Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-08T05:10:23.829Z Has data issue: false hasContentIssue false

Section 4 - Autoimmunity in Neurological and Psychiatric Diseases

Published online by Cambridge University Press:  27 January 2022

Josep Dalmau
Affiliation:
Universitat de Barcelona
Francesc Graus
Affiliation:
Universitat de Barcelona
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Javitt, DC, Zukin, SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991;148:13011308.Google Scholar
Patkar, AA, Mago, R, Masand, PS. Psychotic symptoms in patients with medical disorders. Curr Psychiatry Rep 2004;6:216224.Google Scholar
Khandaker, GM, Cousins, L, Deakin, J, et al. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2015;2:258270.Google Scholar
Dalmau, J, Tuzun, E, Wu, HY, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol 2007;61:2536.Google Scholar
Vitaliani, R, Mason, W, Ances, B, et al. Paraneoplastic encephalitis, psychiatric symptoms, and hypoventilation in ovarian teratoma. Ann Neurol 2005;58:594604.Google Scholar
Florance, NR, Davis, RL, Lam, C, et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol 2009;66:1118.Google Scholar
Dalmau, J, Gleichman, AJ, Hughes, EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008;7:10911098.Google Scholar
Dhossche, D, Fink, M, Shorter, E, Wachtel, LE. Anti-NMDA receptor encephalitis versus pediatric catatonia. Am J Psychiatry 2011;168:749750.CrossRefGoogle ScholarPubMed
Steiner, J, Walter, M, Glanz, W, et al. Increased prevalence of diverse N-methyl-D-aspartate glutamate receptor antibodies in patients with an initial diagnosis of schizophrenia: specific relevance of IgG NR1a antibodies for distinction from N-methyl-D-aspartate glutamate receptor encephalitis. JAMA Psychiatry 2013;70:271278.Google Scholar
Castillo-Gomez, E, Oliveira, B, Tapken, D, et al. All naturally occurring autoantibodies against the NMDA receptor subunit NR1 have pathogenic potential irrespective of epitope and immunoglobulin class. Mol Psychiatry 2017;22:17761784.Google Scholar
Castillo-Gomez, E, Kastner, A, Steiner, J, et al. The brain as immunoprecipitator of serum autoantibodies against N-Methyl-D-aspartate receptor subunit NR1. Ann Neurol 2016;79:144151.Google Scholar
Zerche, M, Weissenborn, K, Ott, C, et al. Preexisting serum autoantibodies against the NMDAR subunit NR1 modulate evolution of lesion size in acute ischemic stroke. Stroke 2015;46:11801186.Google Scholar
Dahm, L, Ott, C, Steiner, J, et al. Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol 2014;76:8294.Google Scholar
Ehrenreich, H, Steiner, J. Serum autoantibodies against N-methyl-D-aspartate receptor subunit NR1 are no disease indicator. Ann Neurol 2014;31:306312.Google Scholar
Hammer, C, Stepniak, B, Schneider, A, et al. Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood–brain barrier integrity. Mol Psychiatry 2014;19:11431149.Google Scholar
Sperber, PS, Siegerink, B, Huo, S, et al. Serum Anti-NMDA (N-methyl-D-aspartate)-receptor antibodies and long-term clinical outcome after stroke (PROSCIS-B). Stroke 2019;50:32133219.Google Scholar
Zandi, MS, Irani, SR, Lang, B, et al. Disease-relevant autoantibodies in first episode schizophrenia. J Neurol 2011;258:686688.Google Scholar
Tsutsui, K, Kanbayashi, T, Tanaka, K, et al. Anti-NMDA-receptor antibody detected in encephalitis, schizophrenia, and narcolepsy with psychotic features. BMC Psychiatry 2012;12:37.CrossRefGoogle ScholarPubMed
Zandi, MS, Paterson, RW, Ellul, MA, et al. Clinical relevance of serum antibodies to extracellular N-methyl-D-aspartate receptor epitopes. J Neurol Neurosurg Psychiatry 2015;86:708713.CrossRefGoogle ScholarPubMed
Hara, M, Martinez-Hernandez, E, Arino, H, et al. Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology 2018;90:e1386e1394.CrossRefGoogle ScholarPubMed
Steiner, J, Teegen, B, Schiltz, K, et al. Prevalence of N-methyl-D-aspartate receptor autoantibodies in the peripheral blood: healthy control samples revisited. JAMA Psychiatry 2014;71:838839.CrossRefGoogle ScholarPubMed
Doss, S, Wandinger, KP, Hyman, BT, et al. High prevalence of NMDA receptor IgA/IgM antibodies in different dementia types. Ann Clin Transl Neurol 2014;1:822832.Google Scholar
Lancaster, E, Leypoldt, F, Titulaer, MJ, et al. Immunoglobulin G antibodies to the N-methyl-D-aspartate receptor are distinct from immunoglobulin A and immunoglobulin M responses. Ann Neurol 2015;77:183.CrossRefGoogle Scholar
Titulaer, MJ, Dalmau, J. Antibodies to NMDA receptor, blood–brain barrier disruption and schizophrenia: a theory with unproven links. Mol Psychiatry 2014;19:1054.CrossRefGoogle ScholarPubMed
Mane-Damas, M, Hoffmann, C, Zong, S, et al. Autoimmunity in psychotic disorders. Where we stand, challenges and opportunities. Autoimmun Rev 2019;18:102348.Google Scholar
Deakin, J, Lennox, BR, Zandi, MS. Antibodies to the N-methyl-D-aspartate receptor and other synaptic proteins in psychosis. Biol Psychiatry 2014;75:284291.Google Scholar
Pollak, TA, McCormack, R, Peakman, M, Nicholson, TR, David, AS. Prevalence of anti-N-methyl-d-aspartate (NMDA) antibodies in patients with schizophrenia and related psychoses: a systematic review and meta-analysis. Psychol Med 2013;44:24752487.Google Scholar
Al-Diwani, A, Handel, A, Townsend, L, et al. The psychopathology of NMDAR-antibody encephalitis in adults: a systematic review and phenotypic analysis of individual patient data. Lancet Psychiatry 2019;6:235246.Google Scholar
Sarkis, RA, Coffey, MJ, Cooper, JJ, Hassan, I, Lennox, B. Anti-N-methyl-D-aspartate receptor encephalitis: a review of psychiatric phenotypes and management considerations – a report of the American Neuropsychiatric Association Committee on Research. J Neuropsychiatry Clin Neurosci 2019;31:137142.Google Scholar
Warren, N, Siskind, D, O’Gorman, C. Refining the psychiatric syndrome of anti-N-methyl-d-aspartate receptor encephalitis. Acta Psychiatr Scand 2018;138:401408.Google Scholar
Olney, JW, Farber, NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995;52:9981007.Google Scholar
Kehrer, C, Maziashvili, N, Dugladze, T, Gloveli, T. Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Front Mol Neurosci 2008;1:6.Google Scholar
Masdeu, JC, Dalmau, J, Berman, KF. NMDA receptor internalization by autoantibodies: a reversible mechanism underlying psychosis? Trends Neurosci 2016;39:300–310.CrossRefGoogle ScholarPubMed
Gunduz-Bruce, H. The acute effects of NMDA antagonism: from the rodent to the human brain. Brain Res Rev 2009;60:279286.Google Scholar
Endres, D, Perlov, E, Baumgartner, A, et al. Immunological findings in psychotic syndromes: a tertiary care hospital’s CSF sample of 180 patients. Front Hum Neurosci 2015;9:476.Google Scholar
Oviedo-Salcedo, T, de Witte, L, Kumpfel, T, et al. Absence of cerebrospinal fluid antineuronal antibodies in schizophrenia spectrum disorders. Br J Psychiatry 2018;212:318320.Google Scholar
Lennox, BR, Palmer-Cooper, EC, Pollak, T, et al. Prevalence and clinical characteristics of serum neuronal cell surface antibodies in first-episode psychosis: a case–control study. Lancet Psychiatry 2017;4:4248.Google Scholar
Kelleher, E, McNamara, P, Dunne, J, et al. Prevalence of N-methyl-D-aspartate receptor antibody (NMDAR-Ab) encephalitis in patients with first episode psychosis and treatment resistant schizophrenia on clozapine, a population based study. Schizophr Res 2020;222:455461.Google Scholar
Schou, MB, Saether, SG, Drange, OK, et al. The significance of anti-neuronal antibodies for acute psychiatric disorders: a retrospective case-controlled study. BMC Neurosci 2018;19:68.Google Scholar
Jézéquel, J, Rogemond, V, Pollak, T, et al. Cell- and single molecule-based methods to detect anti-N-methyl-D-aspartate receptor autoantibodies in patients with first-episode psychosis from the OPTiMiSE project. Biol Psychiatry 2017;82:766772.CrossRefGoogle ScholarPubMed
Hoffmann, C, Zong, S, Mane-Damas, M, et al. Absence of autoantibodies against neuronal surface antigens in sera of patients with psychotic disorders. JAMA Psychiatry 2019;7:322325.Google Scholar
de Witte, LD, Hoffmann, C, van Mierlo, HC, et al. Absence of N-methyl-D-aspartate receptor IgG autoantibodies in schizophrenia: the importance of cross-validation studies. JAMA Psychiatry 2015;72:731733.Google Scholar
Masopust, J, Andrys, C, Bazant, J, et al. Anti-NMDA receptor antibodies in patients with a first episode of schizophrenia. Neuropsychiatr Dis Treat 2015;11:619623.Google ScholarPubMed
Gaughran, F, Lally, J, Beck, K, et al. Brain-relevant antibodies in first-episode psychosis: a matched case-control study. Psychol Med 2018;48:12571263.Google Scholar
Pollak, TA, Vincent, A, Iyegbe, C, et al. Relationship between serum NMDA receptor antibodies and response to antipsychotic treatment in first-episode psychosis. Biol Psychiatry 2020;90:915.CrossRefGoogle ScholarPubMed
Rhoads, J, Guirgis, H, McKnight, C, Duchemin, AM. Lack of anti-NMDA receptor autoantibodies in the serum of subjects with schizophrenia. Schizophr Res 2011;129:213214.Google Scholar
Vincent, A, Bien, CG, Irani, SR, Waters, P. Autoantibodies associated with diseases of the CNS: new developments and future challenges. Lancet Neurol 2011;10:759772.Google Scholar
Gresa-Arribas, N, Titulaer, MJ, Torrents, A, et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol 2014;13:167177.Google Scholar
Bien, CG, Bien, CI, Dogan Onugoren, M, et al. Routine diagnostics for neural antibodies, clinical correlates, treatment and functional outcome. J Neurol 2020;267:21012114.Google Scholar
Zandi, MS, Deakin, JB, Morris, K, et al. Immunotherapy for patients with acute psychosis and serum N-methyl D-aspartate receptor (NMDAR) antibodies: a description of a treated case series. Schizophr Res 2014;160:193195.Google Scholar
Pollak, TA, Lennox, BR, Muller, S, et al. Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiatry 2020;7:93108.Google Scholar
Scott, JG, Gillis, D, Swayne, A, Blum, S. Testing for antibodies to N-methyl-d-aspartate receptor and other neuronal cell surface antigens in patients with early psychosis. Aust N Z J Psychiatry 2018;52:727729.Google Scholar
Graus, F, Titulaer, MJ, Balu, R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391404.Google Scholar
Warren, N, Swayne, A, Siskind, D, et al. Serum and CSF Anti-NMDAR antibody testing in psychiatry. J Neuropsychiatry Clin Neurosci 2020;32:154160.Google Scholar
Herken, J, Pruss, H. Red flags: clinical signs for identifying autoimmune encephalitis in psychiatric patients. Front Psychiatry 2017;8:25.Google Scholar
Irani, SR, Bien, CG, Lang, B. Autoimmune epilepsies. Curr Opin Neurol 2011;24:146153.Google Scholar
Damato, V, Balint, B, Kienzler, AK, Irani, SR. The clinical features, underlying immunology, and treatment of autoantibody-mediated movement disorders. Mov Disord 2018;33:13761389.CrossRefGoogle ScholarPubMed
Dubey, D, Kothapalli, N, McKeon, A, et al. Predictors of neural-specific autoantibodies and immunotherapy response in patients with cognitive dysfunction. J Neuroimmunol 2018;323:6272.Google Scholar
Dubey, D, Singh, J, Britton, JW, et al. Predictive models in the diagnosis and treatment of autoimmune epilepsy. Epilepsia 2017;58:11811189.Google Scholar
Dubey, D, Farzal, Z, Hays, R, Brown, LS, Vernino, S. Evaluation of positive and negative predictors of seizure outcomes among patients with immune-mediated epilepsy: a meta-analysis. Ther Adv Neurol Disord 2016;9:369377.CrossRefGoogle ScholarPubMed
Moussa, T, Afzal, K, Cooper, J, et al. Pediatric anti-NMDA receptor encephalitis with catatonia: treatment with electroconvulsive therapy. Pediatr Rheumatol Online J 2019;17:8.Google Scholar
Coffey, MJ, Cooper, JJ. Electroconvulsive therapy in anti-N-methyl-D-aspartate receptor encephalitis: a case report and review of the literature. J ECT 2016;32:225229.Google Scholar
Endres, D, Dersch, R, Hochstuhl, B, et al. Intrathecal thyroid autoantibody synthesis in a subgroup of patients with schizophreniform syndromes. J Neuropsychiatry Clin Neurosci 2017;29:365374.Google Scholar
Endres, D, Perlov, E, Riering, AN, et al. Steroid-responsive chronic schizophreniform syndrome in the context of mildly increased antithyroid peroxidase antibodies. Front Psychiatry 2017;8:64.Google Scholar
Scott, JG, Gillis, D, Ryan, AE, et al. The prevalence and treatment outcomes of antineuronal antibody-positive patients admitted with first episode of psychosis. BJPsych Open 2018;4:6974.Google Scholar
Leboyer, M, Berk, M, Yolken, RH, et al. Immuno-psychiatry: an agenda for clinical practice and innovative research. BMC Med 2016;14:173.Google Scholar
Ezeoke, A, Mellor, A, Buckley, P, Miller, B. A systematic, quantitative review of blood autoantibodies in schizophrenia. Schizophr Res 2013;150:245251.Google Scholar
Lejuste, F, Thomas, L, Picard, G, et al. Neuroleptic intolerance in patients with anti-NMDAR encephalitis. Neurol Neuroimmunol Neuroinflamm 2016;3:e280.Google Scholar
Sansing, LH, Tuzun, E, Ko, MW, et al. A patient with encephalitis associated with NMDA receptor antibodies. Nat Clin Pract Neurol 2007;3:291296.Google Scholar
Dalmau, J, Armangue, T, Planaguma, J, et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol 2019;18:10451057.Google Scholar
Matsumoto, T, Matsumoto, K, Kobayashi, T, Kato, S. Electroconvulsive therapy can improve psychotic symptoms in anti-NMDA-receptor encephalitis. Psychiatry Clin Neurosci 2012;66:242243.Google Scholar
Lai, M, Hughes, EG, Peng, X, et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol 2009;65:424434.Google Scholar
Lancaster, E, Lai, M, Peng, X, et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol 2010;9:6776.Google Scholar
Masdeu, JC, Gonzalez-Pinto, A, Matute, C, et al. Serum IgG antibodies against the NR1 subunit of the NMDA receptor not detected in schizophrenia. Am J Psychiatry 2012;169:11201121.Google Scholar
Jézéquel, J, Johansson, EM, Dupuis, JP, et al. Dynamic disorganization of synaptic NMDA receptors triggered by autoantibodies from psychotic patients. Nat Commun 2017;8:1791.Google Scholar
Aviv, R. The death debate; what does it mean to die? The New Yorker, 5 February 2018.Google Scholar
Lehmann-Facius, H. Über die Liquordiagnose der Schizophrenien. Klinische Wochenschrift 1937;16:16461648.Google Scholar
Smith, RS. A comprehensive macrophage-T-lymphocyte theory of schizophrenia. Med Hypotheses 1992;39:248257.Google Scholar
Stein, M, Miller, AH, Trestman, RL. Depression, the immune system, and health and illness: findings in search of meaning. Arch Gen Psychiatry 1991;48:171177.Google Scholar
Pariante, CM. Psychoneuroimmunology or immunopsychiatry? Lancet Psychiatry 2015;2:197199.Google Scholar
Yirmiya, R. Endotoxin produces a depressive-like episode in rats. Brain Res 1996;711:163174.Google Scholar
Udina, M, Navines, R, Egmond, E, et al. Glucocorticoid receptors, brain-derived neurotrophic factor, serotonin and dopamine neurotransmission are associated with interferon-induced depression. Int J Neuropsychopharmacol 2016;19:pyv135.Google Scholar
Breitbart, W, Rosenfeld, B, Tobias, K, et al. Depression, cytokines, and pancreatic cancer. Psychooncology 2014;23:339345.Google Scholar
Pawar, DS, Molinaro, JR, Knight, JM, Heinrich, TW. Toxicities of CAR T-cell therapy and the role of the consultation-liaison psychiatrist. Psychosomatics 2019;60:519523.Google Scholar
Bodro, M, Compta, Y, Llanso, L, Esteller, D, et al. Increased CSF levels of IL-1b, IL-6, and ACE in SARS-CoV-2 associated encephalitis. Neurol Neuroimmunol Neuroimflamm 2020;7:e821.Google Scholar
Brown, AS. The Kraepelinian dichotomy from the perspective of prenatal infectious and immunologic insults. Schizophr Bull 2015;41:786791.Google Scholar
Danese, A, Pariante, CM, Caspi, A, Taylor, A, Poulton, R. Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci USA 2007;104:13191324.CrossRefGoogle Scholar
Copeland, WE, Wolke, D, Lereya, ST, et al. Childhood bullying involvement predicts low-grade systemic inflammation into adulthood. Proc Natl Acad Sci USA 2014;111:75707575.Google Scholar
Miller, BJ, Buckley, P, Seabolt, W, Mellor, A, Kirkpatrick, B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2011;70:663671.Google Scholar
Girgis, RR, Kumar, SS, Brown, AS. The cytokine model of schizophrenia: emerging therapeutic strategies. Biol Psychiatry 2014;75:292299.CrossRefGoogle ScholarPubMed
Black, C, Miller, BJ. Meta-analysis of cytokines and chemokines in suicidality: distinguishing suicidal versus nonsuicidal patients. Biol Psychiatry 2015;78:2837.Google Scholar
