.Google Scholar
Flasar, F.M. (1983). Oceans on Titan? Science, 221(4605), 5557.Google Scholar
Lunine, J.I., Stevenson, D.J. & Yung, Y.L. (1983). Ethane ocean on Titan. Science, 222(4629), 12291230.Google Scholar
Stevenson, D.J. & Potter, B.E. (1986). Titan’s latitudinal temperature distribution and seasonal cycle. Geophysical Research Letters, 13(2), 9396.Google Scholar
McKay, C.P., Pollack, J.B., Lunine, J.I. & Courtin, R. (1993). Coupled atmosphere–ocean models of Titan’s past. Icarus, 102(1), 8898.Google Scholar
Lunine, J.I. & Rizk, B. (1989). Thermal evolution of Titan’s atmosphere. Icarus, 80(2), 370389.Google Scholar
McKay, C.P., Toon, O.B. & Kasting, J.F. (1991). Making Mars habitable. Nature, 352(6335), 489496.Google Scholar
McKay, C.P. (1982). Terraforming Mars. Journal of the British Interplanetary Society, 35, 427433.Google Scholar
Dickinson, R.E. & Cicerone, R.J. (1986). Future global warming from atmospheric trace gases. Nature, 319, 109115.Google Scholar
Bougher, S.W., Hunten, D.M. & Phillips, R.J. (Eds.) (1997). Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment. Tucson, AZ: University of Arizona Press.Google Scholar
Esposito, L.W., Stofan, E.R. & Cravens, T.E. (Eds.) (2013). Exploring Venus as a Terrestrial Planet, AGU Geophysical Monograph 176. John Wiley & Sons.Google Scholar
Sleep, N.H., Zahnle, K.J., Kasting, J.F. & Morowitz, H.J. (1989). Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature, 342(6246), 139.Google Scholar
Abe, Y. & Matsui, T. (1988). Evolution of an impact-generated H2O–CO2 atmosphere and formation of a hot proto-ocean on Earth. Journal of the Atmospheric Sciences, 45(21), 30813101.Google Scholar
Zahnle, K.J., Kasting, J.F. & Pollack, J.B. (1988). Evolution of a steam atmosphere during Earth’s accretion. Icarus, 74(1), 6297.Google Scholar
Hamano, K., Abe, Y. & Genda, H. (2013). Emergence of two types of terrestrial planet on solidification of magma ocean. Nature, 497(7451), 607.Google Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Habitable zones around main sequence stars. Icarus, 101(1), 108128.Google Scholar
Pierazzo, E., Kring, D.A. & Melosh, H.J. (1998). Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases, Journal of Geophysical Research, 103, 2860728625.Google Scholar
Bullock, M.A. & Grinspoon, D.H. (1996). The stability of climate on Venus. Journal of Geophysical Research: Planets, 101(E3), 75217529.Google Scholar
Taylor, F. & Grinspoon, D. (2009). Climate evolution of Venus. Journal of Geophysical Research: Planets, 114(E9).Google Scholar
Hashimoto, G.L., Abe, Y. & Sasaki, S. (1997). CO2 amount on Venus constrained by a criterion of topographic‐greenhouse instability. Geophysical Research Letters, 24(3), 289292.Google Scholar
Klose, K.B., Wood, J.A. & Hashimoto, A. (1992). Mineral equilibria and the high radar reflectivity of Venus mountaintops. Journal of Geophysical Research: Planets, 97(E10), 1635316369.Google Scholar
Bullock, M.A. & Grinspoon, D.H. (2001). The recent evolution of climate on Venus. Icarus, 150(1), 1937.Google Scholar
Solomon, S.C., Bullock, M.A. & Grinspoon, D.H. (1999). Climate change as a regulator of tectonics on Venus. Science, 286(5437), 8790.Google Scholar
Anderson, F.S. & Smrekar, S.E. (1999). Tectonic effects of climate change on Venus. Journal of Geophysical Research: Planets, 104(E12), 3074330756.Google Scholar
Phillips, R. J., Bullock, M.A. & Hauck, S.A. (2001). Climate and interior coupled evolution on Venus. Geophysical Research Letters, 28(9), 17791782.Google Scholar
Hoffman, P.F., Kaufman, A.J., Halverson, G.P. & Schrag, D.P. (1998). A Neoproterozoic snowball Earth. Science, 281(5381), 13421346.Google Scholar
Hoffman, P.F. & Schrag, D.P. (2000). Snowball Earth. Scientific American, 282(1), 6875.Google Scholar
Kirschvink, J.L., Late Proterozoic low-latitude global glaciation: the snowball Earth. In Schopf, J. et al. (Eds.), The Proterozoid Biosphere: A Multidisciplinary Study, Cambridge: Cambridge University Press, 1992.Google Scholar
Lorenz, R.D., McKay, C.P. & Lunine, J.I. (1997). Photochemically driven collapse of Titan’s atmosphere. Science, 275(5300), 642644.Google Scholar
Lorenz, R.D., McKay, C.P. & Lunine, J.I. (1999). Analytic investigation of climate stability on Titan: sensitivity to volatile inventory. Planetary and Space Science, 47(12), 15031515.Google Scholar
Conway, E.M., Exploration and Engineering: The Jet Propulsion Laboratory and the Quest for Mars, Baltimore, MD: Johns Hopkins University Press, 2015.Google Scholar
Morton, O., Mapping Mars: Science, Imagination and the Birth of a World, New York: Picador, 2002.Google Scholar
Malin, M.C. & Edgett, K.S. (2000). Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288(5475), 23302335.Google Scholar
Del Genio, A.D., Zhou, W. & Eichler, T.P. (1993). Equatorial superrotation in a slowly rotating GCM: implications for Titan and Venus. Icarus, 101(1), 117.Google Scholar
Hourdin, F., Talagrand, O., Sadourny, R., et al. (1995). Numerical simulation of the general circulation of the atmosphere of Titan. Icarus, 117(2), 358374.Google Scholar
Forget, F. & Pierrehumbert, R.T. (1997). Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science, 278(5341), 12731276.Google Scholar
Yung, Y.L., Nair, H. & Gerstell, M.F. (1997). CO2 greenhouse in the early Martian atmosphere: SO2 inhibits condensation. Icarus, 130(1), 222224.Google Scholar
Head, J.W., Hiesinger, H., Ivanov, M.A., et al. (1999). Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science, 286(5447), 21342137.Google Scholar
Smith, D.E., Zuber, M.T. & Neumann, G.A. (2001). Seasonal variations of snow depth on Mars. Science, 294(5549), 21412146.Google Scholar
Ivanov, A.B. & Muhleman, D.O. (2001). Cloud reflection observations: results from the Mars Orbiter Laser Altimeter. Icarus, 154(1), 190206.Google Scholar
McKay, D.S., Gibson, E.K., Thomas-Keprta, K.L., et al. (1996). Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science, 273(5277), 924930.Google Scholar
Thomas-Keprta, K.L., Bazylinski, D.A., Kirschvink, J.L., et al. (2000). Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochimica et Cosmochimica Acta, 64(23), 40494081.Google Scholar
Connerney, J.E.P., Acuna, M.H., Wasilewski, P.J., et al. (1999). Magnetic lineations in the ancient crust of Mars. Science, 284(5415), 794798.Google Scholar
Allen, D.A. & Crawford, J.W. (1984). Cloud structure on the dark side of Venus. Nature, 307, 222224.Google Scholar
Crisp, D., Allen, D.A., Grinspoon, D.H. & Pollack, J.B. (1991). The dark side of Venus: near-infrared images and spectra from the Anglo-Australian Observatory. Science, 253(5025), 12631266.Google Scholar
Lemmon, M.T., Karkoschka, E. & Tomasko, M. (1993). Titan’s rotation: surface feature observed. Icarus, 103(2), 329332.Google Scholar