Berk, M, Williams, LJ, Jacka, FN, et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 2013;11:200.Google Scholar
Rosenblat, JD, McIntyre, RS. Are medical comorbid conditions of bipolar disorder due to immune dysfunction? Acta Psychiatr Scand 2015;132:180191.Google Scholar
Jeppesen, R, Benros, ME. Autoimmune diseases and psychotic disorders. Front Psychiatry 2019;10:131.Google Scholar
Benros, ME, Nielsen, PR, Nordentoft, M, et al. Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am J Psychiatry 2011;168:13031310.Google Scholar
Benros, ME, Pedersen, MG, Rasmussen, H, et al. A nationwide study on the risk of autoimmune diseases in individuals with a personal or a family history of schizophrenia and related psychosis. Am J Psychiatry 2014;171:218226.Google Scholar
Chen, SW, Zhong, XS, Jiang, LN, et al. Maternal autoimmune diseases and the risk of autism spectrum disorders in offspring: a systematic review and meta-analysis. Behav Brain Res 2016;296:6169.Google Scholar
Brimberg, L, Mader, S, Jeganathan, V, et al. Caspr2-reactive antibody cloned from a mother of an ASD child mediates an ASD-like phenotype in mice. Mol Psychiatry 2016;21:16631671.Google Scholar
Coutinho, E, Jacobson, L, Pedersen, MG, et al. CASPR2 autoantibodies are raised during pregnancy in mothers of children with mental retardation and disorders of psychological development but not autism. J Neurol Neurosurg Psychiatry 2017;88:718721.Google Scholar
Atladottir, HO, Thorsen, P, Ostergaard, L, et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord 2010;40:14231430.Google Scholar
Marder, SR, Cannon, TD. Schizophrenia. N Engl J Med 2019;381:17531761.Google Scholar
Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014;511:421427.Google Scholar
Purcell, SM, Moran, JL, Fromer, M, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014;506:185190.Google Scholar
Sundararajan, T, Manzardo, AM, Butler, MG. Functional analysis of schizophrenia genes using GeneAnalytics program and integrated databases. Gene 2018;641:2534.Google Scholar
Fromer, M, Pocklington, AJ, Kavanagh, DH, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014;506:179184.Google Scholar
Butler, MG, McGuire, AB, Masoud, H, Manzardo, AM. Currently recognized genes for schizophrenia: high-resolution chromosome ideogram representation. Am J Med Genet B Neuropsychiatr Genet 2016;171B:181202.Google Scholar
Tost, H, Alam, T, Meyer-Lindenberg, A. Dopamine and psychosis: theory, pathomechanisms and intermediate phenotypes. Neurosci Biobehav Rev 2010;34:689700.Google Scholar
Carlsson, A. Biochemical and pharmacological aspects of Parkinsonism. Acta Neurol Scand Suppl 1972;51:1142.Google Scholar
Yaryura-Tobias, JA, Diamond, B, Merlis, S. The action of L-dopa on schizophrenic patients (a preliminary report). Curr Ther Res Clin Exp 1970;12:528531.Google Scholar
Kim, JS, Kornhuber, HH, Schmid-Burgk, W, Holzmuller, B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 1980;20:379382.Google Scholar
Krystal, JH, Karper, LP, Seibyl, JP, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994;51:199214.Google Scholar
Kayser, MS, Titulaer, MJ, Gresa-Arribas, N, Dalmau, J. Frequency and characteristics of isolated psychiatric episodes in anti-N-methyl-d-aspartate receptor encephalitis. JAMA Neurol 2013;70:11331139.Google Scholar
Martucci, L, Wong, AH, De Luca, V, et al. N-methyl-D-aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder: polymorphisms and mRNA levels. Schizophr Res 2006;84:214221.Google Scholar
Javitt, DC. Neurophysiological models for new treatment development in schizophrenia: early sensory approaches. Ann N Y Acad Sci 2015;1344:92104.Google Scholar
Lewis, DA, Hashimoto, T, Volk, DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 2005;6:312324.Google Scholar
Naatanen, R, Kahkonen, S. Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: a review. Int J Neuropsychopharmacol 2009;12:125135.Google Scholar
Lisman, JE, Pi, HJ, Zhang, Y, Otmakhova, NA. A thalamo-hippocampal-ventral tegmental area loop may produce the positive feedback that underlies the psychotic break in schizophrenia. Biol Psychiatry 2010;68:1724.Google Scholar
Anticevic, A, Gancsos, M, Murray, JD, et al. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc Natl Acad Sci USA 2012;109:1672016725.Google Scholar
Pilowsky, LS, Bressan, RA, Stone, JM, et al. First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry 2006;11:118119.Google Scholar
Poels, EM, Kegeles, LS, Kantrowitz, JT, et al. Imaging glutamate in schizophrenia: review of findings and implications for drug discovery. Mol Psychiatry 2014;19:2029.Google Scholar
Weickert, CS, Fung, SJ, Catts, VS, et al. Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia. Mol Psychiatry 2013;18:11851192.Google Scholar
Law, AJ, Deakin, JF. Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses. Neuroreport 2001;12:29712974.Google Scholar
Mohn, AR, Gainetdinov, RR, Caron, MG, Koller, BH. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999;98:427436.Google Scholar
Papaleo, F, Lipska, BK, Weinberger, DR. Mouse models of genetic effects on cognition: relevance to schizophrenia. Neuropharmacology 2012;62:12041220.Google Scholar
Moghaddam, B, Javitt, D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 2012;37:415.Google Scholar
Manto, M, Dalmau, J, Didelot, A, Rogemond, V, Honnorat, J. In vivo effects of antibodies from patients with anti-NMDA receptor encephalitis: further evidence of synaptic glutamatergic dysfunction. Orphanet J Rare Dis 2010;5:31.Google Scholar
Dalmau, J. NMDA receptor encephalitis and other antibody-mediated disorders of the synapse: The 2016 Cotzias Lecture. Neurology 2016;87:24712482.Google Scholar
Planaguma, J, Leypoldt, F, Mannara, F, et al. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain 2015;138:94109.Google Scholar
Haussleiter, IS, Emons, B, Schaub, M, et al. Investigation of antibodies against synaptic proteins in a cross-sectional cohort of psychotic patients. Schizophr Res 2012;140:258259.Google Scholar
Chen, CH, Cheng, MC, Liu, CM, et al. Seroprevalence survey of selective anti-neuronal autoantibodies in patients with first-episode schizophrenia and chronic schizophrenia. Schizophr Res 2017;190:2831.Google Scholar
Endres, D, Meixensberger, S, Dersch, R, et al. Cerebrospinal fluid, antineuronal autoantibody, EEG, and MRI findings from 992 patients with schizophreniform and affective psychosis. Transl Psychiatry 2020;10:279.Google Scholar
Saether, SG, Schou, M, Kondziella, D. What is the significance of onconeural antibodies for psychiatric symptomatology? A systematic review. BMC Psychiatry 2017;17:161.Google Scholar
Saether, SG, Schou, M, Stoecker, W, et al. Onconeural antibodies in acute psychiatric inpatient care. J Neuropsychiatry Clin Neurosci 2017;29:7476.Google Scholar
Guasp, M, Gine-Serven, E, Rosa-Justicia, M, et al. Clinical, neuro-immunological, and CSF investigations in first episode psychosis. Neurology 2021;97:e61e75.Google Scholar
Pathmanandavel, K, Starling, J, Merheb, V, et al. Antibodies to surface dopamine-2 receptor and N-methyl-D-aspartate receptor in the first episode of acute psychosis in children. Biol Psychiatry 2015;77:537547.Google Scholar
Mantere, O, Saarela, M, Kieseppa, T, et al. Anti-neuronal anti-bodies in patients with early psychosis. Schizophr Res 2018;192:404407.Google Scholar
Engen, K, Wortinger, LA, Jorgensen, KN, et al. Autoantibodies to the N-methyl-D-aspartate receptor in adolescents with early onset psychosis and healthy controls. Front Psychiatry 2020;11:666.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157165.Google Scholar
van Sonderen, A, Petit-Pedrol, M, Dalmau, J, Titulaer, MJ. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol 2017;13:290301.Google Scholar
Tobin, WO, Lennon, VA, Komorowski, L, et al. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 2014;83:17971803.Google Scholar
Arino, H, Armangue, T, Petit-Pedrol, M, et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 2016;87:759765.Google Scholar
Spatola, M, Sabater, L, Planaguma, J, et al. Encephalitis with mGluR5 antibodies: symptoms and antibody effects. Neurology 2018;90:e1964e1972.Google Scholar
Graus, F, Boronat, A, Xifro, X, et al. The expanding clinical profile of anti-AMPA receptor encephalitis. Neurology 2010;74:857859.Google Scholar
Boronat, A, Gelfand, JM, Gresa-Arribas, N, et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol 2013;73:120128.Google Scholar
Petit-Pedrol, M, Armangue, T, Peng, X, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol 2014;13:276286.Google Scholar
Sonderen, AV, Arends, S, Tavy, DLJ, et al. Predictive value of electroencephalography in anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry 2018;89:11011106.Google Scholar
Armangue, T, Spatola, M, Vlagea, A, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 2018;17:760772.Google Scholar
Dalmau, J, Graus, F. Antibody-mediated encephalitis. N Engl J Med 2018;378:840851.Google Scholar
Hansen, HC, Klingbeil, C, Dalmau, J, et al. Persistent intrathecal antibody synthesis 15 years after recovering from anti-N-methyl-D-aspartate receptor encephalitis. JAMA Neurol 2013;70:117119.Google Scholar
Swedo, SE, Leonard, HL, Garvey, M, et al. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: clinical description of the first 50 cases. Am J Psychiatry 1998;155:264271.Google Scholar
Swedo, SE, Rapoport, JL, Leonard, H, Lenane, M, Cheslow, D. Obsessive-compulsive disorder in children and adolescents: clinical phenomenology of 70 consecutive cases. Arch Gen Psychiatry 1989;46:335341.Google Scholar
Swedo, SE, Rapoport, JL, Cheslow, DL, et al. High prevalence of obsessive-compulsive symptoms in patients with Sydenham’s chorea. Am J Psychiatry 1989;146:246249.Google Scholar
Swedo, SE, Leonard, HL, Schapiro, MB, et al. Sydenham’s chorea: physical and psychological symptoms of St Vitus dance. Pediatrics 1993;91:706713.Google Scholar
Swedo, SE. Sydenham’s chorea: a model for childhood autoimmune neuropsychiatric disorders. JAMA 1994;272:17881791.Google Scholar
Rettew, DC, Swedo, SE, Leonard, HL, Lenane, MC, Rapoport, JL. Obsessions and compulsions across time in 79 children and adolescents with obsessive-compulsive disorder. J Am Acad Child Adolesc Psychiatry 1992;31:10501056.Google Scholar
Leonard, HL, Lenane, MC, Swedo, SE, et al. Tics and Tourette’s disorder: a 2- to 7-year follow-up of 54 obsessive-compulsive children. Am J Psychiatry 1992;149:12441251.Google Scholar
Swedo, SE, Leonard, HL, Kiessling, LS. Speculations on antineuronal antibody-mediated neuropsychiatric disorders of childhood. Pediatrics 1994;93:323326.Google Scholar
Chang, K, Frankovich, J, Cooperstock, M, et al. Clinical evaluation of youth with pediatric acute-onset neuropsychiatric syndrome (PANS): recommendations from the 2013 PANS Consensus Conference. J Child Adolesc Psychopharmacol 2015;25:313.Google Scholar
Swedo, SE, Leckman, JF, Rose, NR. From research subgroup to clinical syndrome: modifying the PANDAS criteria to describe PANS (pediatric acute-onset neuropsychiatric syndrome). Pediatr Ther 2012;2:2.Google Scholar
Wilbur, C, Bitnun, A, Kronenberg, S, et al. PANDAS/PANS in childhood: controversies and evidence. Paediatr Child Health 2019;24:8591.Google Scholar
Singer, HS, Gilbert, DL, Wolf, DS, Mink, JW, Kurlan, R. Moving from PANDAS to CANS. J Pediatr 2012;160:725731.Google Scholar
Allen, AJ, Leonard, HL, Swedo, SE. Case study: a new infection-triggered, autoimmune subtype of pediatric OCD and Tourette’s syndrome. J Am Acad Child Adolesc Psychiatry 1995;34:307311.Google Scholar
Hesselmark, E, Bejerot, S. Clinical features of paediatric acute-onset neuropsychiatric syndrome: findings from a case–control study. BJPsych Open 2019;5:e25.Google Scholar
Hesselmark, E, Bejerot, S. Biomarkers for diagnosis of Pediatric Acute Neuropsychiatric Syndrome (PANS): sensitivity and specificity of the Cunningham Panel. J Neuroimmunol 2017;312:3137.Google Scholar
Silverman, M, Frankovich, J, Nguyen, E, et al. Psychotic symptoms in youth with Pediatric Acute-onset Neuropsychiatric Syndrome (PANS) may reflect syndrome severity and heterogeneity. J Psychiatr Res 2019;110:93102.Google Scholar
Bernstein, GA, Victor, AM, Pipal, AJ, Williams, KA. Comparison of clinical characteristics of pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections and childhood obsessive-compulsive disorder. J Child Adolesc Psychopharmacol 2010;20:333340.Google Scholar
Giedd, JN, Rapoport, JL, Garvey, MA, Perlmutter, S, Swedo, SE. MRI assessment of children with obsessive-compulsive disorder or tics associated with streptococcal infection. Am J Psychiatry 2000;157:281283.Google Scholar
Cunningham, MW. Rheumatic fever, autoimmunity, and molecular mimicry: the streptococcal connection. Int Rev Immunol 2014;33:314329.Google Scholar
Shimasaki, C, Frye, RE, Trifiletti, R, et al. Evaluation of the Cunningham Panel in pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS) and pediatric acute-onset neuropsychiatric syndrome (PANS): changes in antineuronal antibody titers parallel changes in patient symptoms. J Neuroimmunol 2020;339:577138.Google Scholar
Kirvan, CA, Swedo, SE, Heuser, JS, Cunningham, MW. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat Med 2003;9:914920.Google Scholar
Sigra, S, Hesselmark, E, Bejerot, S. Treatment of PANDAS and PANS: a systematic review. Neurosci Biobehav Rev 2018;86:5165.Google Scholar
Brown, KD, Farmer, C, Freeman, GM Jr, et al. Effect of early and prophylactic nonsteroidal anti-inflammatory drugs on flare duration in pediatric acute-onset neuropsychiatric syndrome: an observational study of patients followed by an academic community-based pediatric acute-onset neuropsychiatric syndrome clinic. J Child Adolesc Psychopharmacol 2017;27:619628.Google Scholar
Murphy, TK, Storch, EA, Lewin, AB, Edge, PJ, Goodman, WK. Clinical factors associated with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. J Pediatr 2012;160:314319.Google Scholar
Armangue, T, Titulaer, MJ, Malaga, I, et al. Pediatric anti-N-methyl-D-aspartate receptor encephalitis: clinical analysis and novel findings in a series of 20 patients. J Pediatr 2013;162:850856.Google Scholar
Mohammad, SS, Jones, H, Hong, M, et al. Symptomatic treatment of children with anti-NMDAR encephalitis. Dev Med Child Neurol 2016;58:376384.Google Scholar
Spatola, M, Petit-Pedrol, M, Simabukuro, MM, et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology 2017;88:10121020.Google Scholar
Armangue, T, Olive-Cirera, G, Martinez-Hernandez, E, et al. Associations of paediatric demyelinating and encephalitic syndromes with myelin oligodendrocyte glycoprotein antibodies: a multicentre observational study. Lancet Neurol 2020;19:234246.Google Scholar
Schiess, N, Pardo, CA. Hashimoto’s encephalopathy. Ann N Y Acad Sci 2008;1142:254265.Google Scholar
Hollowell, JG, Staehling, NW, Flanders, WD, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab 2002;87:489499.Google Scholar
Mattozzi, S, Sabater, L, Escudero, D, et al. Hashimoto encephalopathy in the 21st century. Neurology 2020;94:e217e224.Google Scholar
Tiosano, S, Nir, Z, Gendelman, O, et al. The association between systemic lupus erythematosus and bipolar disorder: a big data analysis. Eur Psychiatry 2017;43:116119.Google Scholar
Tiosano, S, Farhi, A, Watad, A, et al. Schizophrenia among patients with systemic lupus erythematosus: population-based cross-sectional study. Epidemiol Psychiatr Sci 2017;26:424429.Google Scholar
American College of Rheumatology. The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum 1999;42:599608.Google Scholar
Ainiala, H, Hietaharju, A, Loukkola, J, et al. Validity of the new American College of Rheumatology criteria for neuropsychiatric lupus syndromes: a population-based evaluation. Arthritis Rheum 2001;45:419423.Google Scholar
Petri, M, Orbai, AM, Alarcon, GS, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 2012;64:26772686.Google Scholar
Appenzeller, S, Cendes, F, Costallat, LT. Acute psychosis in systemic lupus erythematosus. Rheumatol Int 2008;28:237243.Google Scholar
Pego-Reigosa, JM, Isenberg, DA. Psychosis due to systemic lupus erythematosus: characteristics and long-term outcome of this rare manifestation of the disease. Rheumatology (Oxford) 2008;47:14981502.Google Scholar
Hanly, JG, Li, Q, Su, L, et al. Psychosis in systemic lupus erythematosus: results from an international inception cohort study. Arthritis Rheumatol 2019;71:281289.Google Scholar
Khajezadeh, MA, Zamani, G, Moazzami, B, et al. Neuropsychiatric involvement in juvenile-onset systemic lupus erythematosus. Neurol Res Int 2018;2018:2548142.Google Scholar
Sibbitt, WL Jr, Brandt, JR, Johnson, CR, et al. The incidence and prevalence of neuropsychiatric syndromes in pediatric onset systemic lupus erythematosus. J Rheumatol 2002;29:15361542.Google Scholar
Tay, SH, Mak, A. Comment on: Diagnosing and attributing neuropsychiatric events to systemic lupus erythematosus: time to untie the Gordian Knot?: Reply. Rheumatology (Oxford) 2017;56:857859.Google Scholar
Hanly, JG, Su, L, Urowitz, MB, et al. Mood disorders in systemic lupus erythematosus: results from an international inception cohort study. Arthritis Rheumatol 2015;67:18371847.Google Scholar
Tay, SH, Cheung, PP, Mak, A. Active disease is independently associated with more severe anxiety rather than depressive symptoms in patients with systemic lupus erythematosus. Lupus 2015;24:13921399.Google Scholar
Sherer, Y, Gorstein, A, Fritzler, MJ, Shoenfeld, Y. Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum 2004;34:501537.Google Scholar
Zandman-Goddard, G, Chapman, J, Shoenfeld, Y. Autoantibodies involved in neuropsychiatric SLE and antiphospholipid syndrome. Semin Arthritis Rheum 2007;36:297315.Google Scholar
Hanly, JG, Urowitz, MB, Su, L, et al. Autoantibodies as biomarkers for the prediction of neuropsychiatric events in systemic lupus erythematosus. Ann Rheum Dis 2011;70:17261732.Google Scholar
Press, J, Palayew, K, Laxer, RM, et al. Antiribosomal P antibodies in pediatric patients with systemic lupus erythematosus and psychosis. Arthritis Rheum 1996;39:671676.Google Scholar
Sciascia, S, Bertolaccini, ML, Roccatello, D, Khamashta, MA, Sanna, G. Autoantibodies involved in neuropsychiatric manifestations associated with systemic lupus erythematosus: a systematic review. J Neurol 2014;261:17061714.Google Scholar
Gaburo, N Jr, de Carvalho, JF, Timo-Iaria, CIM, et al. Electrophysiological dysfunction induced by anti-ribosomal P protein antibodies injection into the lateral ventricle of the rat brain. Lupus 2017;26:463469.Google Scholar
Huerta, PT, Kowal, C, DeGiorgio, LA, Volpe, BT, Diamond, B. Immunity and behavior: antibodies alter emotion. Proc Natl Acad Sci USA 2006;103:678683.Google Scholar
Tin, SK, Xu, Q, Thumboo, J, et al. Novel brain reactive autoantibodies: prevalence in systemic lupus erythematosus and association with psychoses and seizures. J Neuroimmunol 2005;169:153160.Google Scholar
Varley, JA, Andersson, M, Grant, E, et al. Absence of neuronal autoantibodies in neuropsychiatric systemic lupus erythematosus. Ann Neurol 2020;88:12441250.Google Scholar
Haselmann, H, Mannara, F, Werner, C, et al. Human autoantibodies against the AMPA receptor subunit GluA2 induce receptor reorganization and memory dysfunction. Neuron 2018;100:91105.Google Scholar
Petit-Pedrol, M, Sell, J, Planaguma, J, et al. LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory. Brain 2018;141:31443159.Google Scholar
Carceles-Cordon, M, Mannara, F, Aguilar, E, et al. NMDAR antibodies alter dopamine receptors and cause psychotic behavior in mice. Ann Neurol 2020;88:603613.Google Scholar

References

Vitaliani, R, Mason, W, Ances, B, et al. Paraneoplastic encephalitis, psychiatric symptoms, and hypoventilation in ovarian teratoma. Ann Neurol 2005;58:594604.Google Scholar
Dalmau, J, Armangue, T, Planaguma, J, et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol 2019;18:10451057.Google Scholar
Kayser, MS, Titulaer, MJ, Gresa-Arribas, N, Dalmau, J. Frequency and characteristics of isolated psychiatric episodes in anti-N-methyl-D-aspartate receptor encephalitis. JAMA Neurol 2013;70:11331139.CrossRefGoogle ScholarPubMed
Chapman, MR, Vause, HE. Anti-NMDA receptor encephalitis: diagnosis, psychiatric presentation, and treatment. Am J Psychiatry 2011;168:245251.CrossRefGoogle ScholarPubMed
Warren, N, Siskind, D, O’Gorman, C. Refining the psychiatric syndrome of anti-N-methyl-D-aspartate receptor encephalitis. Acta Psychiatr Scand 2018;138:401408.Google Scholar
Sarkis, RA, Coffey, MJ, Cooper, JJ, Hassan, I, Lennox, B. Anti-N-methyl-D-aspartate receptor encephalitis: a review of psychiatric phenotypes and management considerations – a report of the American Neuropsychiatric Association Committee on Research. J Neuropsychiatry Clin Neurosci 2019;31:137142.Google Scholar
Al-Diwani, A, Handel, A, Townsend, L, et al. The psychopathology of NMDAR-antibody encephalitis in adults: a systematic review and phenotypic analysis of individual patient data. Lancet Psychiatry 2019;6:235246.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157165.Google Scholar
Dalmau, J, Gleichman, AJ, Hughes, EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008;7:10911098.Google Scholar
Irani, SR, Bera, K, Waters, P, et al. N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 2010;133:16551667.Google Scholar
Viaccoz, A, Desestret, V, Ducray, F, et al. Clinical specificities of adult male patients with NMDA receptor antibodies encephalitis. Neurology 2014;82:556563.Google Scholar
Florance, NR, Davis, RL, Lam, C, et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol 2009;66:1118.Google Scholar
Armangue, T, Titulaer, MJ, Malaga, I, et al. Pediatric anti-N-methyl-D-aspartate receptor encephalitis: clinical analysis and novel findings in a series of 20 patients. J Pediatr 2013;162:850856.Google Scholar
Mohammad, SS, Jones, H, Hong, M, et al. Symptomatic treatment of children with anti-NMDAR encephalitis. Dev Med Child Neurol 2016;58:376384.Google Scholar
Dale, RC, Irani, SR, Brilot, F, et al. N-methyl-D-aspartate receptor antibodies in pediatric dyskinetic encephalitis lethargica. Ann Neurol 2009;66:704709.Google Scholar
Schumacher, LT, Mann, AP, MacKenzie, JG. Agitation management in pediatric males with anti-N-methyl-D-aspartate receptor encephalitis. J Child Adolesc Psychopharmacol 2016;26:939943.Google Scholar
Florance-Ryan, N, Dalmau, J. Update on anti-N-methyl-D-aspartate receptor encephalitis in children and adolescents. Curr Opin Pediatr 2010;22:739744.Google Scholar
Lejuste, F, Thomas, L, Picard, G, et al. Neuroleptic intolerance in patients with anti-NMDAR encephalitis. Neurol Neuroimmunol Neuroinflamm 2016;3:e280.Google Scholar
Warren, N, Grote, V, O’Gorman, C, Siskind, D. Electroconvulsive therapy for anti-N-methyl-d-aspartate (NMDA) receptor encephalitis: a systematic review of cases. Brain Stimul 2019;12:329334.Google Scholar
Ariño, H, Muñoz-Lopetegi, A, Martinez-Hernandez, E, et al. Sleep disorders in anti-NMDAR encephalitis. Neurology 2020;95:e671e684.Google Scholar
Gibson, LL, Pollak, TA, Blackman, G, et al. The psychiatric phenotype of anti-NMDA receptor encephalitis. J Neuropsychiatry Clin Neurosci 2019;31:7079.Google Scholar
Gine Serven, E, Boix Quintana, E, Martinez Ramirez, M, et al. Cycloid psychosis as a psychiatric expression of anti-NMDAR encephalitis: a systematic review of case reports accomplished with the authors’ cooperation. Brain Behav 2021;11:e01980.Google Scholar
Perris, C. A study of cycloid psychoses. Acta Psychiatr Scand Suppl 1974;253:177.Google Scholar
Brockington, IF, Perris, C, Kendell, RE, Hillier, VE, Wainwright, S. The course and outcome of cycloid psychosis. Psychol Med 1982;12:97105.Google Scholar
Roliz A, Shah Y, Morse A, et al., Clinical features of paediatric and adult autoimmune encephalitis: A multicenter sample. Eur J Paediatr Neurol. 2021;30:82–87.Google Scholar
Munoz-Lopetegi, A, Graus, F, Dalmau, J, Santamaria, J. Sleep disorders in autoimmune encephalitis. Lancet Neurol 2020;19:10101022.Google Scholar
Ochoa, S, Usall, J, Cobo, J, Labad, X, Kulkarni, J. Gender differences in schizophrenia and first-episode psychosis: a comprehensive literature review. Schizophr Res Treatment 2012;2012:916198.Google Scholar
Gresa-Arribas, N, Titulaer, MJ, Torrents, A, et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol 2014;13:167177.Google Scholar
Sonderen, AV, Arends, S, Tavy, DLJ, et al. Predictive value of electroencephalography in anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry 2018;89:11011106.Google Scholar
Schmitt, SE, Pargeon, K, Frechette, ES, et al. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology 2012;79:10941100.Google Scholar
Peer, M, Pruss, H, Ben-Dayan, I, et al. Functional connectivity of large-scale brain networks in patients with anti-NMDA receptor encephalitis: an observational study. Lancet Psychiatry 2017;4:768774.Google Scholar
Finke, C, Kopp, UA, Pajkert, A, et al. Structural hippocampal damage following anti-N-methyl-D-aspartate receptor encephalitis. Biol Psychiatry 2016;79:727734.Google Scholar
Phillips, OR, Joshi, SH, Narr, KL, et al. Superficial white matter damage in anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry 2018;89:518525.Google Scholar
Leypoldt, F, Buchert, R, Kleiter, I, et al. Fluorodeoxyglucose positron emission tomography in anti-N-methyl-D-aspartate receptor encephalitis: distinct pattern of disease. J Neurol Neurosurg Psychiatry 2012;83:681686.Google Scholar
Probasco, JC, Solnes, L, Nalluri, A, et al. Abnormal brain metabolism on FDG-PET/CT is a common early finding in autoimmune encephalitis. Neurol Neuroimmunol Neuroinflamm 2017;4:e352.Google Scholar
Endres, D, Perlov, E, Stich, O, et al. Hypoglutamatergic state is associated with reduced cerebral glucose metabolism in anti-NMDA receptor encephalitis: a case report. BMC Psychiatry 2015;15:186.Google Scholar
Heresco-Levy, U, Durrant, AR, Ermilov, M, et al. Clinical and electrophysiological effects of D-serine in a schizophrenia patient positive for anti-N-methyl-D-aspartate receptor antibodies. Biol Psychiatry 2015;77:e2729.Google Scholar
Sansing, LH, Tuzun, E, Ko, MW, et al. A patient with encephalitis associated with NMDA receptor antibodies. Nat Clin Pract Neurol 2007;3:291296.Google Scholar
Mohammad, SS, Wallace, G, Ramanathan, S, Brilot, F, Dale, RC. Antipsychotic-induced akathisia and neuroleptic malignant syndrome in anti-NMDAR encephalitis. Ann Clin Psychiatry 2014;26:297298.Google Scholar
Wang, HY, Li, T, Li, XL, et al. Anti-N-methyl-D-aspartate receptor encephalitis mimics neuroleptic malignant syndrome: case report and literature review. Neuropsychiatr Dis Treat 2019;15:773778.Google Scholar
Berg, A, Byrne, R, Coffey, BJ. Neuroleptic malignant syndrome in a boy with NMDA receptor encephalitis. J Child Adolesc Psychopharmacol 2015;25:368371.Google Scholar
Kiani, R, Lawden, M, Eames, P, et al. Anti-NMDA-receptor encephalitis presenting with catatonia and neuroleptic malignant syndrome in patients with intellectual disability and autism. BJPsych Bull 2015;39:3235.Google Scholar
Rozier, M, Morita, D, King, M. Anti-N-methyl-D-aspartate receptor encephalitis: a potential mimic of neuroleptic malignant syndrome. Pediatr Neurol 2016;63:7172.Google Scholar
Caroff, SN. Phenomenology and management of encephalitis. J Neuropsychiatry Clin Neurosci 2019;31:399.Google Scholar
Sarkis, RA. Risk of Neuroleptic malignant syndrome in encephalitides: response to Caroff. J Neuropsychiatry Clin Neurosci 2019;31:400.Google Scholar
Hughes, EG, Peng, X, Gleichman, AJ, et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci 2010;30:58665875.Google Scholar
Ladepeche, L, Dupuis, JP, Bouchet, D, et al. Single-molecule imaging of the functional crosstalk between surface NMDA and dopamine D1 receptors. Proc Natl Acad Sci USA 2013;110:1800518010.Google Scholar
Grea, H, Bouchet, D, Rogemond, V, et al. Human autoantibodies against N-methyl-D-aspartate receptor modestly alter dopamine D1 receptor surface Dynamics. Front Psychiatry 2019;10:670.Google Scholar
Carceles-Cordon, M, Mannara, F, Aguilar, E, et al. NMDAR antibodies alter dopamine receptors and cause psychotic behavior in mice. Ann Neurol 2020;88:603613.Google Scholar
Kayser, MS, Dalmau, J. Anti-NMDA receptor encephalitis in psychiatry. Curr Psychiatry Rev 2011;7:189193.Google Scholar
Baizabal-Carvallo, JF, Stocco, A, Muscal, E, Jankovic, J. The spectrum of movement disorders in children with anti-NMDA receptor encephalitis. Mov Disord 2013;28:543547.Google Scholar
Sunwoo, JS, Jung, DC, Choi, JY, et al. Successful treatment of refractory dyskinesia secondary to anti-N-methyl-D-aspartate receptor encephalitis with electroconvulsive therapy. J ECT 2016;32:e1314.Google Scholar
Cooper, JJ, Afzal, KI. Safety of electroconvulsive therapy in 2 very young pediatric patients with catatonia related to anti-N-methyl-D-aspartate receptor encephalitis. J ECT 2019;35:216217.Google Scholar
Moussa, T, Afzal, K, Cooper, J, et al. Pediatric anti-NMDA receptor encephalitis with catatonia: treatment with electroconvulsive therapy. Pediatr Rheumatol Online J 2019;17:8.Google Scholar
Medina, M, Cooper, JJ. Refractory catatonia due to N-methyl-D-aspartate receptor encephalitis responsive to electroconvulsive therapy: the clinical use of the clock drawing test. J ECT 2017;33:223224.Google Scholar
Matsumoto, T, Matsumoto, K, Kobayashi, T, Kato, S. Electroconvulsive therapy can improve psychotic symptoms in anti-NMDA-receptor encephalitis. Psychiatry Clin Neurosci 2012;66:242243.Google Scholar
Braakman, HM, Moers-Hornikx, VM, Arts, BM, Hupperts, RM, Nicolai, J. Pearls & oysters: electroconvulsive therapy in anti-NMDA receptor encephalitis. Neurology 2010;75:e44e46.Google Scholar
Coffey, MJ, Cooper, JJ. Electroconvulsive therapy in anti-N-methyl-D-aspartate receptor encephalitis: a case report and review of the literature. J ECT 2016;32:225229.Google Scholar
Creten, C, van der Zwaan, S, Blankespoor, RJ, et al. Late onset autism and anti-NMDA-receptor encephalitis. Lancet 2011;378:98.Google Scholar
Gonzalez-Valcarcel, J, Rosenfeld, MR, Dalmau, J. [Differential diagnosis of encephalitis due to anti-NMDA receptor antibodies]. Neurologia 2010;25:409413.Google Scholar
Dalmau, J, Graus, F, Rosenblum, MK, Posner, JB. Anti-Hu-associated paraneoplastic encephalomyelitis/sensory neuronopathy: a clinical study of 71 patients. Medicine (Baltimore) 1992;71:5972.Google Scholar
Alamowitch, S, Graus, F, Uchuya, M, et al. Limbic encephalitis and small cell lung cancer. Clinical and immunological features. Brain 1997;120(Pt 6):923928.Google Scholar
Dalmau, J, Graus, F, Villarejo, A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127:18311844.Google Scholar
Yu, Z, Kryzer, TJ, Griesmann, GE, et al. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol 2001;49:146154.Google Scholar
Moss, HE, Liu, GT, Dalmau, J. Glazed (vision) and confused. Surv Ophthalmol 2009;55:169173.Google Scholar
Antoine, JC, Absi, L, Honnorat, J, et al. Antiamphiphysin antibodies are associated with various paraneoplastic neurological syndromes and tumors. Arch Neurol 1999;56:172177.Google Scholar
Moon, J, Lee, ST, Shin, JW, et al. Non-stiff anti-amphiphysin syndrome: clinical manifestations and outcome after immunotherapy. J Neuroimmunol 2014;274:209214.Google Scholar
Peterson, K, Rosenblum, MK, Kotanides, H, Posner, JB. Paraneoplastic cerebellar degeneration: I. A clinical analysis of 55 anti-Yo antibody-positive patients. Neurology 1992;42:19311937.Google Scholar
McKeon, A, Tracy, JA, Pittock, SJ, et al. Purkinje cell cytoplasmic autoantibody type 1 accompaniments: the cerebellum and beyond. Arch Neurol 2011;68:12821289.Google Scholar
Ances, BM, Vitaliani, R, Taylor, RA, et al. Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates. Brain 2005;128:17641777.Google Scholar
Hoftberger, R, van Sonderan, A, Leypoldt, F, et al. Encephalitis and AMPA receptor antibodies: novel findings in a case series of 22 patients. Neurology 2015;84:24032412.Google Scholar
Hoftberger, R, Titulaer, MJ, Sabater, L, et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology 2013;81:15001506.Google Scholar
Lai, M, Huijbers, MG, Lancaster, E, et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 2010;9:776785.Google Scholar
Irani, SR, Alexander, S, Waters, P, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 2010;133:27342748.Google Scholar
van Sonderen, A, Arino, H, Petit-Pedrol, M, et al. The clinical spectrum of Caspr2 antibody-associated disease. Neurology 2016;87:521528.Google Scholar
Spatola, M, Petit-Pedrol, M, Simabukuro, MM, et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology 2017;88:10121020.Google Scholar
Joubert, B, Kerschen, P, Zekeridou, A, et al. Clinical spectrum of encephalitis associated with antibodies against the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor: case series and review of the literature. JAMA Neurol 2015;72:11631169.Google Scholar
Lancaster, E, Lai, M, Peng, X, et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol 2010;9:6776.Google Scholar