Smith, P.H., Lemmon, M.T., Lorenz, R.D., et al. (1996). Titan’s surface, revealed by HST imaging. Icarus, 119(2), 336349.Google Scholar
Lorenz, R.D., Lemmon, M.T., Smith, P.H. & Lockwood, G.W. (1999). Seasonal change on Titan observed with the Hubble Space Telescope WFPC-2. Icarus, 142(2), 391401.Google Scholar
Griffith, C.A., Owen, T., Miller, G.A. & Geballe, T. (1998). Transient clouds in Titan’s lower atmosphere. Nature, 395(6702), 575578.Google Scholar
Griffith, C.A., Hall, J.L. & Geballe, T.R. (2000). Detection of daily clouds on Titan. Science, 290(5491), 509513.Google Scholar
Lorenz, R. & Mitton, J., Lifting Titan’s Veil, Cambridge: Cambridge University Press, 2002.Google Scholar
Brown, M.E., Bouchez, A.H. & Griffith, C.A. (2002). Direct detection of variable tropospheric clouds near Titan’s south pole. Nature, 420(6917), 795797.Google Scholar
Roe, H.G., De Pater, I., Macintosh, B.A. & McKay, C.P. (2002). Titan’s clouds from Gemini and Keck adaptive optics imaging. The Astrophysical Journal, 581(2), 1399.Google Scholar
Lorenz, R.D., Griffith, C.A., Lunine, J.I., McKay, C.P. & Rennò, N.O. (2005). Convective plumes and the scarcity of Titan’s clouds. Geophysical Research Letters, 32(1) L01201.Google Scholar
Roe, H.G., Brown, M.E., Schaller, E.L., Bouchez, A.H. & Trujillo, C.A. (2005). Geographic control of Titan’s mid-latitude clouds. Science, 310(5747), 477479.Google Scholar
Harland, D.M. & Lorenz, R.D., Space Systems Failures, Springer, 2006.Google Scholar
Boynton, W.V., Bailey, S.H., Hamara, D.K, et al. (2001). Thermal and evolved gas analyzer: part of the Mars volatile and climate surveyor integrated payload. Journal of Geophysical Research: Planets, 106(E8), 1768317698.Google Scholar
Nye, J.F., Durham, W.B., Schenk, P.M. & Moore, J.M. (2000). The instability of a south polar cap on Mars composed of carbon dioxide. Icarus, 144(2), 449455.Google Scholar
Lorenz, R.D., Young, E.F. & Lemmon, M.T. (2001). Titan’s smile and collar: HST observations of seasonal change 1994–2000. Geophysical Research Letters, 28(23), 44534456.Google Scholar
Lorenz, R.D., Lemmon, M.T. & Smith, P.H. (2006). Seasonal evolution of Titan’s dark polar hood: midsummer disappearance observed by the Hubble Space Telescope. Monthly Notices of the Royal Astronomical Society, 369(4), 16831687.Google Scholar
Yung, Y.L. (1987). An update of nitrile photochemistry on Titan. Icarus, 72(2), 468472.Google Scholar
Samuelson, R.E., Nath, N.R. & Borysow, A. (1997). Gaseous abundances and methane supersaturation in Titan’s troposphere. Planetary and Space Science, 45(8), 959980.Google Scholar
Samuelson, R.E. & Mayo, L.A. (1997). Steady-state model for methane condensation in Titan’s troposphere. Planetary and Space Science, 45(8), 949958.Google Scholar
Lorenz, R.D., Lunine, J.I., Withers, P.G. & McKay, C.P. (2001). Titan, Mars and Earth: entropy production by latitudinal heat transport. Geophysical Research Letters, 28(3), 415418.Google Scholar
Kleidon, A. & Lorenz, R.D.. Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Springer Science & Business Media, 2005.Google Scholar
Dewar, R. (2003). Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. Journal of Physics A: Mathematical and General, 36(3), 631.Google Scholar
Goody, R. (2007). Maximum entropy production in climate theory. Journal of the Atmospheric Sciences, 64(7), 27352739.Google Scholar
Jupp, T.E. & Cox, P.M. (2010). MEP and planetary climates: insights from a two-box climate model containing atmospheric dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1545), 13551365.Google Scholar
Shimokawa, S. & Ozawa, H. (2001). On the thermodynamics of the oceanic general circulation: entropy increase rate of an open dissipative system and its surroundings. Tellus A, 53(2), 266277.Google Scholar
Hoffman, N. (2000). White Mars: a new model for Mars’ surface and atmosphere based on CO2. Icarus, 146(2), 326342.Google Scholar
Lanagan, P.D., McEwen, A.S., Keszthelyi, L.P. & Thordarson, T. (2001). Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times. Geophysical Research Letters, 28(12), 23652367.Google Scholar
Malin, M.C., Caplinger, M.A. & Davis, S.D. (2001). Observational evidence for an active surface reservoir of solid carbon dioxide on Mars. Science, 294(5549), 21462148.Google Scholar
Byrne, S. & Ingersoll, A.P. (2003). A sublimation model for Martian south polar ice features. Science, 299(5609), 10511053.Google Scholar
Byrne, S. (2009). The polar deposits of Mars. Annual Review of Earth and Planetary Sciences, 37, 535560.Google Scholar
Boynton, W.V., et al. (2002). Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science, 297(5578), 8185.Google Scholar
Feldman, W.C., Boynton, W.V., Tokar, R.L., et al. (2002). Global distribution of neutrons from Mars: results from Mars Odyssey. Science, 297(5578), 7578.Google Scholar
Pillinger, C.T., with Sims, M.R. & Clemmet, S., The Guide to Beagle 2. London: Faber and Faber, 2003.Google Scholar
Head, J.W., Neukum, G., Jaumann, R., et al. (2005). Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature, 434(7031), 346351.Google Scholar
Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. (2004). Detection of methane in the atmosphere of Mars. Science, 306(5702), 17581761.Google Scholar
Mumma, M.J., Villanueva, G.L., Novak, R.E., et al. (2009). Strong release of methane on Mars in northern summer 2003. Science, 323(5917), 10411045.Google Scholar
Krasnopolsky, V.A., Maillard, J.P. & Owen, T.C. (2004). Detection of methane in the Martian atmosphere: evidence for life? Icarus, 172(2), 537547.Google Scholar
Zahnle, K., Freedman, R.S. & Catling, D.C. (2011). Is there methane on Mars? Icarus, 212(2), 493503.Google Scholar
Lefevre, F. & Forget, F. (2009). Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature, 460(7256), 720723.Google Scholar
Pavlov, A.A., Kasting, J.F., Brown, L.L., Rages, K.A. & Freedman, R. (2000). Greenhouse warming by CH4 in the atmosphere of early Earth. Journal of Geophysical Research: Planets, 105(E5), 1198111990.Google Scholar
Trainer, M.G., Pavlov, A.A., DeWitt, H.L., et al. (2006). Organic haze on Titan and the early Earth. Proceedings of the National Academy of Sciences, 103(48), 1803518042.Google Scholar
Kass, D.M., Schofield, J.T., Michaels, T.I., et al. (2003). Analysis of atmospheric mesoscale models for entry, descent, and landing. Journal of Geophysical Research: Planets, 108(E12).Google Scholar
Squyres, S.W., Arvidson, R.E., Bell, J.F., et al. (2004). The Opportunity Rover’s Athena science investigation at Meridiani Planum, Mars. Science, 306(5702), 16981703.Google Scholar
Morris, R.V., Ruff, S.W., Gellert, R., et al. (2010). Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science, 329(5990), 421424.Google Scholar
Ruff, S.W., Farmer, J.D., Calvin, W.M., et al. (2011). Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. Journal of Geophysical Research: Planets, 116(E7), doi:10.1029/2010JE003767.Google Scholar
Lorenz, R.D. (2009). Power law of dust devil diameters on Earth and Mars. Icarus, 203, 683684.Google Scholar
Lorenz, R.D. & Reiss, D. (2014). Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus, 248, 162164.Google Scholar
Lemmon, M.T., Wolff, M.J., Bell, J.F., et al. (2015). Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus, 251, 96111.Google Scholar
Lorenz, R.D., Lemmon, M.T. & Smith, P.H. (2006). Seasonal evolution of Titan’s dark polar hood: midsummer disappearance observed by the Hubble Space Telescope. Monthly Notices of the Royal Astronomical Society, 369(4), 16831687.Google Scholar
Lorenz, R.D., Smith, P.H. & Lemmon, M.T. (2004). Seasonal change in Titan’s haze 1992–2002 from Hubble Space Telescope observations. Geophysical Research Letters, 31(10).Google Scholar
Marten, A., Hidayat, T., Biraud, Y. & Moreno, R. (2002). New millimeter heterodyne observations of Titan: vertical distributions of nitriles HCN, HC3N, CH3CN, and the isotopic ratio 15N/14N in its atmosphere. Icarus, 158(2), 532544.Google Scholar
Rannou, P., Hourdin, F. & McKay, C.P. (2002). A wind origin for Titan’s haze structure. Nature, 418(6900), 853856.Google Scholar
Kostiuk, T., Livengood, T.A., Hewagama, T., et al. (2005). Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion. Geophysical Research Letters, 32(22), doi:10.1029/2005GL023897.Google Scholar
Tokano, T. & Neubauer, F.M. (2002). Tidal winds on Titan caused by Saturn. Icarus, 158(2), 499515.Google Scholar
Tokano, T., Molina-Cuberos, G.J., Lammer, H. & Stumptner, W. (2001). Modelling of thunderclouds and lightning generation on Titan. Planetary and Space Science, 49(6), 539560.Google Scholar
Lorenz, R.D. (2000). The weather on Titan. Science, 290(5491), 467468.Google Scholar
Lorenz, R.D., Griffith, C.A., Lunine, J.I., McKay, C.P. & Rennò, N.O. (2005). Convective plumes and the scarcity of Titan’s clouds. Geophysical Research Letters, 32(1), doi:10.1029/2004GL021415/.Google Scholar
Awal, M. & Lunine, J.I. (1994). Moist convective clouds in Titan’s atmosphere. Geophysical Research Letters, 21(23), 24912494.Google Scholar
Ou, H.W. (2001). Possible bounds on the Earth’s surface temperature: from the perspective of a conceptual global-mean model. Journal of Climate, 14(13), 29762988.Google Scholar
Rosing, M.T., Bird, D.K., Sleep, N.H. & Bjerrum, C.J. (2010). No climate paradox under the faint early Sun. Nature, 464(7289), 744747.Google Scholar
Goldblatt, C. & Zahnle, K. (2011). Faint young Sun paradox remains. Nature, 474(7349), E1.Google Scholar
Goldblatt, C. & Zahnle, K. (2011). Clouds and the faint young Sun paradox. Climate of the Past, 7, 203220.Google Scholar
Pierrehumbert, R.T. (1995). Thermostats, radiator fins, and the local runaway greenhouse. Journal of the Atmospheric Sciences, 52(10), 17841806.Google Scholar
Lindzen, R.S., Chou, M.D. & Hou, A.Y. (2001). Does the Earth have an adaptive infrared iris? Bulletin of the American Meteorological Society, 82(3), 417432.Google Scholar
Rondanelli, R. & Lindzen, R.S. (2010). Can thin cirrus clouds in the tropics provide a solution to the faint young Sun paradox? Journal of Geophysical Research: Atmospheres, 115(D2).Google Scholar
Hartmann, D.L. & Michelsen, M.L. (2002). No evidence for iris. Bulletin of the American Meteorological Society, 83(2), 249254.Google Scholar
Roderick, M.L. & Farquhar, G.D. (2002). The cause of decreased pan evaporation over the past 50 years. Science, 298(5597), 14101411.Google Scholar
Ohmura, A. & Wild, M. (2002). Is the hydrological cycle accelerating? Science, 298, 13451346.Google Scholar
Brutsaert, W. & Parlange, M.B. (1998). Hydrologic cycle explains the evaporation paradox. Nature, 396(6706), 30.Google Scholar
Travis, D.J., Carleton, A.M. & Lauritsen, R.G. (2002). Climatology: contrails reduce daily temperature range. Nature, 418(6898), 601601.Google Scholar
Kalkstein, A.J. & Balling, R.C. (2004). Impact of unusually clear weather on United States daily temperature range following 9/11/2001. Climate Research, 26(1), 14.Google Scholar
Dietmüller, S., Ponater, M., Sausen, R., Hoinka, K.P. & Pechtl, S. (2008). Contrails, natural clouds, and diurnal temperature range. Journal of Climate, 21(19), 50615075.Google Scholar
Porco, C.C., Baker, E., Barbara, J., et al. (2005). Imaging of Titan from the Cassini spacecraft. Nature, 434(7030), 159168.Google Scholar
Turtle, E.P., Perry, J.E., McEwen, A.S., et al. (2009). Cassini imaging of Titan’s high‐latitude lakes, clouds, and south‐polar surface changes. Geophysical Research Letters, 36(2), doi/10.1029/2008GL036186.Google Scholar
Griffith, C.A., Penteado, P., Baines, K., et al. (2005). The evolution of Titan’s mid-latitude clouds. Science, 310(5747), 474477.Google Scholar
Elachi, C., et al. (2005). Cassini radar views the surface of Titan. Science, 308(5724), 970974.Google Scholar
Lorenz, R.D., Lopes, R.M., Paganelli, F., et al. (2008). Fluvial channels on Titan: initial Cassini RADAR observations. Planetary and Space Science, 56(8), 11321144.Google Scholar
Lorenz, R. and Mitton, J., Titan Unveiled, Princeton University Press, 2008 (revised edition 2010).Google Scholar
Tomasko, M.G., Archinal, B. & Becker, T. (2005). Rain, winds and haze during the Huygens probe’s descent to Titan’s surface. Nature, 438(7069), 765778.Google Scholar
Niemann, H.B. et al. (2010). Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. Journal of Geophysical Research, 115, E12006, doi:10.1029/2010JE003659.Google Scholar
Lorenz, R.D., Niemann, H., Harpold, D. & Zarnecki, J. (2006). Titan’s damp ground: constraints on Titan surface thermal properties from the temperature evolution of the Huygens GCMS inlet. Meteoritics and Planetary Science, 41, 14051414.Google Scholar
Lorenz, R.D. et al. (2014). Silence on Shangri-La: detection of Titan surface volatiles by acoustic absorption. Planetary and Space Science, 90, 7280.Google Scholar
Karkoschka, E. & Tomasko, M.G. (2009). Rain and dewdrops on Titan based on in situ imaging. Icarus, 199(2), 442448.Google Scholar
Kouvaris, L.C. & Flasar, F.M. (1991). Phase equilibrium of methane and nitrogen at low temperatures: Application to Titan. Icarus, 91(1), 112124.Google Scholar
Lorenz, R.D. & Lunine, J.I. (2002). Titan’s snowline. Icarus, 158(2), 557559.Google Scholar
Lorenz, R.D., Wall, S., Radebaugh, J., et al. (2006). The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science, 312(5774), 724727.Google Scholar
Rannou, P., Montmessin, F., Hourdin, F. & Lebonnois, S. (2006). The latitudinal distribution of clouds on Titan. Science, 311 (5758), 201205.Google Scholar
Mitchell, J. (2008). The drying of Titan’s dunes: Titan’s methane hydrology and its impact on atmospheric circulation. Journal of Geophysical Research: Planets, 113(E8).Google Scholar