Jeffery, OJ, Lennon, VA, Pittock, SJ, et al. GABAB receptor autoantibody frequency in service serologic evaluation. Neurology 2013;81:882887.Google Scholar
Arino, H, Armangue, T, Petit-Pedrol, M, et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 2016;87:759765.Google Scholar
Pollak, TA, Moran, N. Emergence of new-onset psychotic disorder following recovery from LGI1 antibody-associated limbic encephalitis. BMJ Case Rep 2017;2017:bcr2016218328.Google Scholar
Somers, KJ, Lennon, VA, Rundell, JR, et al. Psychiatric manifestations of voltage-gated potassium-channel complex autoimmunity. J Neuropsychiatry Clin Neurosci 2011;23:425433.Google Scholar
Irani, SR, Pettingill, P, Kleopa, KA, et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann Neurol 2012;72:241255.Google Scholar
Spatola, M, Sabater, L, Planaguma, J, et al. Encephalitis with mGluR5 antibodies: symptoms and antibody effects. Neurology 2018;90:e1964e1972.Google Scholar
Dale, RC, Merheb, V, Pillai, S, et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain 2012;135:34533468.Google Scholar
Boronat, A, Gelfand, JM, Gresa-Arribas, N, et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol 2013;73:120128.Google Scholar
Tobin, WO, Lennon, VA, Komorowski, L, et al. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 2014;83:17971803.Google Scholar
Hara, M, Arino, H, Petit-Pedrol, M, et al. DPPX antibody-associated encephalitis: main syndrome and antibody effects. Neurology 2017;88:13401348.Google Scholar
Petit-Pedrol, M, Armangue, T, Peng, X, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol 2014;13:276286.Google Scholar
Pettingill, P, Kramer, HB, Coebergh, JA, et al. Antibodies to GABAA receptor alpha1 and gamma2 subunits: clinical and serologic characterization. Neurology 2015;84:12331241.Google Scholar
Gresa-Arribas, N, Planaguma, J, Petit-Pedrol, M, et al. Human neurexin-3alpha antibodies associate with encephalitis and alter synapse development. Neurology 2016;86:22352242.Google Scholar
Laurido-Soto, O, Brier, MR, Simon, LE, et al. Patient characteristics and outcome associations in AMPA receptor encephalitis. J Neurol 2019;266:450460.Google Scholar
Armangue, T, Spatola, M, Vlagea, A, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 2018;17:760772.Google Scholar
Mohammad, SS, Sinclair, K, Pillai, S, et al. Herpes simplex encephalitis relapse with chorea is associated with autoantibodies to N-methyl-D-aspartate receptor or dopamine-2 receptor. Mov Disord 2014;29:117122.Google Scholar
Hacohen, Y, Deiva, K, Pettingill, P, et al. N-methyl-D-aspartate receptor antibodies in post-herpes simplex virus encephalitis neurological relapse. Mov Disord 2014;29:9096.Google Scholar
Armangue, T, Leypoldt, F, Malaga, I, et al. Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann Neurol 2014;75:317323.Google Scholar
Leypoldt, F, Titulaer, MJ, Aguilar, E, et al. Herpes simplex virus-1 encephalitis can trigger anti-NMDA receptor encephalitis: case report. Neurology 2013;81:16371639.Google Scholar
Ma, J, Han, W, Jiang, L. Japanese encephalitis-induced anti-N-methyl-d-aspartate receptor encephalitis: a hospital-based prospective study. Brain Dev 2020;42:179184.Google Scholar
Tian, M, Li, J, Lei, W, Shu, X. Japanese encephalitis virus-induced anti-N-methyl-D-aspartate receptor encephalitis: a case report and review of literature. Neuropediatrics 2019;50:111115.Google Scholar
Schabitz, WR, Rogalewski, A, Hagemeister, C, Bien, CG. VZV brainstem encephalitis triggers NMDA receptor immunoreaction. Neurology 2014;83:23092311.Google Scholar

References

Jankovic, J. Movement disorders in 2016: progress in Parkinson disease and other movement disorders. Nat Rev Neurol 2017;13:7678.Google Scholar
Balint, B, Vincent, A, Meinck, HM, Irani, SR, Bhatia, KP. Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology. Brain 2018;141:1336.Google Scholar
Dalmau, J, Geis, C, Graus, F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev 2017;97:839887.Google Scholar
Baizabal-Carvallo, JF, Jankovic, J. Autoimmune and paraneoplastic movement disorders: an update. J Neurol Sci 2018;385:175184.Google Scholar
Caviness, JN, Forsyth, PA, Layton, DD, McPhee, TJ. The movement disorder of adult opsoclonus. Mov Disord 1995;10:2227.Google Scholar
Irani, SR, Michell, AW, Lang, B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011;69:892900.Google Scholar
Hara, M, Arino, H, Petit-Pedrol, M, et al. DPPX antibody-associated encephalitis: main syndrome and antibody effects. Neurology 2017;88:13401348.Google Scholar
Gaig, C, Iranzo, A, Cajochen, C, et al. Characterization of the sleep disorder of anti-IgLON5 disease. Sleep 2019;42:zsz133.Google Scholar
Gaig, C, Compta, Y. Neurological profiles beyond the sleep disorder in patients with anti-IgLON5 disease. Curr Opin Neurol 2019;32:493499.Google Scholar
Dalmau, J, Graus, F, Villarejo, A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127:18311844.Google Scholar
Escudero, D, Guasp, M, Arino, H, et al. Antibody-associated CNS syndromes without signs of inflammation in the elderly. Neurology 2017;89:14711475.Google Scholar
Ali, F, Wijdicks, EF. Treatment of movement disorder emergencies in autoimmune encephalitis in the neurosciences ICU. Neurocrit Care 2020;32:286294.Google Scholar
Cardoso, F, Seppi, K, Mair, KJ, Wenning, GK, Poewe, W. Seminar on choreas. Lancet Neurol 2006;5:589602.Google Scholar
Sanger, TD, Chen, D, Fehlings, DL, et al. Definition and classification of hyperkinetic movements in childhood. Mov Disord 2010;25:15381549.Google Scholar
Florance, NR, Davis, RL, Lam, C, et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol 2009;66:1118.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157165.Google Scholar
Duan, BC, Weng, WC, Lin, KL, et al. Variations of movement disorders in anti-N-methyl-D-aspartate receptor encephalitis: a nationwide study in Taiwan. Medicine (Baltimore) 2016;95:e4365.Google Scholar
Baizabal-Carvallo, JF, Stocco, A, Muscal, E, Jankovic, J. The spectrum of movement disorders in children with anti-NMDA receptor encephalitis. Mov Disord 2013;28:543547.Google Scholar
Varley, JA, Webb, AJS, Balint, B, et al. The movement disorder associated with NMDAR antibody-encephalitis is complex and characteristic: an expert video-rating study. J Neurol Neurosurg Psychiatry 2019;90:724726.Google Scholar
Uchino, A, Iizuka, T, Urano, Y, et al. Pseudo-piano playing motions and nocturnal hypoventilation in anti-NMDA receptor encephalitis: response to prompt tumor removal and immunotherapy. Intern Med 2011;50:627630.Google Scholar
Armangue, T, Spatola, M, Vlagea, A, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 2018;17:760772.Google Scholar
Mohammad, SS, Sinclair, K, Pillai, S, et al. Herpes simplex encephalitis relapse with chorea is associated with autoantibodies to N-methyl-D-aspartate receptor or dopamine-2 receptor. Mov Disord 2014;29:117122.Google Scholar
Erer Ozbek, S, Yapici, Z, Tuzun, E, et al. A case of hyperkinetic movement disorder associated with LGI1 antibodies. Turkish J Pediatr 2015;57:514517.Google Scholar
Lopez-Chiriboga, AS, Klein, C, Zekeridou, A, et al. LGI1 and CASPR2 neurological autoimmunity in children. Ann Neurol 2018;84:473480.Google Scholar
Armangue, T, Titulaer, MJ, Malaga, I, et al. Pediatric anti-N-methyl-D-aspartate receptor encephalitis: clinical analysis and novel findings in a series of 20 patients. J Pediatr 2013;162:850856.Google Scholar
Dale, RC, Merheb, V, Pillai, S, et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain 2012;135:34533468.Google Scholar
Dale, RC, Church, AJ, Surtees, RA, et al. Encephalitis lethargica syndrome: 20 new cases and evidence of basal ganglia autoimmunity. Brain 2004;127:2133.Google Scholar
Dale, RC, Irani, SR, Brilot, F, et al. N-methyl-D-aspartate receptor antibodies in pediatric dyskinetic encephalitis lethargica. Ann Neurol 2009;66:704709.Google Scholar
Sinmaz, N, Tea, F, Pilli, D, et al. Dopamine-2 receptor extracellular N-terminus regulates receptor surface availability and is the target of human pathogenic antibodies from children with movement and psychiatric disorders. Acta neuropathologica communications 2016;4:126.Google Scholar
Kirvan, CA, Swedo, SE, Kurahara, D, Cunningham, MW. Streptococcal mimicry and antibody-mediated cell signaling in the pathogenesis of Sydenham’s chorea. Autoimmunity 2006;39:2129.Google Scholar
Cunningham, MW, Cox, CJ. Autoimmunity against dopamine receptors in neuropsychiatric and movement disorders: a review of Sydenham chorea and beyond. Acta physiologica (Oxford, England) 2016;216:90100.Google Scholar
Cardoso, F. Autoimmune choreas. J Neurol Neurosurg Psychiatry 2017;88:412417.Google Scholar
Cardoso, F, Eduardo, C, Silva, AP, Mota, CC. Chorea in fifty consecutive patients with rheumatic fever. Mov Disord 1997;12:701703.Google Scholar
Maia, DP, Teixeira, AL Jr, Quintao Cunningham, MC, Cardoso, F. Obsessive compulsive behavior, hyperactivity, and attention deficit disorder in Sydenham chorea. Neurology 2005;64:17991801.Google Scholar
Singer, HS. Autoantibody-associated movement disorders in children: proven and proposed. Semin Pediatr Neurol 2017;24:168179.Google Scholar
Brilot, F, Merheb, V, Ding, A, Murphy, T, Dale, RC. Antibody binding to neuronal surface in Sydenham chorea, but not in PANDAS or Tourette syndrome. Neurology 2011;76:15081513.Google Scholar
Wilbur, C, Bitnun, A, Kronenberg, S, et al. PANDAS/PANS in childhood: Controversies and evidence. Paediatr Child Health 2019;24:8591.Google Scholar
Weiner, SG, Normandin, PA. Sydenham chorea: a case report and review of the literature. Pediatr Emerg Care 2007;23:2024.Google Scholar
Elevli, M, Celebi, A, Tombul, T, Gokalp, AS. Cardiac involvement in Sydenham’s chorea: clinical and Doppler echocardiographic findings. Acta Paediatr 1999;88:10741077.Google Scholar
Gurkas, E, Karalok, ZS, Taskin, BD, et al. Predictors of recurrence in Sydenham’s chorea: clinical observation from a single center. Brain Dev 2016;38:827834.Google Scholar
Cardoso, F, Vargas, AP, Oliveira, LD, Guerra, AA, Amaral, SV. Persistent Sydenham’s chorea. Mov Disord 1999;14:805807.Google Scholar
Korn-Lubetzki, I, Brand, A. Sydenham’s chorea in Jerusalem: still present. Israel Med Assoc J 2004;6:460462.Google Scholar
Dean, SL, Singer, HS. Treatment of Sydenham’s chorea: a review of the current evidence. Tremor Other Hyperkinet Mov 2017;7:456.Google Scholar
Pena, J, Mora, E, Cardozo, J, Molina, O, Montiel, C. Comparison of the efficacy of carbamazepine, haloperidol and valproic acid in the treatment of children with Sydenham’s chorea: clinical follow-up of 18 patients. Arq Neuropsiquiatr 2002;60:374377.Google Scholar
Genel, F, Arslanoglu, S, Uran, N, Saylan, B. Sydenham’s chorea: clinical findings and comparison of the efficacies of sodium valproate and carbamazepine regimens. Brain Dev 2002;24:7376.Google Scholar
Teixeira, AL, Cardoso, F, Maia, DP, Cunningham, MC. Sydenham’s chorea may be a risk factor for drug induced parkinsonism. J Neurol Neurosurg Psychiatry 2003;74:13501351.Google Scholar
Paz, JA, Silva, CA, Marques-Dias, MJ. Randomized double-blind study with prednisone in Sydenham’s chorea. Pediatr Neurol 2006;34:264269.Google Scholar
Garvey, MA, Snider, LA, Leitman, SF, Werden, R, Swedo, SE. Treatment of Sydenham’s chorea with intravenous immunoglobulin, plasma exchange, or prednisone. J Child Neurol 2005;20:424429.Google Scholar
Husby, G, van de Rijn, I, Zabriskie, JB, Abdin, ZH, Williams, RC Jr. Antibodies reacting with cytoplasm of subthalamic and caudate nuclei neurons in chorea and acute rheumatic fever. J Exp Med 1976;144:10941110.Google Scholar
Singer, HS, Loiselle, CR, Lee, O, Garvey, MA, Grus, FH. Anti-basal ganglia antibody abnormalities in Sydenham chorea. J Neuroimmunol 2003;136:154161.Google Scholar
Kirvan, CA, Swedo, SE, Heuser, JS, Cunningham, MW. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat Med 2003;9:914920.Google Scholar
Kirvan, CA, Cox, CJ, Swedo, SE, Cunningham, MW. Tubulin is a neuronal target of autoantibodies in Sydenham’s chorea. J Immunol 2007;178:74127421.Google Scholar
Shimasaki, C, Frye, RE, Trifiletti, R, et al. Evaluation of the Cunningham Panel in pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS) and pediatric acute-onset neuropsychiatric syndrome (PANS): changes in antineuronal antibody titers parallel changes in patient symptoms. J Neuroimmunol 2019;339:577138.Google Scholar
Hesselmark, E, Bejerot, S. Biomarkers for diagnosis of Pediatric Acute Neuropsychiatric Syndrome (PANS): sensitivity and specificity of the Cunningham Panel. J Neuroimmunol 2017;312:3137.Google Scholar
O’Toole, O, Lennon, VA, Ahlskog, JE, et al. Autoimmune chorea in adults. Neurology 2013;80:11331144.Google Scholar
Lamby, N, Leypoldt, F, Schulz, JB, Tauber, SC. Atypical presentation of anti-Ma2-associated encephalitis with choreiform movement. Neurol Neuroimmunol Neuroinflamm 2019;6:e557.Google Scholar
Asherson, RA, Derksen, RH, Harris, EN, et al. Chorea in systemic lupus erythematosus and ‘lupus-like’ disease: association with antiphospholipid antibodies. Semin Arthritis Rheumat 1987;16:253259.Google Scholar
Cervera, R, Piette, JC, Font, J, et al. Antiphospholipid syndrome: clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients. Arthritis Rheum 2002;46:10191027.Google Scholar
Cervera, R, Asherson, RA, Font, J, et al. Chorea in the antiphospholipid syndrome. Clinical, radiologic, and immunologic characteristics of 50 patients from our clinics and the recent literature. Medicine (Baltimore) 1997;76:203212.Google Scholar
Reiner, P, Galanaud, D, Leroux, G, et al. Long-term outcome of 32 patients with chorea and systemic lupus erythematosus or antiphospholipid antibodies. Mov Disord 2011;26:24222427.Google Scholar
Dale, RC, Yin, K, Ding, A, et al. Antibody binding to neuronal surface in movement disorders associated with lupus and antiphospholipid antibodies. Dev Med Child Neurol 2011;53:522528.Google Scholar
Vigliani, MC, Honnorat, J, Antoine, JC, et al. Chorea and related movement disorders of paraneoplastic origin: the PNS EuroNetwork experience. J Neurol 2011;258:20582068.Google Scholar
Vernino, S, Tuite, P, Adler, CH, et al. Paraneoplastic chorea associated with CRMP-5 neuronal antibody and lung carcinoma. Ann Neurol 2002;51:625630.Google Scholar
Kujawa, KA, Niemi, VR, Tomasi, MA, et al. Ballistic-choreic movements as the presenting feature of renal cancer. Arch Neurol 2001;58:11331135.Google Scholar
Sheen, VL, Asimakopoulos, F, Heyman, E, Henderson, G, Feske, SK. Hemichorea as a presentation of recurrent non-Hodgkin’s lymphoma. J Neurol 2002;249:17461748.Google Scholar
Kopecky, J, Kubecek, O, Geryk, T, et al. Nivolumab induced encephalopathy in a man with metastatic renal cell cancer: a case report. J Med Case Rep 2018;12:262.Google Scholar
Gupta, HV, Gervais, C, Ross, MA, Mehta, SH. Purkinje cell cytoplasmic antibody (PCA-2)-related chorea-dystonia syndrome. Tremor Other Hyperkinet Mov 2016;6:420.Google Scholar
Goldstein, L, Djaldetti, R, Benninger, F. Anti-Yo, chorea and hemiballismus: a case report. J Clin Neurosci 2017;42:113114.Google Scholar
Feinstein, E, Walker, R. An update on the treatment of chorea. Curr Treat Options Neurol 2018;20:44.Google Scholar
Gaig, C, Graus, F, Compta, Y, et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 2017;88:17361743.Google Scholar
Simabukuro, MM, Sabater, L, Adoni, T, et al. Sleep disorder, chorea, and dementia associated with IgLON5 antibodies. Neurol Neuroimmunol Neuroinflamm 2015;2:e136.Google Scholar
Haitao, R, Yingmai, Y, Yan, H, et al. Chorea and parkinsonism associated with autoantibodies to IgLON5 and responsive to immunotherapy. J Neuroimmunol 2016;300:910.Google Scholar
Dalmau, J, Graus, F. Antibody-mediated encephalitis. N Engl J Med 2018;378:840851.Google Scholar
Tofaris, GK, Irani, SR, Cheeran, BJ, et al. Immunotherapy-responsive chorea as the presenting feature of LGI1-antibody encephalitis. Neurology 2012;79:195196.Google Scholar
Ramdhani, RA, Frucht, SJ. Isolated chorea associated with LGI1 antibody. Tremor Other Hyperkinet Mov 2014;4:tre-04-213-4821-1.Google Scholar
Colletta, K, Kartha, N, Chawla, J. Paraneoplastic puzzle: an unusual case of hemichorea, renal cell carcinoma, and LGI1 antibody. Mov Disord Clin Pract 2018;5:337338.Google Scholar
Edwards, MJ, Lang, AE, Bhatia, KP. Stereotypies: a critical appraisal and suggestion of a clinically useful definition. Mov Disord 2012;27:179185.Google Scholar