Tokano, T. & Neubauer, F. (2002). Tidal winds on Titan caused by Saturn. Icarus,158, 499515.Google Scholar
Radebaugh, J. et al. (2008). Dunes on Titan observed by Cassini radar. Icarus, 194, 690703.Google Scholar
Radebaugh, J. et al. (2010). Linear dunes on Titan and Earth: initial remote sensing comparisons. Geomorphology, 121, 122132.Google Scholar
Lorenz, R.D. & Radebaugh, J. (2009). Global pattern of Titan’s dunes: radar survey from the Cassini Prime Mission. Geophysical Research Letters, 36, L03202, doi:10.1029/2008GL036850, 2009.Google Scholar
Tokano, T. (2008). Dune-forming winds on Titan and the influence of topography. Icarus, 194, 243262.Google Scholar
Wald, C. (2009). In dune map, Titan’s winds seem to blow backward. Science, 323, 1418.Google Scholar
Smrekar, S.E., Stofan, E.R., Mueller, N., et al. (2010). Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science, 328(5978), 605608.Google Scholar
Marcq, E., Bertaux, J.L., Montmessin, F. & Belyaev, D. (2013). Variations of sulfur dioxide at the cloud top of Venus’s dynamic atmosphere. Nature Geoscience, 6(1), 2528.Google Scholar
Kaltenegger, L., Henning, W.G. & Sasselov, D.D. (2010). Detecting volcanism on extrasolar planets. The Astronomical Journal, 140(5), 1370.Google Scholar
Tian, F., Claire, M.W., Haqq-Misra, J.D., et al. (2010). Photochemical and climate consequences of sulfur outgassing on early Mars. Earth and Planetary Science Letters, 295(3), 412418.Google Scholar
Halevy, I., Zuber, M.T. & Schrag, D.P. (2007). A sulfur dioxide climate feedback on early Mars. Science, 318(5858), 19031907.Google Scholar
Johnson, S.S., Mischna, M.A., Grove, T.L. & Zuber, M.T. (2008). Sulfur‐induced greenhouse warming on early Mars. Journal of Geophysical Research: Planets, 113(E8).Google Scholar
Kerber, L., Forget, F. & Wordsworth, R. (2015). Sulfur in the early Martian atmosphere revisited: experiments with a 3-D global climate model. Icarus, 261, 133148.Google Scholar
Ueno, Y., Johnson, M.S., Danielache, S.O., et al. (2009). Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young Sun paradox. Proceedings of the National Academy of Sciences, 106(35), 1478414789.Google Scholar
Goldblatt, C., Claire, M.W., Lenton, T.M., et al. (2009). Nitrogen-enhanced greenhouse warming on early Earth. Nature Geoscience, 2(12), 891896.Google Scholar
Som, S.M., Catling, D.C., Harnmeijer, J.P., Polivka, P.M. & Buick, R. (2012). Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nature, 484(7394), 359362.Google Scholar
Kavenagh, L. & Goldblatt, C. (2015). Using raindrops to constrain past atmospheric density. Earth and Planetary Science Letters, 413, 5158.Google Scholar
Som, S.M., Buick, R., Hagadorn, J.W., et al. (2016). Earth’s air pressure 2.7 billion years ago constrained to less than half of modern levels. Nature Geoscience, 9(6), 448452.Google Scholar
Charnay, B., Forget, F., Tobie, G., Sotin, C. & Wordsworth, R. (2014). Titan’s past and future: 3D modeling of a pure nitrogen atmosphere and geological implications. Icarus, 241, 269279.Google Scholar
Pauluis, O., Balaji, V. & Held, I.M. (2000). Frictional dissipation in a precipitating atmosphere. Journal of the Atmospheric Sciences, 57(7), 989994.Google Scholar
Pauluis, O. & Dias, J. (2012). Satellite estimates of precipitation-induced dissipation in the atmosphere. Science, 335(6071), 953956.Google Scholar
Goodman, J. (2009). Thermodynamics of atmospheric circulation on hot Jupiters. The Astrophysical Journal, 693(2), 1645.Google Scholar
Emanuel, K.A. (1999). Thermodynamic control of hurricane intensity. Nature, 401(6754), 665669.Google Scholar
Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436(7051), 686688.Google Scholar
Sprague, A.L. et al. (2007). Mars’ atmospheric argon: tracer for understanding Martian atmospheric circulation and dynamics. Journal of Geophysical Research: Planets, 112(E3).Google Scholar
Lian, Y., Richardson, M.I., Newman, C.E., et al. (2012). The Ashima/MIT Mars GCM and argon in the Martian atmosphere. Icarus, 218(2), 10431070.Google Scholar
Colaprete, A., Barnes, J.R., Haberle, R.M., et al. (2005). Albedo of the south pole on Mars determined by topographic forcing of atmosphere dynamics. Nature, 435(7039), 184188.Google Scholar
Forget, F., Haberle, R.M., Montmessin, F., Levrard, B. & Head, J.W. (2006). Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science, 311(5759), 368371.Google Scholar
Madeleine, J.B., Forget, F., Head, J.W., et al. (2009). Amazonian northern mid-latitude glaciation on Mars: a proposed climate scenario. Icarus, 203(2), 390405.Google Scholar
Head, J.W., Neukum, G., Jaumann, R., et al. (2005). Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature, 434(7031), 346351.Google Scholar
Bridges, N.T., Ayoub, F., Avouac, J.P., et al. (2012). Earth-like sand fluxes on Mars. Nature, 485(7398), 339342.Google Scholar
Lorenz, R.D. & Zimbelman, J., Dune Worlds: How Wind-Blown Sand Shapes Planetary Landscapes, Praxis-Springer, 2014.Google Scholar
Piqueux, S., Byrne, S. & Richardson, M.I. (2003). Sublimation of Mars’s southern seasonal CO2 ice cap and the formation of spiders. Journal of Geophysical Research: Planets, 108(E8).Google Scholar
Kieffer, H.H., Christensen, P.R. & Titus, T.N. (2006). CO2 jets formed by sublimation beneath translucent slab ice in Mars’ seasonal south polar ice cap. Nature, 442(7104), 793796.Google Scholar
Laskar, J., Levrard, B. & Mustard, J.F. (2002). Orbital forcing of the Martian polar layered deposits. Nature, 419(6905), 375377.Google Scholar
Fishbaugh, K.E. & Hvidberg, C.S. (2006). Martian north polar layered deposits stratigraphy: implications for accumulation rates and flow. Journal of Geophysical Research: Planets, 111(E6).Google Scholar
Hvidberg, C.S., Fishbaugh, K.E., Winstrup, M., et al. (2012). Reading the climate record of the Martian polar layered deposits. Icarus, 221(1), 405419.Google Scholar
Milkovich, S.M. & Head, J.W. (2005). North polar cap of Mars: polar layered deposit characterization and identification of a fundamental climate signal. Journal of Geophysical Research: Planets, 110(E1).Google Scholar
Schorghofer, N. (2008). Temperature response of Mars to Milankovitch cycles. Geophysical Research Letters, 35(18).Google Scholar
Schorghofer, N. (2007). Dynamics of ice ages on Mars. Nature, 449(7159), 192194.Google Scholar
Levrard, B., Forget, F., Montmessin, F. & Laskar, J. (2007). Recent formation and evolution of northern Martian polar layered deposits as inferred from a Global Climate Model. Journal of Geophysical Research: Planets, 112(E6).Google Scholar
Perron, J.T. & Huybers, P. (2009). Is there an orbital signal in the polar layered deposits on Mars? Geology, 37(2), 155158.Google Scholar