Baizabal-Carvallo, JF, Stocco, A, Muscal, E, Jankovic, J. The spectrum of movement disorders in children with anti-NMDA receptor encephalitis. Mov Disord 2013;28:543547.Google Scholar
Mohammad, SS, Fung, VS, Grattan-Smith, P, et al. Movement disorders in children with anti-NMDAR encephalitis and other autoimmune encephalopathies. Mov Disord 2014;29:15391542.Google Scholar
Spatola, M, Petit-Pedrol, M, Simabukuro, MM, et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology 2017;88:10121020.Google Scholar
Morales-Briceno, H, Cruse, B, Fois, AF, et al. IgLON5-mediated neurodegeneration is a differential diagnosis of CNS Whipple disease. Neurology 2018;90:11131115.Google Scholar
Vetter, E, Olmes, DG, Linker, R, Seifert, F. Teaching video NeuroImages: facial myokymia and myorhythmia in anti-IgLON5 disease – the bitten lip. Neurology 2018;91:e1659.Google Scholar
Erro, ME, Sabater, L, Martinez, L, et al. Anti-IGLON5 disease: a new case without neuropathologic evidence of brainstem tauopathy. Neurol Neuroimmunol Neuroinflamm 2020;7:e651.Google Scholar
Baizabal-Carvallo, JF, Cardoso, F, Jankovic, J. Myorhythmia: phenomenology, etiology, and treatment. Mov Disord 2015;30:171179.Google Scholar
Honorat, JA, Komorowski, L, Josephs, KA, et al. IgLON5 antibody: neurological accompaniments and outcomes in 20 patients. Neurol Neuroimmunol Neuroinflamm 2017;4:e385.Google Scholar
Simpson, DA, Wishnow, R, Gargulinski, RB, Pawlak, AM. Oculofacial-skeletal myorhythmia in central nervous system Whipple’s disease: additional case and review of the literature. Mov Disord 1995;10:195200.Google Scholar
Schwartz, MA, Selhorst, JB, Ochs, AL, et al. Oculomasticatory myorhythmia: a unique movement disorder occurring in Whipple’s disease. Ann Neurol 1986;20:677683.Google Scholar
Une, H, Matsuse, D, Uehara, T, et al. Branchial myorhythmia in a case of systemic lupus erythematosus. J Neurol Sci 2020;408:116501.Google Scholar
Pittock, SJ, Lucchinetti, CF, Lennon, VA. Anti-neuronal nuclear autoantibody type 2: paraneoplastic accompaniments. Ann Neurol 2003;53:580587.Google Scholar
Pittock, SJ, Parisi, JE, McKeon, A, et al. Paraneoplastic jaw dystonia and laryngospasm with antineuronal nuclear autoantibody type 2 (anti-Ri). Arch Neurol 2010;67:11091115.Google Scholar
Simard, C, Vogrig, A, Joubert, B, et al. Clinical spectrum and diagnostic pitfalls of neurologic syndromes with Ri antibodies. Neurol Neuroimmunol Neuroinflamm 2020;7:e699.Google Scholar
Kyskan, R, Chapman, K, Mattman, A, Sin, D. Antiglycine receptor antibody and encephalomyelitis with rigidity and myoclonus (PERM) related to small cell lung cancer. BMJ Case Rep 2013;2013:bcr2013010027.Google Scholar
Clerinx, K, Breban, T, Schrooten, M, et al. Progressive encephalomyelitis with rigidity and myoclonus: resolution after thymectomy. Neurology 2011;76:303304.Google Scholar
Sarkis, RA, Coffey, MJ, Cooper, JJ, Hassan, I, Lennox, B. Anti-N-methyl-D-aspartate receptor encephalitis: a review of psychiatric phenotypes and management considerations: a report of the American Neuropsychiatric Association Committee on Research. J Neuropsychiatr Clin Neurosci 2019;31:137142.Google Scholar
Lejuste, F, Thomas, L, Picard, G, et al. Neuroleptic intolerance in patients with anti-NMDAR encephalitis. Neurol Neuroimmunol Neuroinflamm 2016;3:e280.Google Scholar
Kurtis, MM, Toledano, R, Garcia-Morales, I, Gil-Nagel, A. Immunomodulated parkinsonism as a presenting symptom of LGI1 antibody encephalitis. Parkinsonism Relat Disord 2015;21:12861287.Google Scholar
van Sonderen, A, Thijs, RD, Coenders, EC, et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 2016;87:14491456.Google Scholar
Gadoth, A, Pittock, SJ, Dubey, D, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol 2017;82:7992.Google Scholar
Pittock, SJ, Lucchinetti, CF, Lennon, VA. Anti-neuronal nuclear autoantibody type 2: paraneoplastic accompaniments. Ann Neurol 2003;53:580587.Google Scholar
Rojas-Marcos, I, Picard, G, Chinchon, D, et al. Human epidermal growth factor receptor 2 overexpression in breast cancer of patients with anti-Yo–associated paraneoplastic cerebellar degeneration. Neuro-oncology 2012;14:506510.Google Scholar
Boxer, AL, Yu, JT, Golbe, LI, et al. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol 2017;16:552563.Google Scholar
Hoglinger, GU, Respondek, G, Stamelou, M, et al. Clinical diagnosis of progressive supranuclear palsy: the Movement Disorder Society criteria. Mov Disord 2017;32:853864.Google Scholar
Hoffmann, LA, Jarius, S, Pellkofer, HL, et al. Anti-Ma and anti-Ta associated paraneoplastic neurological syndromes: twenty-two newly diagnosed patients and review of previous cases. J Neurol Neurosurg Psychiatry 2008;79:767773.Google Scholar
Gaig, C, Compta, Y, Heidbreder, A, et al. Frequency and characterization of movement disorders in anti-IgLON5 disease. Neurology 2021;97:e1367–1381.Google Scholar
Bruggemann, N, Wandinger, KP, Gaig, C, et al. Dystonia, lower limb stiffness, and upward gaze palsy in a patient with IgLON5 antibodies. Mov Disord 2016;31:762764.Google Scholar
Bonello, M, Jacob, A, Ellul, MA, et al. IgLON5 disease responsive to immunotherapy. Neurol Neuroimmunol Neuroinflamm 2017;4:e383.Google Scholar
Schoberl, F, Levin, J, Remi, J, et al. IgLON5: a case with predominant cerebellar tau deposits and leptomeningeal inflammation. Neurology 2018;91:180182.Google Scholar
Chang, VC, Frucht, SJ. Myoclonus. Curr Treat Options Neurol 2008;10:222229.Google Scholar
Fahn, S, Marsden, CD, Van Woert, MH. Definition and classification of myoclonus. Adv Neurol 1986;43:15.Google Scholar
Shibasaki, H, Hallett, M. Electrophysiological studies of myoclonus. Muscle Nerve 2005;31:157174.Google Scholar
Shibasaki, H. Neurophysiological classification of myoclonus. Neurophysiologie clinique 2006;36:267269.Google Scholar
Geschwind, MD, Tan, KM, Lennon, VA, et al. Voltage-gated potassium channel autoimmunity mimicking Creutzfeldt–Jakob disease. Arch Neurol 2008;65:13411346.Google Scholar
Tan, KM, Lennon, VA, Klein, CJ, Boeve, BF, Pittock, SJ. Clinical spectrum of voltage-gated potassium channel autoimmunity. Neurology 2008;70:18831890.Google Scholar
Roobol, TH, Kazzaz, BA, Vecht, CJ. Segmental rigidity and spinal myoclonus as a paraneoplastic syndrome. J Neurol Neurosurg Psychiatry 1987;50:628631.Google Scholar
Pittock, SJ, Lucchinetti, CF, Parisi, JE, et al. Amphiphysin autoimmunity: paraneoplastic accompaniments. Ann Neurol 2005;58:96107.Google Scholar
Hines, H, Murray, NM, Ahmad, S, Jaradeh, S, Gold, CA. Video NeuroImages: paraneoplastic spinal myoclonus associated with Caspr2 antibodies. Neurology 2018;90:660661.Google Scholar
Govert, F, Witt, K, Erro, R, et al. Orthostatic myoclonus associated with Caspr2 antibodies. Neurology 2016;86:13531355.Google Scholar
Nanaura, H, Kataoka, H, Kiriyama, T, et al. Spinal segmental myoclonus in both legs associated with antibodies to glycine receptors. Neurol Clin Pract 2019;9:176177.Google Scholar
Bien, CG, Elger, CE. Epilepsia partialis continua: semiology and differential diagnoses. Epileptic Disord 2008;10:37.Google Scholar
Obeso, JA, Rothwell, JC, Marsden, CD. The spectrum of cortical myoclonus: from focal reflex jerks to spontaneous motor epilepsy. Brain 1985;108:193–224.Google Scholar
Cockerell, OC, Rothwell, J, Thompson, PD, Marsden, CD, Shorvon, SD. Clinical and physiological features of epilepsia partialis continua. Cases ascertained in the UK. Brain 1996;119:393–407.Google Scholar
Olson, JA, Olson, DM, Sandborg, C, Alexander, S, Buckingham, B. Type 1 diabetes mellitus and epilepsia partialis continua in a 6-year-old boy with elevated anti-GAD65 antibodies. Pediatrics 2002;109:E50.Google Scholar
Mukherjee, V, Mukherjee, A, Mukherjee, A, Halder, A. Type I diabetes mellitus in a child presenting with epilepsy partialis continua. J Indian Med Assoc 2007;105:340342.Google Scholar
Baglietto, MG, Mancardi, MM, Giannattasio, A, et al. Epilepsia partialis continua in type 1 diabetes: evolution into epileptic encephalopathy with continuous spike-waves during slow sleep. Neurol Sci 2009;30:509512.Google Scholar
Triplett, J, Vijayan, S, MacDonald, A, et al. Fulminant anti-GAD antibody encephalitis presenting with status epilepticus requiring aggressive immunosuppression. J Neuroimmunol 2018;323:119124.Google Scholar
Petit-Pedrol, M, Armangue, T, Peng, X, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol 2014;13:276286.Google Scholar
Kim, EH, Kim, YJ, Ko, TS, Yum, MS, Lee, JH. A young child of anti-NMDA receptor encephalitis presenting with epilepsia partialis continua: the first pediatric case in Korea. Korean J Pediatr 2016;59:S133S138.Google Scholar
Katsuse, K, Shimizu, G, Saito Sato, N, et al. Epilepsia partialis continua as an early sign of anti-myelin oligodendrocyte glycoprotein antibody-positive encephalitis. Intern Med (Tokyo, Japan) 2020;59:14451449.Google Scholar
Shavit, YB, Graus, F, Probst, A, Rene, R, Steck, AJ. Epilepsia partialis continua: a new manifestation of anti-Hu-associated paraneoplastic encephalomyelitis. Ann Neurol 1999;45:255258.Google Scholar
Rudzinski, LA, Pittock, SJ, McKeon, A, et al. Extratemporal EEG and MRI findings in ANNA-1 (anti-Hu) encephalitis. Epilepsy Res 2011;95:255262.Google Scholar
Khasani, S, Becker, K, Meinck, HM. Hyperekplexia and stiff-man syndrome: abnormal brainstem reflexes suggest a physiological relationship. J Neurol Neurosurg Psychiatry 2004;75:12651269.Google Scholar
Bakker, MJ, van Dijk, JG, van den Maagdenberg, AM, Tijssen, MA. Startle syndromes. Lancet Neurol 2006;5:513524.CrossRefGoogle ScholarPubMed
Carvajal-Gonzalez, A, Leite, MI, Waters, P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 2014;137:21782192.Google Scholar
Balint, B, Jarius, S, Nagel, S, et al. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology 2014;82:15211528.Google Scholar
Hara, M, Arino, H, Petit-Pedrol, M, et al. DPPX-antibody associated encephalitis: main syndrome and antibody effects. Neurology 2017;88:13401348.Google Scholar
Tobin, WO, Lennon, VA, Komorowski, L, et al. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 2014;83:17971803.Google Scholar
Hutchinson, M, Waters, P, McHugh, J, et al. Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. Neurology 2008;71:12911292.Google Scholar
Zutt, R, Elting, JW, van Zijl, JC, et al. Electrophysiologic testing aids diagnosis and subtyping of myoclonus. Neurology 2018;90:e647e657.Google Scholar
Murinson, BB, Guarnaccia, JB. Stiff-person syndrome with amphiphysin antibodies: distinctive features of a rare disease. Neurology 2008;71:19551958.Google Scholar
Wijntjes, J, Bechakra, M, Schreurs, MWJ, et al. Pruritus in anti-DPPX encephalitis. Neurol Neuroimmunol Neuroinflamm 2018;5:e455.Google Scholar
Mas, N, Saiz, A, Leite, MI, et al. Antiglycine-receptor encephalomyelitis with rigidity. J Neurol Neurosurg Psychiatry 2011;82:13991401.Google Scholar
Netravathi, M, Saini, J, Mahadevan, A, et al. Is pruritus an indicator of aquaporin-positive neuromyelitis optica? Mult Scler 2017;23:810817.Google Scholar
Vincent, A, Pettingill, P, Pettingill, R, et al. Association of leucine-rich glioma inactivated protein 1, contactin-associated protein 2, and contactin 2 antibodies with clinical features and patient-reported pain in acquired neuromyotonia. JAMA Neurol 2018;75:15191527.Google Scholar
Hart, IK, Maddison, P, Newsom-Davis, J, Vincent, A, Mills, KR. Phenotypic variants of autoimmune peripheral nerve hyperexcitability. Brain 2002;125:18871895.Google Scholar
Maddison, P, Mills, KR, Newsom-Davis, J. Clinical electrophysiological characterization of the acquired neuromyotonia phenotype of autoimmune peripheral nerve hyperexcitability. Muscle Nerve 2006;33:801808.Google Scholar
Newsom-Davis, J, Mills, KR. Immunological associations of acquired neuromyotonia (Isaac’s syndrome): report of five cases and literature review. Brain 1993;116:453469.Google Scholar
Maddison, P. Neuromyotonia. Clin Neurophysiol 2006;117:21182127.Google Scholar
Elangovan, C, Morawo, A, Ahmed, A. Current treatment options for peripheral nerve hyperexcitability syndromes. Curr Treat Options Neurol 2018;20:23.Google Scholar
Ishii, A, Hayashi, A, Ohkoshi, N, et al. Clinical evaluation of plasma exchange and high dose intravenous immunoglobulin in a patient with Isaacs’ syndrome. J Neurol Neurosurg Psychiatry 1994;57:840842.Google Scholar
van den Berg, JS, van Engelen, BG, Boerman, RH, de Baets, MH. Acquired neuromyotonia: superiority of plasma exchange over high-dose intravenous human immunoglobulin. J Neurol 1999;246:623625.Google Scholar
Rubio-Agusti, I, Perez-Miralles, F, Sevilla, T, et al. Peripheral nerve hyperexcitability: a clinical and immunologic study of 38 patients. Neurology 2011;76:172178.CrossRefGoogle ScholarPubMed
Evoli, A, Minicuci, GM, Vitaliani, R, et al. Paraneoplastic diseases associated with thymoma. J Neurol 2007;254:756762.CrossRefGoogle ScholarPubMed
Gastaldi, M, De Rosa, A, Maestri, M, et al. Acquired neuromyotonia in thymoma-associated myasthenia gravis: a clinical and serological study. Eur J Neurol 2019;26:992999.Google Scholar
van Sonderen, A, Wirtz, PW, Verschuuren, JJ, Titulaer, MJ. Paraneoplastic syndromes of the neuromuscular junction: therapeutic options in myasthenia gravis, Lambert–Eaton myasthenic syndrome, and neuromyotonia. Curr Treat Options Neurol 2013;15:224239.Google Scholar
Rana, SS, Ramanathan, RS, Small, G, Adamovich, B. Paraneoplastic Isaacs’ syndrome: a case series and review of the literature. J Clin Neuromusc Dis 2012;13:228233.Google Scholar
Irani, SR, Pettingill, P, Kleopa, KA, et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann Neurol 2012;72:241255.Google Scholar
Abou-Zeid, E, Boursoulian, LJ, Metzer, WS, Gundogdu, B. Morvan syndrome: a case report and review of the literature. J Clin Neuromuscul Dis 2012;13:214227.CrossRefGoogle ScholarPubMed
Provini, F, Marconi, S, Amadori, M, et al. Morvan chorea and agrypnia excitata: when video-polysomnographic recording guides the diagnosis. Sleep Med 2011;12:10411043.Google Scholar
Montagna, P, Lugaresi, E. Agrypnia excitata: a generalized overactivity syndrome and a useful concept in the neurophysiopathology of sleep. Clin Neurophysiol 2002;113:552560.Google Scholar
Rubio, I, Bataller, L, Perez-Miralles, F, et al. Peripheral nerve hyperexcitability (PNH): a clinical study of 26 patients. Neurology 2009;72:A56.Google Scholar
Irani, SR, Michell, AW, Lang, B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011;69:892900.Google Scholar
Wennberg, R, Steriade, C, Chen, R, Andrade, D. Frontal infraslow activity marks the motor spasms of anti-LGI1 encephalitis. Clin Neurophysiol 2018;129:5968.Google Scholar
Irani, SR, Stagg, CJ, Schott, JM, et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 2013;136:31513162.Google Scholar
Thompson, J, Bi, M, Murchison, AG, et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain 2018;141:348356.Google Scholar
Joubert, B, Gobert, F, Thomas, L, et al. Autoimmune episodic ataxia in patients with anti-CASPR2 antibody-associated encephalitis. Neurol Neuroimmunol Neuroinflamm 2017;4:e371.Google Scholar
Lopez Chiriboga, AS, Pittock, S. Episodic ataxia in CASPR2 autoimmunity. Neurol Neuroimmunol Neuroinflamm 2019;6:e536.Google Scholar
Xia, C, Dubeau, F. Teaching video NeuroImages: dystonic posturing in anti-NMDA receptor encephalitis. Neurology 2011;76:e80.Google Scholar
Rubio-Agusti, I, Dalmau, J, Sevilla, T, et al. Isolated hemidystonia associated with NMDA receptor antibodies. Mov Disord 2011;26:351352.Google Scholar
Liu, J, Zhang, Q, Lian, Z, et al. Painful tonic spasm in neuromyelitis optica spectrum disorders: prevalence, clinical implications and treatment options. Mult Scler Relat Disord 2017;17:99102.Google Scholar
Li, QY, Wang, B, Yang, J, et al. Painful tonic spasm in Chinese patients with neuromyelitis optica spectrum disorder: prevalence, subtype, and features. Mult Scler Relat Disord 2020;45:102408.Google Scholar
Kim, SM, Go, MJ, Sung, JJ, Park, KS, Lee, KW. Painful tonic spasm in neuromyelitis optica: incidence, diagnostic utility, and clinical characteristics. Arch Neurol 2012;69:10261031.Google Scholar
McKeon, A, Robinson, MT, McEvoy, KM, et al. Stiff-man syndrome and variants: clinical course, treatments, and outcomes. Arch Neurol 2012;69:230238.Google Scholar
Meinck, HM, Thompson, PD. Stiff man syndrome and related conditions. Mov Disord 2002;17:853866.Google Scholar

References

Mignot, E. Why we sleep: the temporal organization of recovery. PLoS Biol 2008;6:e106.Google Scholar
DiNuzzo, M, Nedergaard, M. Brain energetics during the sleep-wake cycle. Curr Opin Neurobiol 2017;47:6572.Google Scholar
Besedovsky, L, Lange, T, Haack, M. The sleep-immune crosstalk in health and disease. Physiol Rev 2019;99:13251380.Google Scholar
Scammell, TE, Arrigoni, E, Lipton, JO. Neural circuitry of wakefulness and sleep. Neuron 2017;93:747765.Google Scholar
Adamantidis, AR, Gutierrez Herrera, C, Gent, TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci 2019;20:746762.Google Scholar
Imeri, L, Opp, MR. How (and why) the immune system makes us sleep. Nat Rev Neurosci 2009;10:199210.Google Scholar
Lange, T, Perras, B, Fehm, HL, Born, J. Sleep enhances the human antibody response to hepatitis A vaccination. Psychosom Med 2003;65:831835.Google Scholar
Sabater, L, Gaig, C, Gelpi, E, et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 2014;13:575586.Google Scholar
Gaig, C, Iranzo, A, Cajochen, C, et al. Characterization of the sleep disorder of anti-IgLON5 disease. Sleep 2019;42:zsz133.Google Scholar
Mahowald, MW, Schenck, CH. Status dissociatus: a perspective on states of being. Sleep 1991;14:6979.Google Scholar
Guaraldi, P, Calandra-Buonaura, G, Terlizzi, R, et al. Oneiric stupor: the peculiar behaviour of agrypnia excitata. Sleep Med 2011;12(Suppl. 2):S6467.Google Scholar
Lugaresi, E, Provini, F. Agrypnia excitata: clinical features and pathophysiological implications. Sleep Med Rev 2001;5:313322.Google Scholar
Iranzo, A, Graus, F, Clover, L, et al. Rapid eye movement sleep behavior disorder and potassium channel antibody-associated limbic encephalitis. Ann Neurol 2006;59:178181.Google Scholar
Compta, Y, Iranzo, A, Santamaria, J, Casamitjana, R, Graus, F. REM sleep behavior disorder and narcoleptic features in anti-Ma2-associated encephalitis. Sleep 2007;30:767769.CrossRefGoogle ScholarPubMed
Vitiello, M, Antelmi, E, Pizza, F, et al. Type 1 narcolepsy in anti-Hu antibodies mediated encephalitis: a case report. Sleep Med 2018;52:2325.Google Scholar
Dauvilliers, Y, Arnulf, I, Mignot, E. Narcolepsy with cataplexy. Lancet 2007;369:499511.Google Scholar
Bassetti, CLA, Adamantidis, A, Burdakov, D, et al. Narcolepsy: clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat Rev Neurol 2019;15:519539.Google Scholar
Sateia, MJ. International classification of sleep disorders – third edition: highlights and modifications. Chest 2014;146:13871394.Google Scholar
Ohayon, MM, Priest, RG, Zulley, J, Smirne, S, Paiva, T. Prevalence of narcolepsy symptomatology and diagnosis in the European general population. Neurology 2002;58:18261833.Google Scholar
Silber, MH, Krahn, LE, Olson, EJ, Pankratz, VS. The epidemiology of narcolepsy in Olmsted County, Minnesota: a population-based study. Sleep 2002;25:197202.Google Scholar
Kornum, BR. Narcolepsy type 1: What have we learned from immunology? Sleep 2020;43:zsaa055.Google Scholar
Kornum, BR, Jennum, P. The case for narcolepsy as an autoimmune disease. Exp Rev Clin Immunol 2020;16:231233.Google Scholar
Mahoney, CE, Cogswell, A, Koralnik, IJ, Scammell, TE. The neurobiological basis of narcolepsy. Nat Rev Neurosci 2019;20:8393.CrossRefGoogle ScholarPubMed
Tafti, M, Hor, H, Dauvilliers, Y, et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep 2014;37:1925.Google Scholar
Sollid, LM, Pos, W, Wucherpfennig, KW. Molecular mechanisms for contribution of MHC molecules to autoimmune diseases. Curr Opin Immunol 2014;31:2430.Google Scholar
Tafti, M, Lammers, GJ, Dauvilliers, Y, et al. Narcolepsy-associated HLA class I alleles implicate cell-mediated cytotoxicity. Sleep 2016;39:581587.Google Scholar
Luo, G, Ambati, A, Lin, L, et al. Autoimmunity to hypocretin and molecular mimicry to flu in type 1 narcolepsy. Proc Natl Acad Sci USA 2018;115:E12323e12332.Google Scholar
Latorre, D, Kallweit, U, Armentani, E, et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature 2018;562:6368.Google Scholar
Pedersen, NW, Holm, A, Kristensen, NP, et al. CD8(+) T cells from patients with narcolepsy and healthy controls recognize hypocretin neuron-specific antigens. Nat Commun 2019;10:837.Google Scholar
Bernard-Valnet, R, Yshii, L, Queriault, C, et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci USA 2016;113:1095610961.Google Scholar
Lind, A, Eriksson, D, Akel, O, et al. Screening for autoantibody targets in post-vaccination narcolepsy using proteome arrays. Scand J Immunol 2020;91:e12864.Google Scholar
Wallenius, M, Lind, A, Akel, O, et al. Autoantibodies in Pandemrix®-induced narcolepsy: nine candidate autoantigens fail the conformational autoantibody test. Autoimmunity 2019;52:185191.CrossRefGoogle ScholarPubMed
Bergman, P, Adori, C, Vas, S, et al. Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc Natl Acad Sci USA 2014;111:E37353744.Google Scholar
Kawashima, M, Lin, L, Tanaka, S, et al. Anti-Tribbles homolog 2 (TRIB2) autoantibodies in narcolepsy are associated with recent onset of cataplexy. Sleep 2010;33:869874.Google Scholar
Tanaka, S, Honda, Y, Honda, M, et al. Anti-Tribbles pseudokinase 2 (TRIB2)-immunization modulates hypocretin/orexin neuronal functions. Sleep 2017;40(1).Google Scholar
Hara, J, Beuckmann, CT, Nambu, T, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 2001;30:345354.Google Scholar
Lim, AS, Scammell, TE. The trouble with Tribbles: do antibodies against TRIB2 cause narcolepsy? Sleep 2010;33:857858.Google Scholar
Ray, K. Sleep: narcolepsy – a role for TRIB2 autoantibodies? Nat Rev Neurol 2010;6:238.Google Scholar
Carvajal-Gonzalez, A, Leite, MI, Waters, P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 2014;137:21782192.Google Scholar
Joubert, B, Kerschen, P, Zekeridou, A, et al. Clinical spectrum of encephalitis associated with antibodies against the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor: case series and review of the literature. JAMA Neurol 2015;72:11631169.Google Scholar
Spatola, M, Petit-Pedrol, M, Simabukuro, MM, et al. Investigations in GABAa receptor antibody-associated encephalitis. Neurology 2017;88:10121020.Google Scholar
McKay, JH, Dimberg, EL, Lopez Chiriboga, AS. A systematic review of gamma-aminobutyric acid receptor type b autoimmunity. Neurologia i neurochirurgia polska 2019;53:17.Google ScholarPubMed
Tobin, WO, Lennon, VA, Komorowski, L, et al. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 2014;83:17971803.Google Scholar
Blattner, MS, de Bruin, GS, Bucelli, RC, Day, GS. Sleep disturbances are common in patients with autoimmune encephalitis. J Neurol 2019;266:10071015.Google Scholar
Cairney, SA, Ashton, JE, Roshchupkina, AA, Sobczak, JM. A dual role for sleep spindles in sleep-dependent memory consolidation? J Neurosci 2015;35:1232812330.Google Scholar
Sola-Valls, N, Arino, H, Escudero, D, et al. Telemedicine assessment of long-term cognitive and functional status in anti-leucine-rich, glioma-inactivated 1 encephalitis. Neurol Neuroimmunol Neuroinflamm 2020;7:e652.Google Scholar
Barnes, DC, Wilson, DA. Slow-wave sleep-imposed replay modulates both strength and precision of memory. J Neurosci 2014;34:51345142.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157165.CrossRefGoogle ScholarPubMed
Bost, C, Chanson, E, Picard, G, et al. Malignant tumors in autoimmune encephalitis with anti-NMDA receptor antibodies. J Neurol 2018;265:21902200.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Late-onset anti-NMDA receptor encephalitis. Neurology 2013;81:10581063.Google Scholar
Graus, F, Titulaer, MJ, Balu, R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391404.Google Scholar
Muñoz-Lopetegi, A, Graus, F, Dalmau, J, Santamaria, J. Sleep disorders in antibody associated diseases of the central nervous system. Lancet Neurol 2020;19:10101022.Google Scholar
Florance, NR, Davis, RL, Lam, C, et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol 2009;66:1118.Google Scholar
Irani, SR, Bera, K, Waters, P, et al. N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 2010;133:16551667.Google Scholar
Al-Diwani, A, Handel, A, Townsend, L, et al. The psychopathology of NMDAR-antibody encephalitis in adults: a systematic review and phenotypic analysis of individual patient data. Lancet Psychiatry 2019;6:235246Google Scholar
Ariño, H, Muñoz-Lopetegi, A, Martinez-Hernandez, E, et al. Sleep disorders in anti-NMDAR encephalitis. Neurology 2020;95:e671e684.CrossRefGoogle ScholarPubMed
van Sonderen, A, Thijs, RD, Coenders, EC, et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 2016;87:14491456.Google Scholar
Irani, SR, Michell, AW, Lang, B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011;69:892900.Google Scholar
Arino, H, Armangue, T, Petit-Pedrol, M, et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 2016;87:759765.Google Scholar
Escudero, D, Guasp, M, Arino, H, et al. Antibody-associated CNS syndromes without signs of inflammation in the elderly. Neurology 2017;89:14711475.Google Scholar
Geschwind, MD, Tan, KM, Lennon, VA, et al. Voltage-gated potassium channel autoimmunity mimicking Creutzfeldt–Jakob disease. Arch Neurol 2008;65:13411346.Google Scholar
Gadoth, A, Pittock, SJ, Dubey, D, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol 2017;82:7992.Google Scholar
Celicanin, M, Blaabjerg, M, Maersk-Moller, C, et al. Autoimmune encephalitis associated with voltage-gated potassium channels-complex and leucine-rich glioma-inactivated 1 antibodies: a national cohort study. Eur J Neurol 2017;24:9991005.Google Scholar
Cornelius, JR, Pittock, SJ, McKeon, A, et al. Sleep manifestations of voltage-gated potassium channel complex autoimmunity. Arch Neurol 2011;68:733738.CrossRefGoogle ScholarPubMed
Maquet, P, Peters, J, Aerts, J, et al. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 1996;383:163166.Google Scholar
Petit-Pedrol, M, Sell, J, Planaguma, J, et al. LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory. Brain 2018;141:31443159.Google Scholar
Irani, SR, Pettingill, P, Kleopa, KA, et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann Neurol 2012;72:241255.Google Scholar
Abou-Zeid, E, Boursoulian, LJ, Metzer, WS, Gundogdu, B. Morvan syndrome: a case report and review of the literature. J Clin Neuromuscul Dis 2012;13:214227.Google Scholar
Montagna, P, Lugaresi, E. Agrypnia excitata: a generalized overactivity syndrome and a useful concept in the neurophysiopathology of sleep. Clin Neurophysiol 2002;113:552560.Google Scholar
Calandra-Buonaura, G, Provini, F, Guaraldi, P, et al. Oculomasticatory myorhythmia and agrypnia excitata guide the diagnosis of Whipple disease. Sleep Med 2013;14:14281430.Google Scholar
Provini, F, Marconi, S, Amadori, M, et al. Morvan chorea and agrypnia excitata: when video-polysomnographic recording guides the diagnosis. Sleep Med 2011;12:10411043.Google Scholar
van Sonderen, A, Arino, H, Petit-Pedrol, M, et al. The clinical spectrum of Caspr2 antibody-associated disease. Neurology 2016;87:521528.Google Scholar
Joubert, B, Saint-Martin, M, Noraz, N, et al. Characterization of a subtype of autoimmune encephalitis with anti-contactin-associated protein-like 2 antibodies in the cerebrospinal fluid, prominent limbic symptoms, and seizures. JAMA Neurol 2016;73:11151124.Google Scholar
Lugaresi, E, Provini, F, Cortelli, P. Agrypnia excitata. Sleep Med 2011;12(Suppl. 2):S310.CrossRefGoogle ScholarPubMed
Lanuzza, B, Arico, D, Cosentino, FI, Provini, F, Ferri, R. Video-polysomnographic study of a patient with Morvan’s fibrillary chorea. Sleep Med 2012;13:550553.Google Scholar
Baiardi, S, Provini, F, Avoni, P, Pasquinelli, M, Liguori, R. Immunotherapy of oneiric stupor in Morvan syndrome: efficacy documented by actigraphy. Neurology 2015;84:24572459.Google Scholar
Liguori, R, Vincent, A, Clover, L, et al. Morvan’s syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain 2001;124:24172426.Google Scholar
Fischer-Perroudon, C, Trillet, M, Mouret, J, et al. [Polygraphic and metabolic studies of persistent insomnia with hallucinations. Apropos of an antomo-clinical study of a case of Morvan’s fibrillar chorea]. Rev Neurol (Paris) 1974;130:111125.Google ScholarPubMed
Baldelli, L, Provini, F. Fatal familial insomnia and agrypnia excitata: autonomic dysfunctions and pathophysiological implications. Autonom Neurosci 2019;218:6886.Google Scholar
Aldrich, MS, Naylor, MW. Narcolepsy associated with lesions of the diencephalon. Neurology 1989;39:15051508.Google Scholar
Bassetti, C, Mathis, J, Gugger, M, Lovblad, KO, Hess, CW. Hypersomnia following paramedian thalamic stroke: a report of 12 patients. Ann Neurol 1996;39:471480.Google Scholar
Mogk, S, Bosselmann, CM, Mudogo, CN, et al. African trypanosomes and brain infection: the unsolved question. Biol Rev Cambridge Philos Soc 2017;92:16751687.Google Scholar
Montagna, P. Fatal familial insomnia: a model disease in sleep physiopathology. Sleep Med Rev 2005;9:339353.Google Scholar
Gama, RL, Tavora, DG, Bomfim, RC, et al. Sleep disturbances and brain MRI morphometry in Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy: a comparative study. Parkinsonism Relat Disord 2010;16:275279.Google Scholar
Iranzo, A. Sleep and neurological autoimmune diseases. Neuropsychopharmacology 2020;45:129140.Google Scholar
Silber, MH. Autoimmune sleep disorders. Handb Clin Neurol 2016;133:317326.Google Scholar
Dalmau, J, Graus, F, Villarejo, A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127:18311844.Google Scholar
Ortega Suero, G, Sola-Valls, N, Escudero, D, Saiz, A, Graus, F. Anti-Ma and anti-Ma2-associated paraneoplastic neurological syndromes. Neurologia 2018;33:1827.Google Scholar
Rosenfeld, MR, Eichen, JG, Wade, DF, Posner, JB, Dalmau, J. Molecular and clinical diversity in paraneoplastic immunity to Ma proteins. Ann Neurol 2001;50:339348.Google Scholar
Hoffmann, LA, Jarius, S, Pellkofer, HL, et al. Anti-Ma and anti-Ta associated paraneoplastic neurological syndromes: twenty-two newly diagnosed patients and review of previous cases. J Neurol Neurosurg Psychiatry 2008;79:767773.Google Scholar
Landolfi, JC, Nadkarni, M. Paraneoplastic limbic encephalitis and possible narcolepsy in a patient with testicular cancer: case study. Neuro-oncol 2003;5:214216.Google Scholar
Sahashi, K, Sakai, K, Mano, K, Hirose, G. Anti-Ma2 antibody related paraneoplastic limbic/brain stem encephalitis associated with breast cancer expressing Ma1, Ma2, and Ma3 mRNAs. J Neurol Neurosurg Psychiatry 2003;74:13321335.Google Scholar
Adams, C, McKeon, A, Silber, MH, Kumar, R. Narcolepsy, REM sleep behavior disorder, and supranuclear gaze palsy associated with Ma1 and Ma2 antibodies and tonsillar carcinoma. Arch Neurol 2011;68:521524.Google Scholar
Blumenthal, DT, Salzman, KL, Digre, KB, et al. Early pathologic findings and long-term improvement in anti-Ma2-associated encephalitis. Neurology 2006;67:146149.Google Scholar
Suwijn, SR, Klieverik, LP, Odekerken, VJJ. Anti-Ma2-associated encephalitis in a patient with testis carcinoma. Neurology 2016;86:1461.Google Scholar
Bergner, CG, Lang, C, Spreer, A, et al. Teaching NeuroImages: Ma2 encephalitis presenting as acute panhypopituitarism in a young man. Neurology 2013;81:e146e147.Google Scholar
Peters, J, Vijiaratnam, N, Lo, KY, Evans, AH. Anti-Ma2-associated paraneoplastic encephalitis eat, sleep and repeat. Intern Med J 2019;49:931932.Google Scholar
Dauvilliers, Y, Bauer, J, Rigau, V, et al. Hypothalamic immunopathology in anti-Ma-associated diencephalitis with narcolepsy–cataplexy. JAMA Neurol 2013;70:13051310.Google Scholar
Rojas-Marcos, I, Graus, F, Sanz, G, Robledo, A, Diaz-Espejo, C. Hypersomnia as presenting symptom of anti-Ma2-associated encephalitis: case study. Neuro-oncol 2007;9:7577.Google Scholar
English, SW, Keegan, BM, Flanagan, EP, Tobin, WO, Zalewski, NL. Clinical reasoning: a 30-year-old man with headache and sleep disturbance. Neurology 2018;90:e1535e1540.Google Scholar
Overeem, S, Dalmau, J, Bataller, L, et al. Hypocretin-1 CSF levels in anti-Ma2 associated encephalitis. Neurology 2004;62:138140.CrossRefGoogle ScholarPubMed
Kritikou, I, Vgontzas, AN, Rapp, MA, Bixler, EO. Anti-Ma1- and anti-Ma2-associated encephalitis manifesting with rapid eye movement sleep disorder and narcolepsy with cataplexy: a case report. Biol Psychiatry 2018;83:e39e40.Google Scholar
Antelmi, E, Pizza, F, Franceschini, C, Ferri, R, Plazzi, G. REM sleep behavior disorder in narcolepsy: a secondary form or an intrinsic feature? Sleep Med Rev 2020;50:101254.Google Scholar
Gaig, C, Graus, F, Compta, Y, et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 2017;88:17361743.CrossRefGoogle ScholarPubMed
Honorat, JA, Komorowski, L, Josephs, KA, et al. IgLON5 antibody: neurological accompaniments and outcomes in 20 patients. Neurol Neuroimmunol Neuroinflamm 2017;4:e385.Google Scholar