Lisiecki, L.E. & Lisiecki, P.A. (2002). Application of dynamic programming to the correlation of paleoclimate records. Paleoceanography, 17(4), 1.Google Scholar
Lisiecki, L.E. & Raymo, M.E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1).Google Scholar
Imbrie, J. & Imbrie, J.Z. (1980). Modeling the climatic response to orbital variations. Science, 207(4434), 943953.Google Scholar
Naish, T., Powell, R., Levy, R., et al. (2009). Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458(7236), 322328.Google Scholar
Brierley, C.M. & Fedorov, A.V. (2010). Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene‐Pleistocene climate evolution. Paleoceanography, 25(2).Google Scholar
Boynton, W.V., Ming, D.W., Kounaves, S.P., et al. (2009). Evidence for calcium carbonate at the Mars Phoenix landing site. Science, 325(5936), 6164.Google Scholar
Smith, P.H., Tamppari, L.K., Arvidson, R.E., et al. (2009). H2O at the Phoenix landing site. Science, 325(5936), 5861.Google Scholar
Kessler, A., Martian Summer, Open Road Media, 2011.Google Scholar
Hecht, M.H., Kounaves, S.P., Quinn, R.C., et al. (2009). Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science, 325(5936), 6467.Google Scholar
Kounaves, S.P., Chaniotakis, N.A., Chevrier, V.F., et al. (2014). Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications. Icarus, 232, 226231.Google Scholar
Zent, A.P., Hecht, M.H., Cobos, D.R., et al. (2010). Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. Journal of Geophysical Research: Planets, 115(E3).Google Scholar
Holstein‐Rathlou, C., Gunnlaugsson, H.P., Merrison, J.P., et al. (2010). Winds at the Phoenix landing site. Journal of Geophysical Research: Planets, 115(E5).Google Scholar
Davy, R., Davis, J.A., Taylor, P.A., et al. (2010). Initial analysis of air temperature and related data from the Phoenix MET station and their use in estimating turbulent heat fluxes. Journal of Geophysical Research: Planets, 115(E3).Google Scholar
Ellehoj, M.D., Gunnlaugsson, H.P., Taylor, P.A., et al. (2010). Convective vortices and dust devils at the Phoenix Mars mission landing site. Journal of Geophysical Research: Planets, 115(E4).Google Scholar
Whiteway, J.A., Komguem, L., Dickinson, C., et al. (2009). Mars water-ice clouds and precipitation. Science, 325(5936), 6870.Google Scholar
Spiga, A., Hinson, D.P., Madeleine, J.B., et al. (2017). Snow precipitation on Mars driven by cloud-induced night-time convection. Nature Geoscience, 10(9), 652657.Google Scholar
Imamura, T., Higuchi, T., Maejima, Y., et al. (2014). Inverse insolation dependence of Venus’ cloud-level convection. Icarus, 228, 181188.Google Scholar
Aharonson, O., Hayes, A., Lunine, J.I., Lorenz, R.D. & Elachi, C. (2009). An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing. Nature Geoscience, 2, 851854.Google Scholar
Barnes, J.W., Bow, J., Schwartz, J., et al. (2011). Organic sedimentary deposits in Titan’s dry lakebeds: Probable evaporite. Icarus, 216(1), 136140.Google Scholar
MacKenzie, S.M., Barnes, J.W., Sotin, C., et al. (2014). Evidence of Titan’s climate history from evaporite distribution. Icarus, 243, 191207.Google Scholar
Hayes, A.G., Aharonson, O., Lunine, J.I., et al. and the Cassini RADAR Team (2011). Transient surface liquid in Titan’s polar regions from Cassini. Icarus, 211, 655671.Google Scholar
Tokano, T. & Neubauer, F.M. (2005). Wind‐induced seasonal angular momentum exchange at Titan’s surface and its influence on Titan’s length‐of‐day. Geophysical Research Letters, 32(24), doi:10.1029/2005GL024456.Google Scholar
Lorenz, R.D., Stiles, B.W., Kirk, R.L., et al. (2008). Titan’s rotation reveals an internal ocean and changing zonal winds. Science, 319(5870), 16491651.Google Scholar
Lambeck, K., The Earth’s Variable Rotation: Geophysical Causes and Consequences. Cambridge: Cambridge University Press, 2005.Google Scholar
Defraigne, P., Viron, O.D., Dehant, V., Van Hoolst, T. & Hourdin, F. (2000). Mars rotation variations induced by atmosphere and ice caps. Journal of Geophysical Research: Planets, 105(E10), 2456324570.Google Scholar
Folkner, W.M., Yoder, C.F., Yuan, D.N., Standish, E.M. & Preston, R.A. (1997). Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science, 278(5344), 17491752.Google Scholar
Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Flasar, F.M. & Nixon, C.A. (2008). Observation of a tilt of Titan’s middle-atmospheric superrotation. Icarus, 197(2), 549555.Google Scholar
Tokano, T. (2010). Westward rotation of the atmospheric angular momentum vector of Titan by thermal tides. Planetary and Space Science, 58(5), 814829.Google Scholar
Lorenz, R.D., Claudin, P., Andreotti, B., Radebaugh, J. & Tokano, T. (2010). A 3km atmospheric boundary layer on Titan indicated by dune spacing and Huygens data. Icarus, 205(2), 719721.Google Scholar
Tokano, T., Ferri, F., Colombatti, G., Mäkinen, T. & Fulchignoni, M. (2006). Titan’s planetary boundary layer structure at the Huygens landing site. Journal of Geophysical Research: Planets, 111(E8), doi:10.1029/2006JE002704.Google Scholar
Charnay, B. & Lebonnois, S. (2012). Two boundary layers in Titan’s lower troposphere inferred from a climate model. Nature Geoscience, 5(2), 106109.Google Scholar
Ewing, R.C., Hayes, A.G. & Lucas, A. (2015). Sand dune patterns on Titan controlled by long-term climate cycles. Nature Geoscience, 8(1), 1519.Google Scholar
Lora, J.M., Lunine, J.I., Russell, J.L. & Hayes, A.G. (2014). Simulations of Titan’s paleoclimate. Icarus, 243, 264273.Google Scholar
Lora, J.M. & Mitchell, J.L. (2015). Titan’s asymmetric lake distribution mediated by methane transport due to atmospheric eddies. Geophysical Research Letters, 42(15), 62136220.Google Scholar
Turtle, E.P., Perry, J.E. & Hayes, A.G. (2011). Rapid and extensive surface changes near Titan’s equator: evidence of April showers. Science, 331(6023), 14141417.Google Scholar
Mitchell, J.L., Ádámkovics, M., Caballero, R. & Turtle, E.P. (2011). Locally enhanced precipitation organized by planetary-scale waves on Titan. Nature Geoscience, 4(9), 589592.Google Scholar
Cottini, V., Nixon, C.A., Jennings, D.E., et al. (2012). Spatial and temporal variations in Titan’s surface temperatures from Cassini CIRS observations. Planetary and Space Science, 60(1), 6271.Google Scholar
Jennings, D.E., Cottini, V., Nixon, C.A., et al. (2016). Surface temperatures on Titan during northern winter and spring. The Astrophysical Journal Letters, L17(816), 20418205.Google Scholar
West, R.A., Balloch, J., Dumont, P., et al. (2011). The evolution of Titan’s detached haze layer near equinox in 2009. Geophysical Research Letters, 38(6), doi/10.1029/2011GL046843.Google Scholar
West, R. A., Del Genio, A.D., Barbara, J.M., et al. (2015). Cassini Imaging Science Subsystem observations of Titan’s south polar cloud. Icarus, 270, 399408.Google Scholar
de Kok, R.J., Teanby, N.A., Maltagliati, L., Irwin, P.G. & Vinatier, S. (2014). HCN ice in Titan’s high-altitude southern polar cloud. Nature, 514(7520), 6567.Google Scholar
Kite, E.S., Williams, J.P., Lucas, A. & Aharonson, O. (2014). Low palaeopressure of the Martian atmosphere estimated from the size distribution of ancient craters. Nature Geoscience, 7(5), 335339.Google Scholar
Engel, S., Lunine, J.I. & Hartmann, W.K. (1995). Cratering on Titan and implications for Titan’s atmospheric history. Planetary and Space Science, 43(9), 10591066.Google Scholar
Ivanov, B.A., Basilevsky, A.T. & Neukum, G. (1997). Atmospheric entry of large meteoroids: implication to Titan. Planetary and Space Science, 45(8), 9931007.Google Scholar
Kahn, R. (1982). Deducing the age of the dense Venus atmosphere. Icarus, 49(1), 7185.Google Scholar
Manga, M., Patel, A., Dufek, J. & Kite, E.S. (2012). Wet surface and dense atmosphere on early Mars suggested by the bomb sag at Home Plate, Mars. Geophysical Research Letters, 39(1), doi:10.1029/2011GL050192.Google Scholar
Ramirez, R.M., Kopparapu, R., Zugger, M.E., et al. (2014). Warming early Mars with CO2 and H2. Nature Geoscience, 7(1), 5963.Google Scholar
Pierrehumbert, R. & Gaidos, E. (2011). Hydrogen greenhouse planets beyond the habitable zone. The Astrophysical Journal Letters, 734(1), L13.Google Scholar
Stevenson, D.J. (1999). Life-sustaining planets in interstellar space? Nature, 400(6739), 3232.Google Scholar
Allison, M., Godfrey, D.A. & Beebe, R.F. (1990). A wave dynamical interpretation of Saturn’s polar hexagon. Science, 247(4946), 10611063.Google Scholar
Morales-Juberías, R., Sayanagi, K.M., Simon, A.A., Fletcher, L.N. & Cosentino, R.G. (2015). Meandering shallow atmospheric jet as a model of Saturnʼs north-polar hexagon. The Astrophysical Journal Letters, 806(1), L18.Google Scholar
Fletcher, L.N., Hesman, B.E., Irwin, P.G, et al. (2011). Thermal structure and dynamics of Saturn’s northern springtime disturbance. Science, 332(6036), 14131417.Google Scholar
Fischer, G., Kurth, W.S., Gurnett, D.A., et al. (2011). A giant thunderstorm on Saturn. Nature, 475(7354), 7577.Google Scholar
Spencer, J.R. & Denk, T. (2010). Formation of Iapetus’ extreme albedo dichotomy by exogenically triggered thermal ice migration. Science, 327(5964), 432435.Google Scholar
Ackland, G.J., Clark, M.A. & Lenton, T.M. (2003). Catastrophic desert formation in Daisyworld. Journal of Theoretical Biology, 223(1), 3944.Google Scholar
Turing, A.M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 237(641), 3772.Google Scholar
Earle, A.M., Binzel, R.P., Young, L.A., et al. (2018). Albedo matters: understanding runaway albedo variations on Pluto. Icarus, 303, 19.Google Scholar
Mitchell, J.L., Pierrehumbert, R.T., Frierson, D.M. & Caballero, R. (2006). The dynamics behind Titan’s methane clouds. Proceedings of the National Academy of Sciences, 103(49), 1842118426.Google Scholar
Lora, J.M., Goodman, P.J., Russell, J.L. & Lunine, J.I. (2011). Insolation in Titan’s troposphere. Icarus, 216(1), 116119.Google Scholar
Seidel, D.J., Fu, Q., Randel, W.J. & Reichler, T.J. (2008). Widening of the tropical belt in a changing climate. Nature Geoscience, 1(1), 2124.Google Scholar
Allen, R.J., Sherwood, S.C., Norris, J.R. & Zender, C.S. (2012). Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485(7398), 350354.Google Scholar
Lu, J., Deser, C. & Reichler, T. (2009). Cause of the widening of the tropical belt since 1958. Geophysical Research Letters, 36(3), doi:10.1029/2008GL036076.Google Scholar
Griffith, C.A., Penteado, P., Rannou, P., et al. (2006). Evidence for a polar ethane cloud on Titan. Science, 313(5793), 16201622.Google Scholar
Jennings, D.E., Anderson, C.M., Samuelson, R.E., et al. (2012). Seasonal disappearance of far-infrared haze in Titan’s stratosphere. The Astrophysical Journal Letters, 754(1), L3.Google Scholar
Lorenz, R.D. (1993). The life, death and afterlife of a raindrop on Titan. Planetary and Space Science, 41(9), 647655.Google Scholar
Barth, E.L. & Rafkin, S.C. (2007). TRAMS: a new dynamic cloud model for Titan’s methane clouds. Geophysical Research Letters, 34(3).Google Scholar
Hueso, R. & Sánchez-Lavega, A. (2006). Methane storms on Saturn’s moon Titan. Nature, 442(7101), 428431.Google Scholar
Faulk, S.P., Mitchell, J.L., Moon, S. & Lora, J.M. (2017). Regional patterns of extreme precipitation on Titan consistent with observed alluvial fan distribution. Nature Geoscience, 10(11), 827.Google Scholar
Curtis, D.B., Hatch, C.D., Hasenkopf, C.A., et al. (2008). Laboratory studies of methane and ethane adsorption and nucleation onto organic particles: application to Titan’s clouds. Icarus, 195(2), 792801.Google Scholar
Graves, S.D.B., McKay, C.P., Griffith, C.A., Ferri, F. & Fulchignoni, M. (2008). Rain and hail can reach the surface of Titan. Planetary and Space Science, 56(3), 346357.Google Scholar
Barnes, J.W., Buratti, B.J., Turtle, E.P. et al. (2013). Precipitation-induced surface brightenings seen on Titan by Cassini VIMS and ISS. Planetary Science, 2(1), 122.Google Scholar
Schröder, S.E., Karkoschka, E. & Lorenz, R.D. (2012). Bouncing on Titan: motion of the Huygens probe in the seconds after landing. Planetary and Space Science, 73(1), 327340.Google Scholar
Lorenz, R.D. (1993). Wake-induced dust cloud formation following impact of planetary landers. Icarus, 101(1), 165167.Google Scholar
Charnay, B., Barth, E., Rafkin, S., et al. (2015). Methane storms as a driver of Titan’s dune orientation. Nature Geoscience, 8, 362366.Google Scholar
Sun, D., Lau, K.M. & Kafatos, M. (2008). Contrasting the 2007 and 2005 hurricane seasons: evidence of possible impacts of Saharan dry air and dust on tropical cyclone activity in the Atlantic basin. Geophysical Research Letters, 35(15).Google Scholar
Prospero, J.M. & Carlson, T.N. (1972). Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic Ocean. Journal of Geophysical Research, 77(27), 52555265.Google Scholar
Bristow, C.S., Hudson‐Edwards, K.A. & Chappell, A. (2010). Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophysical Research Letters, 37(14).Google Scholar
Gribbin, J. (1988). Any old iron? Nature, 331, 570.Google Scholar
Watson, A. J. (1997). Volcanic Fe, CO2, ocean productivity and climate. Nature, 385, 587588.Google Scholar
Newman, C.E., Lewis, S.R., Read, P.L. & Forget, F. (2002). Modeling the Martian dust cycle, 1. Representations of dust transport processes. Journal of Geophysical Research: Planets, 107(E12), 61.Google Scholar
Phillips, R.J., Davis, B.J., Tanaka, K.L., et al. (2011). Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars. Science, 332(6031), 838841.Google Scholar
Edwards, C.S. & Ehlmann, B.L. (2015). Carbon sequestration on Mars. Geology, 43(10), 863866.Google Scholar
Mastrogiuseppe, M., Poggiali, V., Hayes, A., et al. (2014). The bathymetry of a Titan sea. Geophysical Research Letters, 41(5), 14321437.Google Scholar