Heidbreder, A, Philipp, K. Anti-IgLON 5 disease. Curr Treat Options Neurol 2018;20:29.Google Scholar
Gelpi, E, Hoftberger, R, Graus, F, et al. Neuropathological criteria of anti-IgLON5-related tauopathy. Acta Neuropathol 2016;132:531543.Google Scholar
Gaig, C, Ercilla, G, Daura, X, et al. HLA and microtubule-associated protein tau H1 haplotype associations in anti-IgLON5 disease. Neurol Neuroimmunol Neuroinflamm 2019;6:e605.Google Scholar
Erro, ME, Sabater, L, Martinez, L, et al. Anti-IGLON5 disease: a new case without neuropathologic evidence of brainstem tauopathy. Neurol Neuroimmunol Neuroinflamm 2020;7:e651.Google Scholar
Cagnin, A, Mariotto, S, Fiorini, M, et al. Microglial and neuronal TDP-43 pathology in anti-IgLON5-related tauopathy. J Alzheimer Dis 2017;59:1320.Google Scholar
Sabater, L, Planaguma, J, Dalmau, J, Graus, F. Cellular investigations with human antibodies associated with the anti-IgLON5 syndrome. J Neuroinflammation 2016;13:226.Google Scholar
Nissen, MS, Blaabjerg, M. Anti-IgLON5 disease: a case with 11-year clinical course and review of the literature. Front Neurol 2019;10:1056.Google Scholar
Gaig, C, Compta, Y. Neurological profiles beyond the sleep disorder in patients with anti-IgLON5 disease. Curr Opin Neurol 2019;32:493499.Google Scholar
Gaig, C, Iranzo, A, Santamaria, J, Graus, F. The sleep disorder in anti-lgLON5 disease. Curr Neurol Neurosci Rep 2018;18:41.Google Scholar
Anaclet, C, Fuller, PM. Brainstem regulation of slow-wave-sleep. Curr Opin Neurobiol 2017;44:139143.Google Scholar
Brunetti, V, Della Marca, G, Spagni, G, Iorio, R. Immunotherapy improves sleep and cognitive impairment in anti-IgLON5 encephalopathy. Neurol Neuroimmunol Neuroinflamm 2019;6:e577.Google Scholar
Schroder, JB, Melzer, N, Ruck, T, et al. Isolated dysphagia as initial sign of anti-IgLON5 syndrome. Neurol Neuroimmunol Neuroinflamm 2017;4:e302.Google Scholar
Moreno-Estebanez, A, Garcia-Ormaechea, M, Tijero, B, et al. Anti-IgLON5 disease responsive to immunotherapy: a case report with an abnormal MRI. Mov Disord Clin Pract 2018;5:653656.Google Scholar
Haitao, R, Yingmai, Y, Yan, H, et al. Chorea and parkinsonism associated with autoantibodies to IgLON5 and responsive to immunotherapy. J Neuroimmunol 2016;300:910.Google Scholar
Morales-Briceno, H, Cruse, B, Fois, AF, et al. IgLON5-mediated neurodegeneration is a differential diagnosis of CNS Whipple disease. Neurology 2018;90:11131115.Google Scholar
Hoffman, LA, Vilensky, JA. Encephalitis lethargica: 100 years after the epidemic. Brain 2017;140:22462251.Google Scholar
Vilensky, JAGS, Duvoisin, RC, Mukhamedzyanov, RZ. Post-epidemic period encephalitis lethargica. Encephalitis Lethargica 2011;5:83139.Google Scholar
Howard, RS, Lees, AJ. Encephalitis lethargica. A report of four recent cases. Brain 1987;110(Pt 1):1933.Google Scholar
Rail, D, Scholtz, C, Swash, M. Post-encephalitic Parkinsonism: current experience. J Neurol Neurosurg Psychiatry 1981;44:670676.Google Scholar
Brunetti, V, Testani, E, Iorio, R, et al. Post-encephalitic parkinsonism and sleep disorder responsive to immunological treatment: a case report. Clin EEG Neurosci 2016;47:324329.CrossRefGoogle ScholarPubMed
Ward, CD. On doing nothing: descriptions of sleep, fatigue, and motivation in encephalitis lethargica. Mov Disord 2011;26:599604.Google Scholar
Anderson, LL, Vilensky, JA, Duvoisin, RC. Review: neuropathology of acute phase encephalitis lethargica: a review of cases from the epidemic period. Neuropathol Appl Neurobiol 2009;35:462472.Google Scholar
Wingerchuk, DM, Banwell, B, Bennett, JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015;85:177189.Google Scholar
Kanbayashi, T, Shimohata, T, Nakashima, I, et al. Symptomatic narcolepsy in patients with neuromyelitis optica and multiple sclerosis: new neurochemical and immunological implications. Arch Neurol 2009;66:15631566.Google Scholar
Nozaki, H, Shimohata, T, Kanbayashi, T, et al. A patient with anti-aquaporin 4 antibody who presented with recurrent hypersomnia, reduced orexin (hypocretin) level, and symmetrical hypothalamic lesions. Sleep Med 2009;10:253255.Google Scholar
Baba, T, Nakashima, I, Kanbayashi, T, et al. Narcolepsy as an initial manifestation of neuromyelitis optica with anti-aquaporin-4 antibody. J Neurol 2009;256:287288.Google Scholar
Kume, K, Deguchi, K, Ikeda, K, et al. Neuromyelitis optica spectrum disorder presenting with repeated hypersomnia due to involvement of the hypothalamus and hypothalamus–amygdala linkage. Mult Scler 2015;21:960962.Google Scholar
Sekiguchi, T, Ishibashi, S, Kubodera, T, et al. Anhidrosis associated with hypothalamic lesions related to anti-aquaporin 4 autoantibody. J Neurol 2011;258:22932295.Google Scholar
Deguchi, K, Kono, S, Deguchi, S, et al. A patient with anti-aquaporin 4 antibody presenting hypersomnolence as the initial symptom and symmetrical hypothalamic lesions. J Neurol Sci 2012;312:1820.Google Scholar
Suzuki, K, Nakamura, T, Hashimoto, K, et al. Hypothermia, hypotension, hypersomnia, and obesity associated with hypothalamic lesions in a patient positive for the anti-aquaporin 4 antibody: a case report and literature review. Arch Neurol 2012;69:13551359.Google Scholar
Inoue, K, Nakayama, T, Kamisawa, A, Saito, J. Syndrome of inappropriate antidiuretic hormone accompanied by bilateral hypothalamic and anterior thalamic lesions with serum antiaquaporin 4 antibody. BMJ Case Rep 2017;2017:bcr2017219721.Google Scholar
Poppe, AY, Lapierre, Y, Melancon, D, et al. Neuromyelitis optica with hypothalamic involvement. Mult Scler 2005;11:617621.Google Scholar
Viegas, S, Weir, A, Esiri, M, et al. Symptomatic, radiological and pathological involvement of the hypothalamus in neuromyelitis optica. J Neurol Neurosurg Psychiatry 2009;80:679682.Google Scholar
Beigneux, Y, Arnulf, I, Guillaume-Jugnot, P, et al. Secondary hypersomnia as an initial manifestation of neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2019;38:101869.Google Scholar
Tanaka, S, Kanbayashi, T, Sonoo, M. Neuromyelitis optica spectrum disorder with severe orthostatic hypotension due to hypothalamic lesions. Mult Scler Relat Disord 2020;40:101977.Google Scholar
Thalhofer, S, Dorow, P. Central sleep apnea. Respiration Intl Rev Thorac Dis 1997;64:29.Google Scholar
Ball, JA, Warner, T, Reid, P, et al. Central alveolar hypoventilation associated with paraneoplastic brain-stem encephalitis and anti-Hu antibodies. J Neurol 1994;241:561566.Google Scholar
Lee, KS, Higgins, MJ, Patel, BM, Larson, JS, Rady, MY. Paraneoplastic coma and acquired central alveolar hypoventilation as a manifestation of brainstem encephalitis in a patient with ANNA-1 antibody and small-cell lung cancer. Neurocritical care 2006;4:137139.Google Scholar
Najjar, M, Taylor, A, Agrawal, S, et al. Anti-Hu paraneoplastic brainstem encephalitis caused by a pancreatic neuroendocrine tumor presenting with central hypoventilation. J Clin Neurosci 2017;40:7273.Google Scholar
Saiz, A, Bruna, J, Stourac, P, et al. Anti-Hu-associated brainstem encephalitis. J Neurol Neurosurg Psychiatry 2009;80:404407.CrossRefGoogle ScholarPubMed
Shosha, E, Dubey, D, Palace, J, et al. Area postrema syndrome: frequency, criteria, and severity in AQP4-IgG-positive NMOSD. Neurology 2018;91:e1642e1651.Google Scholar
Jarius, S, Kleiter, I, Ruprecht, K, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: brainstem involvement – frequency, presentation and outcome. J Neuroinflammation 2016;13:281.Google Scholar
Vitaliani, R, Mason, W, Ances, B, et al. Paraneoplastic encephalitis, psychiatric symptoms, and hypoventilation in ovarian teratoma. Ann Neurol 2005;58:594604.Google Scholar
Balu, R, McCracken, L, Lancaster, E, et al. A score that predicts 1-year functional status in patients with anti-NMDA receptor encephalitis. Neurology 2019;92:e244e252.Google Scholar
Ize-Ludlow, D, Gray, JA, Sperling, MA, et al. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation presenting in childhood. Pediatrics 2007;120:e179e188.Google Scholar
Bougneres, P, Pantalone, L, Linglart, A, Rothenbuhler, A, Le Stunff, C. Endocrine manifestations of the rapid-onset obesity with hypoventilation, hypothalamic, autonomic dysregulation, and neural tumor syndrome in childhood. J Clin Endocrinol Metab 2008;93:39713980.Google Scholar
Harvengt, J, Gernay, C, Mastouri, M, et al. ROHHAD(NET) syndrome: systematic review of the clinical timeline and recommendations for diagnosis and prognosis. J Clin Endocrinol Metab 2020;105:dgaa247.Google Scholar
Lee, JM, Shin, J, Kim, S, et al. Rapid-onset obesity with hypoventilation, hypothalamic, autonomic dysregulation, and neuroendocrine tumors (ROHHADNET) syndrome: a systematic review. Biomed Res Int 2018;2018:1250721.Google Scholar
Nunn, K, Ouvrier, R, Sprague, T, Arbuckle, S, Docker, M. Idiopathic hypothalamic dysfunction: a paraneoplastic syndrome? J Child Neurol 1997;12:276281.Google Scholar
Sethi, K, Lee, YH, Daugherty, LE, et al. ROHHADNET syndrome presenting as major behavioral changes in a 5-year-old obese girl. Pediatrics 2014;134:e586e589.Google Scholar
Giacomozzi, C, Guaraldi, F, Cambiaso, P, et al. Anti-hypothalamus and anti-pituitary auto-antibodies in ROHHAD syndrome: additional evidence supporting an autoimmune etiopathogenesis. Horm Res Paediatr 2019;92:124132.Google Scholar

References

Scheffer, IE, Berkovic, S, Capovilla, G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017;58:512521.Google Scholar
Marchi, N, Granata, T, Janigro, D. Inflammatory pathways of seizure disorders. Trends Neurosci 2014;37:5565.Google Scholar
Vezzani, A, Balosso, S, Ravizza, T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 2019;15:459472.Google Scholar
Xu, JH, Long, L, Tang, YC, et al. CCR3, CCR2A and macrophage inflammatory protein (MIP)-1a, monocyte chemotactic protein-1 (MCP-1) in the mouse hippocampus during and after pilocarpine-induced status epilepticus (PISE). Neuropathol Appl Neurobiol 2009;35:496514.Google Scholar
Riazi, K, Galic, MA, Pittman, QJ. Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Res 2010;89:3442.Google Scholar
Hirsch, LJ, Gaspard, N, van Baalen, A, et al. Proposed consensus definitions for new-onset refractory status epilepticus (NORSE), febrile infection-related epilepsy syndrome (FIRES), and related conditions. Epilepsia 2018;59:739744.Google Scholar
Geis, C, Planaguma, J, Carreño, M, Graus, F, Dalmau, J. Autoimmune seizures and epilepsy. J Clin Invest 2019;129:926940.Google Scholar
Glass, CK, Saijo, K, Winner, B, Marchetto, MC, Gage, FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010;140:918934.Google Scholar
Ransohoff, RM, Engelhardt, B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012;12:623635.Google Scholar
Galic, MA, Riazi, K, Pittman, QJ. Cytokines and brain excitability. Front Neuroendocrinol 2012;33:116125.Google Scholar
Jun, JS, Lee, ST, Kim, R, Chu, K, Lee, SK. Tocilizumab treatment for new onset refractory status epilepticus. Ann Neurol 2018;84:940945.Google Scholar
Uludag, IF, Duksal, T, Tiftikcioglu, BI, et al. IL-1beta, IL-6 and IL1Ra levels in temporal lobe epilepsy. Seizure 2015;26:2225.Google Scholar
Crespel, A, Coubes, P, Rousset, MC, et al. Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis. Brain Res 2002;952:159169.Google Scholar
Ravizza, T, Gagliardi, B, Noe, F, et al. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 2008;29:142160.Google Scholar
Vezzani, A, Granata, T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 2005;46:17241743.Google Scholar
Dube, CM, Ravizza, T, Hamamura, M, et al. Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci 2010;30:74847494.Google Scholar
Roseti, C, van Vliet, EA, Cifelli, P, et al. GABAA currents are decreased by IL-1beta in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiol Dis 2015;82:311320.CrossRefGoogle ScholarPubMed
Kenney-Jung, DL, Vezzani, A, Kahoud, RJ, et al. Febrile infection-related epilepsy syndrome treated with anakinra. Ann Neurol 2016;80:939945.CrossRefGoogle ScholarPubMed
Vezzani, A, Moneta, D, Conti, M, et al. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci USA 2000;97:1153411539.Google Scholar
Gilmore, TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 2006;25:66806684.Google Scholar
O’Neill, LA, Kaltschmidt, C. NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 1997;20:252258.Google Scholar
Balosso, S, Maroso, M, Sanchez-Alavez, M, et al. A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta. Brain 2008;131:32563265.Google Scholar
Ravizza, T, Terrone, G, Salamone, A, et al. High Mobility Group Box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain Behav Immun 2018;72:1421.Google Scholar
Cacheaux, LP, Ivens, S, David, Y, et al. Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis. J Neurosci 2009;29:89278935.Google Scholar
Vezzani, A, French, J, Bartfai, T, Baram, TZ. The role of inflammation in epilepsy. Nat Rev Neurol 2011;7:3140.Google Scholar
Cerri, C, Caleo, M, Bozzi, Y. Chemokines as new inflammatory players in the pathogenesis of epilepsy. Epilepsy Res 2017;136:7783.Google Scholar
Fabene, PF, Laudanna, C, Constantin, G. Leukocyte trafficking mechanisms in epilepsy. Molec Immunol 2013;55:100104.Google Scholar
Cerri, C, Genovesi, S, Allegra, M, et al. The chemokine CCL2 mediates the seizure-enhancing effects of systemic inflammation. J Neurosci 2016;36:37773788.Google Scholar
Boer, K, Jansen, F, Nellist, M, et al. Inflammatory processes in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex. Epilepsy Res 2008;78:721.Google Scholar
Iyer, A, Zurolo, E, Spliet, WG, et al. Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias. Epilepsia 2010;51:17631773.Google Scholar
Owens, GC, Garcia, AJ, Mochizuki, AY, et al. Evidence for innate and adaptive immune responses in a cohort of intractable pediatric epilepsy surgery patients. Front Immunol 2019;10:121.CrossRefGoogle Scholar
Xu, D, Robinson, AP, Ishii, T, et al. Peripherally derived T regulatory and gammadelta T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J Exp Med 2018;215:11691186.Google Scholar
Levite, M. Autoimmune epilepsy. Nat Immunol 2002;3:500.Google Scholar
Palace, J, Lang, B. Epilepsy: an autoimmune disease? J Neurol Neurosurg Psychiatry 2000;69:711714.Google Scholar
Rasmussen, T, Olszewski, J, Lloydsmith, D. Focal seizures due to chronic localized encephalitis. Neurology 1958;8:435445.Google Scholar
Mihailovic, LT, Cupic, D. Epileptiform activity evoked by intracerebral injection of anti-brain antibodies. Brain Res 1971;32:97124.Google Scholar
Bowen, FP, Kosarova, J, Casella, D, Nicklas, WJ, Berl, S. Focal epileptogenic activity induced by topical application of antisera to brain actomyosin-like protein. Brain Res 1976;102:363367.Google Scholar
Karpiak, SE Jr, Bowen, FP, Rapport, MM. Epileptiform activity induced by antiserum to synaptic membrane. Brain Res 1973;59:303310.Google Scholar
Dalmau, J, Graus, F, Rosenblum, MK, Posner, JB. Anti-Hu–associated paraneoplastic encephalomyelitis/sensory neuronopathy: a clinical study of 71 patients. Medicine (Baltimore) 1992;71:5972.Google Scholar
Solimena, M, Folli, F, Denis-Donini, S, et al. Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. N Engl J Med 1988;318:10121020.Google Scholar
Giometto, B, Nicolao, P, Macucci, M, et al. Temporal-lobe epilepsy associated with glutamic-acid-decarboxylase autoantibodies. Lancet 1998;352:457.Google Scholar
Karpiak, SE, Huang, YL, Rapport, MM. Immunological model of epilepsy: epileptiform activity induced by fragments of antibody to GM1 ganglioside. J Neuroimmunol 1982;3:1521.Google Scholar
Karpiak, SE, Mahadik, SP, Graf, L, Rapport, MM. An immunological model of epilepsy: seizures induced by antibodies to GM1 ganglioside. Epilepsia 1981;22:189196.Google Scholar
Bartolomei, F, Boucraut, J, Barrie, M, et al. Cryptogenic partial epilepsies with anti-GM1 antibodies: a new form of immune-mediated epilepsy? Epilepsia 1996;37:922926.Google Scholar
McKnight, K, Jiang, Y, Hart, Y, et al. Serum antibodies in epilepsy and seizure-associated disorders. Neurology 2005;65:17301736.Google Scholar
Rogers, SW, Andrews, PI, Gahring, LC, et al. Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science 1994;265:648651.Google Scholar
Wiendl, H, Bien, CG, Bernasconi, P, et al. GluR3 antibodies: prevalence in focal epilepsy but no specificity for Rasmussen’s encephalitis. Neurology 2001;57:15111514.Google Scholar
Mantegazza, R, Bernasconi, P, Baggi, F, et al. Antibodies against GluR3 peptides are not specific for Rasmussen’s encephalitis but are also present in epilepsy patients with severe, early onset disease and intractable seizures. J Neuroimmunol 2002;131:179185.Google Scholar