Mousis, O. & Schmitt, B. (2008). Sequestration of ethane in the cryovolcanic subsurface of Titan. The Astrophysical Journal Letters, 677(1), L67.Google Scholar
Choukroun, M. & Sotin, C. (2012). Is Titan’s shape caused by its meteorology and carbon cycle? Geophysical Research Letters, 39(4).Google Scholar
Wilson, E.H. & Atreya, S.K. (2009). Titan’s carbon budget and the case of the missing ethane. The Journal of Physical Chemistry A, 113(42), 1122111226.Google Scholar
Hunten, D.M. (2006). The sequestration of ethane on Titan in smog particles. Nature, 443(7112), 669670.Google Scholar
Smith, I.B. & Holt, J.W. (2010). Onset and migration of spiral troughs on Mars revealed by orbital radar. Nature, 465(7297), 450453.Google Scholar
Smith, I.B., Holt, J.W., Spiga, A., Howard, A.D. & Parker, G. (2013). The spiral troughs of Mars as cyclic steps. Journal of Geophysical Research: Planets, 118, 18351857, doi:10.1002/jgre.20142.Google Scholar
Diniega, S., Byrne, S., Bridges, N.T., Dundas, C.M. & McEwen, A.S. (2010). Seasonality of present-day Martian dune-gully activity. Geology, 38(11), 10471050.Google Scholar
Diniega, S., Hansen, C.J., McElwaine, J.N., et al. (2013). A new dry hypothesis for the formation of Martian linear gullies. Icarus, 225(1), 526537.Google Scholar
Ojha, L., Wilhelm, M.B., Murchie, S.L., et al. (2015). Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geoscience, 8(11), 829832.Google Scholar
Palumbo, A.M., Head, J.W. & Wordsworth, R.D. (2018). Late Noachian Icy Highlands climate model: exploring the possibility of transient melting and fluvial/lacustrine activity through peak annual and seasonal temperatures. Icarus, 300, 261286.Google Scholar
Batalha, N.E., Kopparapu, R.K., Haqq-Misra, J. & Kasting, J.F. (2016). Climate cycling on early Mars caused by the carbonate–silicate cycle. Earth and Planetary Science Letters, 455, 713.Google Scholar
Heldmann, J.L., Pollard, W., McKay, C.P., et al. (2013). The high elevation Dry Valleys in Antarctica as analog sites for subsurface ice on Mars. Planetary and Space Science, 85, 5358.Google Scholar
Arvidson, R.E. (2016). Aqueous history of Mars as inferred from landed mission measurements of rocks, soils, and water ice. Journal of Geophysical Research: Planets, 121(9), 16021626.Google Scholar
Montabone, L., Lewis, S.R., Read, P.L., et al. (2011). Mars Analysis Correction Data Assimilation (MACDA): MGS/TES v1.0. NCAS British Atmospheric Data Centre, 29 November 2011. doi:10.5285/78114093-E2BD-4601-8AE5-3551E62AEF2B.Google Scholar
Smith, I.B., Putzig, N.E., Holt, J.W. & Phillips, R.J. (2016). An ice age recorded in the polar deposits of Mars. Science, 352(6289), 10751078.Google Scholar
Piqueux, S., Byrne, S., Kieffer, H.H., Titus, T.N. & Hansen, C.J. (2015). Enumeration of Mars years and seasons since the beginning of telescopic exploration. Icarus, 251, 332338.Google Scholar
Guzewich, S.D., Toigo, A.D., Kulowski, L. & Wang, H. (2015). Mars Orbiter Camera climatology of textured dust storms. Icarus, 258, 113.Google Scholar
Fenton, L.K., Geissler, P.E. & Haberle, R.M. (2007). Global warming and climate forcing by recent albedo changes on Mars. Nature, 446(7136), 646649.Google Scholar
Smith, M.D. (2004). Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus, 167(1), 148165.Google Scholar
Pankine, A.A. & Ingersoll, A.P. (2004). Interannual variability of Mars global dust storms: an example of self-organized criticality? Icarus, 170(2), 514518.Google Scholar
Newman, C.E. & Richardson, M.I. (2015). The impact of surface dust source exhaustion on the Martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF General Circulation Model. Icarus, 257, 4787.Google Scholar
Shirley, J.H. (2015). Solar system dynamics and large-scale dust storms on Mars. Icarus, 251, 128144.Google Scholar
Mischna, M.A. & Shirley, J.H. (2017). Numerical modeling of orbit-spin coupling accelerations in a Mars general circulation model: implications for global dust storm activity. Planetary and Space Science, 141, 4572.Google Scholar
Lockwood, G.W. & Thompson, D.T. (2009). Seasonal photometric variability of Titan, 1972–2006. Icarus, 200(2), 616626.Google Scholar
Lockwood, G.W. & Thompson, D.T. (1979). A relationship between solar activity and planetary albedos. Nature, 280, 4345.Google Scholar
Sromovsky, L.A., Suomi, V.E., Pollack, J.B., et al. (1981). Implications of Titan’s north–south brightness asymmetry. Nature, 292, 698702.Google Scholar
Lorenz, R.D., Lemmon, M.T., Smith, P.H. & Lockwood, G.W. (1999). Seasonal change on Titan observed with the Hubble Space Telescope WFPC-2. Icarus, 142(2), 391401.Google Scholar
Aplin, K.L. & Harrison, R.G. (2016). Determining solar effects in Neptune’s atmosphere. Nature Communications, 7, 11976, doi:10.1038/ncomms11976.Google Scholar
Ney, E.P. (1959). Cosmic radiation and the weather. Nature, 183, 451452.Google Scholar
Sicardy, B., Widemann, T., Lellouch, E., et al. (2003). Large changes in Pluto’s atmosphere as revealed by recent stellar occultations. Nature, 424(6945), 168170.Google Scholar
Way, M. et al. (2016). Was Venus the first habitable world of our solar system? Geophysical Research Letters, 43, doi:10.1002/2016GL069790.Google Scholar
Abe, Y., Abe-Ouchi, A., Sleep, N. & Zahnle, K. (2001). Habitable zone limits for dry planets. Astrobiology, 11, 443460.Google Scholar
Lorenz, R.D. (2015). Meteorological insights from planetary heat flow measurements. Icarus, 250, 262267.Google Scholar
Tokano, T. & Lorenz, R.D. (2006). GCM simulation of balloon trajectories on Titan. Planetary and Space Science, 54, 685694.Google Scholar
Lorenz, R.D., Newman, C.E., Tokano, T., et al. (2012). Formulation of an engineering wind specification for Titan late summer polar exploration. Planetary and Space Science, 70, 7383.Google Scholar
Lorenz, R.D., Tokano, T. & Newman, C.E. (2012). Winds and tides of Ligeia Mare: application to the drift of the Titan Mare Explorer (TiME) Mission. Planetary and Space Science, 60(1), 7285.Google Scholar
Stofan, E., Lorenz, R., Lunine, J., et al. (2013). TiME – The Titan Mare Explorer. Proceedings of IEEE Aerospace Conference, Big Sky, MT, March2013, paper 2434.Google Scholar
Lorenz, R.D. & Newman, C.E. (2015). Twilight on Ligeia: implications of communications geometry and seasonal winds for exploring Titan’s seas 2020–2040. Advances in Space Research, 56(1), 190204.Google Scholar
MacPike, E.F., Correspondence and Papers of Edmond Halley. New York: Arno Press, 1975.Google Scholar
Lorenz, R.D. (2015). Voyage across Ligeia Mare: mechanics of sailing on the hydrocarbon seas of Saturn’s moon, Titan. Ocean Engineering, 104, 119128.Google Scholar
Lorenz, R.D. & Mann, J. (2015). Seakeeping on Ligeia Mare: dynamic response of a floating capsule to waves on the hydrocarbon seas of Saturn’s moon Titan. Johns Hopkins APL Technical Digest, 33(2), 8294.Google Scholar
Lorenz, R.D., Turtle, E.P., Barnes, J.W., et al. (2019). Dragonfly: a rotorcraft lander concept for scientific exploration at Titan. Johns Hopkins APL Technical Digest, in press.Google Scholar
Williams, D.M., Kasting, J.F. & Wade, R.A. (1997). Habitable moons around extrasolar giant planets. Nature, 385(6613), 234236.Google Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Habitable zones around main sequence stars. Icarus, 101(1), 108128.Google Scholar
Rampino, M.R. & Caldeira, K. (1994). The Goldilocks Problem: climatic evolution and long-term habitability of terrestrial planets. Annual Reviews of Astronomy and Astrophysics, 32, 83114.Google Scholar
Joshi, M.M., Haberle, R.M. & Reynolds, R.T. (1997). Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: conditions for atmospheric collapse and the implications for habitability. Icarus, 129(2), 450465.Google Scholar
Han, E., Wang, S.X., Wright, J.T., et al. (2014). Exoplanet orbit database. II. Updates to exoplanets.org. Publications of the Astronomical Society of the Pacific, 126(943), 827.Google Scholar
Harrington, J., Hansen, B.M., Luszcz, S.H., et al. (2006). The phase-dependent infrared brightness of the extrasolar planet ʊ Andromedae b. Science, 314(5799), 623626.Google Scholar
Knutson, H.A., Charbonneau, D., Allen, L.E., et al. (2007). A map of the day–night contrast of the extrasolar planet HD 189733b. Nature, 447(7141), 183.Google Scholar
Pont, F., Knutson, H.A., Gilliland, R.L., Moutou, C. & Charbonneau, D. (2008). Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of H 189733b with the Hubble Space Telescope. Monthly Notices of the Royal Astronomical Society, 385, 109118.Google Scholar
Pierrehumbert, R.T. (2013). Strange news from other stars. Nature Geoscience, 6(2), 8183.Google Scholar
Pierrehumbert, R.T. (2011). A palette of climates for Gliese 581g. The Astrophysical Journal Letters, 726(1), L8.Google Scholar
Moore, W.B., Lenardic, A., Jellinek, A.M., et al. (2017). How habitable zones and super-Earths lead us astray. Nature Astronomy, 1, 0043.Google Scholar
Tasker, E., Tan, J., Heng, K., et al. (2017). The language of exoplanet ranking metrics needs to change. Nature Astronomy, 1, 0042.Google Scholar
Cowan, N. & Agol, E. (2011). The statistics of albedo and heat recirculation on hot exoplanets. The Astrophysical Journal, 729(1), 54.Google Scholar
Kaspi, Y. & Showman, A. (2015). Atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters. The Astrophysical Journal, 804(1), 60.Google Scholar
Goodman, J. (2009). Thermodynamics of atmospheric circulation on hot Jupiters. The Astrophysical Journal, 693(2), 1645.Google Scholar
Demory, B.O., Gillon, M., de Wit, J., et al. (2016). A map of the large day–night temperature gradient of a super-Earth exoplanet. Nature, 532(7598), 207.Google Scholar
Angelo, I. & Hu, R. (2017). A case for an atmosphere on super-Earth 55 Cancri e. The Astronomical Journal, 154(6), 232.Google Scholar
Laughlin, G., Deming, D., Langton, J., et al. (2009). Rapid heating of the atmosphere of an extrasolar planet. Nature, 457(7229), 562.Google Scholar
Naef, D., Latham, D.W., Mayor, M., et al. (2001). HD 80606 b, a planet on an extremely elongated orbit. Astronomy & Astrophysics, 375(2), L27L30.Google Scholar
Wordsworth, R.D., Forget, F., Selsis, F., et al. (2011). Gliese 581d is the first discovered terrestrial-mass exoplanet in the habitable zone. The Astrophysical Journal Letters, 733(2), L48.Google Scholar
Swain, M.R., Deroo, P., Griffith, C.A., et al. (2010). A ground-based near-infrared emission spectrum of the exoplanet HD 189733b. Nature, 463(7281), 637639.Google Scholar
Gillon, M., Triaud, A.H., Demory, B.O., et al. (2017). Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature, 542(7642), 456.Google Scholar
Anglada-Escudé, G., Amado, P.J., Barnes, J., et al. (2016). A terrestrial planet candidate in a temperate orbit around Proxima Centauri, Nature. 536, 437440.Google Scholar
Ribas, I., Bolmont, E., Selsis, F., et al. (2016). The habitability of Proxima Centauri b. I: Irradiation, rotation and volatile inventory from formation to the present. Astronomy & Astrophysics, 596, A111.Google Scholar
Turbet, M., Leconte, J., Selsis, F., et al. (2016). The habitability of Proxima Centauri b. II. Possible climates and observability. Astronomy & Astrophysics, 596, A112.Google Scholar
Barnes, R., Deitrick, R., Luger, R., et al. (2016). The habitability of Proxima Centauri b. I: Evolutionary scenarios, arXiv:1608.06919.Google Scholar
Meadows, V.S., Arney, G.N., Schwieterman, E.W., et al. (2016). The habitability of Proxima Centauri b: II: environmental states and observational discriminants, arXiv:1608.08620.Google Scholar
Williams, D.M. & Gaidos, E. (2008). Detecting the glint of starlight on the oceans of distant planets. Icarus, 195(2), 927937.Google Scholar
Robinson, T.D., Meadows, V.S. & Crisp, D. (2010). Detecting oceans on extrasolar planets using the glint effect. The Astrophysical Journal Letters, 721(1), L67.Google Scholar
Marshak, A., Várnai, T. & Kostinski, A. (2017). Terrestrial glint seen from deep space: Oriented ice crystals detected from the Lagrangian point. Geophysical Research Letters, 44, 51975202, doi:10.1002/2017GL073248.Google Scholar
Cowan, N.B., Abbot, D.S. & Voigt, A. (2012). A false positive for ocean glint on exoplanets: the latitude-albedo effect. The Astrophysical Journal Letters, 752(1), L3.Google Scholar
Haberle, R.M., Catling, D.C., Carr, M.H. & Zahnle, K.J., The Early Mars Climate System. In Haberle, R.M. et al. (eds.), The Atmosphere and Climate of Mars, Cambridge: Cambridge University Press, 2017, pp. 526568.Google Scholar
Forget, F. & Lebonnois, S.. Global climate models of the terrestrial planets. In Mackwell, S. J., Simon-Miller, A.A., Harder, J.W. & Bullock, M.A. (eds.), Comparative Climatology of Terrestrial Planets, Tucson, AZ: University of Arizona Press, 2013, pp. 213229.Google Scholar
Houghton, J., In the Eye of the Storm, Oxford: Lion Books, 2013.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Ralph D. Lorenz, The Johns Hopkins University
  • Book: Exploring Planetary Climate
  • Online publication: 14 December 2018
  • Chapter DOI: https://doi.org/10.1017/9781108677691.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Ralph D. Lorenz, The Johns Hopkins University
  • Book: Exploring Planetary Climate
  • Online publication: 14 December 2018
  • Chapter DOI: https://doi.org/10.1017/9781108677691.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Ralph D. Lorenz, The Johns Hopkins University
  • Book: Exploring Planetary Climate
  • Online publication: 14 December 2018
  • Chapter DOI: https://doi.org/10.1017/9781108677691.017
Available formats
×