Vincent, A, Buckley, C, Schott, JM, et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 2004;127:701712.Google Scholar
Irani, SR, Alexander, S, Waters, P, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 2010;133:27342748.Google Scholar
Lai, M, Huijbers, MG, Lancaster, E, et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 2010;9:776785.Google Scholar
van Sonderen, A, Schreurs, MW, de Bruijn, MA, et al. The relevance of VGKC positivity in the absence of LGI1 and Caspr2 antibodies. Neurology 2016;86:16921699.Google Scholar
Lang, B, Makuch, M, Moloney, T, et al. Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies. J Neurol Neurosurg Psychiatry 2017;88:353361.Google Scholar
Dalmau, J, Graus, F. Antibody-mediated encephalitis. N Engl J Med 2018;378:840851.Google Scholar
Dalmau, J, Geis, C, Graus, F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev 2017;97:839887.Google Scholar
Gaspard, N. Autoimmune epilepsy. Continuum (Minneapolis, Minn) 2016;22:227245.Google Scholar
Toledano, M, Pittock, SJ. Autoimmune epilepsy. Semin Neurol 2015;35:245258.Google Scholar
Husari, KS, Dubey, D. Autoimmune epilepsy. Neurotherapeutics 2019;16:685702.Google Scholar
Quek, AML, O’Toole, O. Autoimmune epilepsy: the evolving science of neural autoimmunity and its impact on epilepsy management. Semin Neurol 2018;38:290302.Google Scholar
Greco, A, Rizzo, MI, De Virgilio, A, et al. Autoimmune epilepsy. Autoimmunity Rev 2016;15:221225.Google Scholar
Irani, SR, Bien, CG, Lang, B. Autoimmune epilepsies. Curr Opin Neurol 2011;24:146153.Google Scholar
Fisher, RS, Acevedo, C, Arzimanoglou, A, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 2014;55:475482.Google Scholar
Steriade, C, Britton, J, Dale, RC, et al. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: conceptual definitions. Epilepsia 2020;61:13411351.Google Scholar
Spatola, M, Dalmau, J. Seizures and risk of epilepsy in autoimmune and other inflammatory encephalitis. Curr Opin Neurol 2017;30:345353.Google Scholar
de Bruijn, M, van Sonderen, A, van Coevorden-Hameete, MH, et al. Evaluation of seizure treatment in anti-LGI1, anti-NMDAR, and anti-GABABR encephalitis. Neurology 2019;92:e2185e2196.Google Scholar
Beghi, E, Carpio, A, Forsgren, L, et al. Recommendation for a definition of acute symptomatic seizure. Epilepsia 2010;51:671675.Google Scholar
Shavit, YB, Graus, F, Probst, A, Rene, R, Steck, AJ. Epilepsia partialis continua: a new manifestation of anti-Hu-associated paraneoplastic encephalomyelitis. Ann Neurol 1999;45:255258.Google Scholar
Carreño, M, Bien, CG, Asadi-Pooya, AA, et al. Epilepsy surgery in drug resistant temporal lobe epilepsy associated with neuronal antibodies. Epilepsy Res 2017;129:101105.Google Scholar
Fadul, CE, Stommel, EW, Dragnev, KH, Eskey, CJ, Dalmau, JO. Focal paraneoplastic limbic encephalitis presenting as orgasmic epilepsy. J Neurooncol 2005;72:195198.Google Scholar
Daif, A, Lukas, RV, Issa, NP, et al. Antiglutamic acid decarboxylase 65 (GAD65) antibody-associated epilepsy. Epilepsy Behav 2018;80:331336.Google Scholar
Mut, M, Schiff, D, Dalmau, J. Paraneoplastic recurrent multifocal encephalitis presenting with epilepsia partialis continua. J Neurooncol 2005;72:6366.Google Scholar
Kinirons, P, O’Dwyer, JP, Connolly, S, Hutchinson, M. Paraneoplastic limbic encephalitis presenting as lingual epilepsia partialis continua. J Neurol 2006;253:256257.Google Scholar
Llado, A, Carpentier, AF, Honnorat, J, et al. Hu-antibody-positive patients with or without cancer have similar clinical profiles. J Neurol Neurosurg Psychiatry 2006;77:996997.Google Scholar
Liimatainen, S, Peltola, M, Sabater, L, et al. Clinical significance of glutamic acid decarboxylase antibodies in patients with epilepsy. Epilepsia 2010;51:760767.Google Scholar
Symonds, JD, Moloney, TC, Lang, B, et al. Neuronal antibody prevalence in children with seizures under 3 years: a prospective national cohort. Neurology 2020;95:e1590e1598.Google Scholar
Wright, S, Geerts, AT, Jol-van der Zijde, CM, et al. Neuronal antibodies in pediatric epilepsy: clinical features and long-term outcomes of a historical cohort not treated with immunotherapy. Epilepsia 2016;57:823831.Google Scholar
Suleiman, J, Wright, S, Gill, D, et al. Autoantibodies to neuronal antigens in children with new-onset seizures classified according to the revised ILAE organization of seizures and epilepsies. Epilepsia 2013;54:20912100.Google Scholar
Garcia-Tarodo, S, Datta, AN, Ramelli, GP, et al. Circulating neural antibodies in unselected children with new-onset seizures. Eur J Paediatr Neurol 2018;22:396403.Google Scholar
Borusiak, P, Bettendorf, U, Wiegand, G, et al. Autoantibodies to neuronal antigens in children with focal epilepsy and no prima facie signs of encephalitis. Eur J Paediatr Neurol 2016;20:573579.Google Scholar
Tekturk, P, Baykan, B, Erdag, E, et al. Investigation of neuronal auto-antibodies in children diagnosed with epileptic encephalopathy of unknown cause. Brain Dev 2018;40:909917.Google Scholar
Veri, K, Uibo, O, Talvik, T, et al. Newly-diagnosed pediatric epilepsy is associated with elevated autoantibodies to glutamic acid decarboxylase but not cardiolipin. Epilepsy Res 2013;105:8691.Google Scholar
von Podewils, F, Suesse, M, Geithner, J, et al. Prevalence and outcome of late-onset seizures due to autoimmune etiology: a prospective observational population-based cohort study. Epilepsia 2017;58:15421550.Google Scholar
Nobrega, AW Jr, Gregory, CP, Schlindwein-Zanini, R, et al. Mesial temporal lobe epilepsy with hippocampal sclerosis is infrequently associated with neuronal autoantibodies. Epilepsia 2018;59:e152e156.Google Scholar
Ekizoglu, E, Tuzun, E, Woodhall, M, et al. Investigation of neuronal autoantibodies in two different focal epilepsy syndromes. Epilepsia 2014;55:414422.Google Scholar
Vanli-Yavuz, EN, Erdag, E, Tuzun, E, et al. Neuronal autoantibodies in mesial temporal lobe epilepsy with hippocampal sclerosis. J Neurol Neurosurg Psychiatry 2016;87:684692.Google Scholar
Gozubatik-Celik, G, Ozkara, C, Ulusoy, C, et al. Anti-neuronal autoantibodies in both drug responsive and resistant focal seizures with unknown cause. Epilepsy Res 2017;135:131136.Google Scholar
Brenner, T, Sills, GJ, Hart, Y, et al. Prevalence of neurologic autoantibodies in cohorts of patients with new and established epilepsy. Epilepsia 2013;54:10281035.Google Scholar
Elisak, M, Krysl, D, Hanzalova, J, et al. The prevalence of neural antibodies in temporal lobe epilepsy and the clinical characteristics of seropositive patients. Seizure 2018;63:16.Google Scholar
Dubey, D, Alqallaf, A, Hays, R, et al. Neurological autoantibody prevalence in epilepsy of unknown etiology. JAMA Neurol 2017;74:397402.Google Scholar
Iorio, R, Assenza, G, Tombini, M, et al. The detection of neural autoantibodies in patients with antiepileptic-drug-resistant epilepsy predicts response to immunotherapy. Eur J Neurol 2015;22:7078.Google Scholar
Baysal-Kirac, L, Tuzun, E, Erdag, E, et al. Neuronal autoantibodies in epilepsy patients with peri-ictal autonomic findings. J Neurol 2016;263:455466.Google Scholar
Errichiello, L, Perruolo, G, Pascarella, A, et al. Autoantibodies to glutamic acid decarboxylase (GAD) in focal and generalized epilepsy: a study on 233 patients. J Neuroimmunol 2009;211:120123.Google Scholar
Tecellioglu, M, Kamisli, O, Kamisli, S, Yucel, FE, Ozcan, C. Neurological autoantibodies in drug-resistant epilepsy of unknown cause. Irish J Med Sci 2018;187:10571063.Google Scholar
Tizazu, E, Ellis, CA, Reichert, J, Lancaster, E. Low rate of glutamic acid decarboxylase 65 (GAD-65) antibodies in chronic epilepsy. Seizure 2020;80:3841.Google Scholar
Falip, M, Carreño, M, Miro, J, et al. Prevalence and immunological spectrum of temporal lobe epilepsy with glutamic acid decarboxylase antibodies. Eur J Neurol 2012;19:827833.Google Scholar
Lilleker, JB, Biswas, V, Mohanraj, R. Glutamic acid decarboxylase (GAD) antibodies in epilepsy: diagnostic yield and therapeutic implications. Seizure 2014;23:598602.Google Scholar
Graus, F, Gorman, MP. Voltage-gated potassium channel antibodies: game over. Neurology 2016;86:16571658.Google Scholar
Swayne, A, Tjoa, L, Broadley, S, et al. Antiglycine receptor antibody related disease: a case series and literature review. Eur J Neurol 2018;25:12901298.Google Scholar
Martinez-Hernandez, E, Sepulveda, M, Rostasy, K, et al. Antibodies to aquaporin 4, myelin-oligodendrocyte glycoprotein, and the glycine receptor alpha1 subunit in patients with isolated optic neuritis. JAMA Neurol 2015;72:187193.Google Scholar
Armangue, T, Sabater, L, Torres-Vega, E, et al. Clinical and immunological features of opsoclonus-myoclonus syndrome in the era of neuronal cell surface antibodies. JAMA Neurol 2016;73:417424.Google Scholar
Bozzetti, S, Rossini, F, Ferrari, S, et al. Epileptic seizures of suspected autoimmune origin: a multicentre retrospective study. J Neurol Neurosurg Psychiatry 2020;91:11451153.Google Scholar
Spatola, M, Petit-Pedrol, M, Simabukuro, MM, et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology 2017;88:10121020.Google Scholar
Maureille, A, Fenouil, T, Joubert, B, et al. Isolated seizures are a common early feature of paraneoplastic anti-GABAB receptor encephalitis. J Neurol 2019;266:195206.Google Scholar
Irani, SR, Michell, AW, Lang, B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011;69:892900.Google Scholar
Irani, SR, Stagg, CJ, Schott, JM, et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 2013;136:31513162.Google Scholar
Irani, SR, Buckley, C, Vincent, A, et al. Immunotherapy-responsive seizure-like episodes with potassium channel antibodies. Neurology 2008;71:16471648.Google Scholar
Wieser, S, Kelemen, A, Barsi, P, et al. Pilomotor seizures and status in non-paraneoplastic limbic encephalitis. Epileptic Disord 2005;7:205211.Google Scholar
Rocamora, R, Becerra, JL, Fossas, P, et al. Pilomotor seizures: an autonomic semiology of limbic encephalitis? Seizure 2014;23:670673.Google Scholar
Aurangzeb, S, Symmonds, M, Knight, RK, et al. LGI1-antibody encephalitis is characterised by frequent, multifocal clinical and subclinical seizures. Seizure 2017;50:1417.Google Scholar
Gillinder, L, Tjoa, L, Mantzioris, B, Blum, S, Dionisio, S. Refractory chronic epilepsy associated with neuronal auto-antibodies: could perisylvian semiology be a clue? Epileptic Disord 2017;19:439449.Google Scholar
Gadoth, A, Pittock, SJ, Dubey, D, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol 2017;82:7992.Google Scholar
Quek, AM, Britton, JW, McKeon, A, et al. Autoimmune epilepsy: clinical characteristics and response to immunotherapy. Arch Neurol 2012;69:582593.Google Scholar
Dubey, D, Singh, J, Britton, JW, et al. Predictive models in the diagnosis and treatment of autoimmune epilepsy. Epilepsia 2017;58:11811189.Google Scholar
Britton, J. Autoimmune epilepsy. Handb Clin Neurol 2016;133:219245.Google Scholar
Suleiman, J, Dale, RC. The recognition and treatment of autoimmune epilepsy in children. Dev Med Child Neurol 2015;57:431440.Google Scholar
Dubey, D, Kothapalli, N, McKeon, A, et al. Predictors of neural-specific autoantibodies and immunotherapy response in patients with cognitive dysfunction. J Neuroimmunol 2018;323:6272.Google Scholar
Mattozzi, S, Sabater, L, Escudero, D, et al. Hashimoto encephalopathy in the 21st century. Neurology 2020;94:e217e224.Google Scholar
Dubey, D, Pittock, SJ, McKeon, A. Antibody prevalence in epilepsy and encephalopathy score: increased specificity and applicability. Epilepsia 2019;60:367369.Google Scholar
de Bruijn, MAAM, Bastiaansen, AEM, Mojzisova, H, et al. Antibodies contributing to focal epilepsy signs and symptoms score. Ann Neurol 2021;89:698710.Google Scholar
Troscher, AR, Wimmer, I, Quemada-Garrido, L, et al. Microglial nodules provide the environment for pathogenic T cells in human encephalitis. Acta Neuropathol 2019;137:619635.Google Scholar
Bien, CG, Widman, G, Urbach, H, et al. The natural history of Rasmussen’s encephalitis. Brain 2002;125:17511759.Google Scholar
Granata, T, Gobbi, G, Spreafico, R, et al. Rasmussen’s encephalitis: early characteristics allow diagnosis. Neurology 2003;60:422425.Google Scholar
Andermann, F. Rasmussen Syndrome and movement disorder. Mov Disord 2002;17:437438.Google Scholar
Bien, CG, Elger, CE, Leitner, Y, et al. Slowly progressive hemiparesis in childhood as a consequence of Rasmussen encephalitis without or with delayed-onset seizures. Eur J Neurol 2007;14:387390.Google Scholar
Carreño, M, Marti, MJ, Aldecoa, I, et al. Unilateral pallidal stimulation for disabling dystonia due to Rasmussen’s disease. J Neurol Neurosurg Psychiatry 2019;90:108110.Google Scholar
Dupont, S, Gales, A, Sammey, S, Vidailhet, M, Lambrecq, V. Late-onset Rasmussen encephalitis: a literature appraisal. Autoimmunity Rev 2017;16:803810.Google Scholar
Rasmussen, T. Further observations on the syndrome of chronic encephalitis and epilepsy. Appl Neurophysiol 1978;41:112.Google Scholar
Bien, CG, Granata, T, Antozzi, C, et al. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement. Brain 2005;128:454471.Google Scholar
Chiapparini, L, Granata, T, Farina, L, et al. Diagnostic imaging in 13 cases of Rasmussen’s encephalitis: can early MRI suggest the diagnosis? Neuroradiology 2003;45:171183.Google Scholar
Wagner, J, Schoene-Bake, JC, Bien, CG, et al. Automated 3D MRI volumetry reveals regional atrophy differences in Rasmussen encephalitis. Epilepsia 2012;53:613621.Google Scholar
David, B, Prillwitz, CC, Hoppe, C, et al. Morphometric MRI findings challenge the concept of the ‘unaffected’ hemisphere in Rasmussen encephalitis. Epilepsia 2019;60:e40e46.Google Scholar
Lee, JS, Juhasz, C, Kaddurah, AK, Chugani, HT. Patterns of cerebral glucose metabolism in early and late stages of Rasmussen’s syndrome. J Child Neurol 2001;16:798805.Google Scholar
Pardo, CA, Vining, EP, Guo, L, et al. The pathology of Rasmussen syndrome: stages of cortical involvement and neuropathological studies in 45 hemispherectomies. Epilepsia 2004;45:516526.Google Scholar
Varadkar, S, Bien, CG, Kruse, CA, et al. Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurol 2014;13:195205.Google Scholar
Olson, HE, Lechpammer, M, Prabhu, SP, et al. Clinical application and evaluation of the Bien diagnostic criteria for Rasmussen encephalitis. Epilepsia 2013;54:17531760.Google Scholar
Armangue, T, Spatola, M, Vlagea, A, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 2018;17:760772.Google Scholar
Bauer, J, Elger, CE, Hans, VH, et al. Astrocytes are a specific immunological target in Rasmussen’s encephalitis. Ann Neurol 2007;62:6780.Google Scholar
Bien, CG, Bauer, J, Deckwerth, TL, et al. Destruction of neurons by cytotoxic T cells: a new pathogenic mechanism in Rasmussen’s encephalitis. Ann Neurol 2002;51:311318.Google Scholar
Schneider-Hohendorf, T, Mohan, H, Bien, CG, et al. CD8(+) T-cell pathogenicity in Rasmussen encephalitis elucidated by large-scale T-cell receptor sequencing. Nat Commun 2016;7:11153.Google Scholar
Schwab, N, Bien, CG, Waschbisch, A, et al. CD8+ T-cell clones dominate brain infiltrates in Rasmussen encephalitis and persist in the periphery. Brain 2009;132:12361246.Google Scholar
Granata, T, Cross, H, Theodore, W, Avanzini, G. Immune-mediated epilepsies. Epilepsia 2011;52(Suppl. 3):511.Google Scholar
Browner, N, Azher, SN, Jankovic, J. Botulinum toxin treatment of facial myoclonus in suspected Rasmussen encephalitis. Mov Disord 2006;21:15001502.Google Scholar
Granata, T, Fusco, L, Gobbi, G, et al. Experience with immunomodulatory treatments in Rasmussen’s encephalitis. Neurology 2003;61:18071810.Google Scholar
Thilo, B, Stingele, R, Knudsen, K, et al. A case of Rasmussen encephalitis treated with rituximab. Nat Rev Neurol 2009;5:458462.Google Scholar
Daniel, RT, Villemure, JG. Hemispherotomy techniques. J Neurosurg 2003;98:438439.Google Scholar
Jonas, R, Nguyen, S, Hu, B, et al. Cerebral hemispherectomy: hospital course, seizure, developmental, language, and motor outcomes. Neurology 2004;62:17121721.Google Scholar
Cay-Martinez, KC, Hickman, RA, McKhann Ii, GM, Provenzano, FA, Sands, TT. Rasmussen encephalitis: an update. Semin Neurol 2020;40:201210.Google Scholar
Bien, CG, Schramm, J. Treatment of Rasmussen encephalitis half a century after its initial description: promising prospects and a dilemma. Epilepsy Res 2009;86:101112.Google Scholar
Bien, CG, Tiemeier, H, Sassen, R, et al. Rasmussen encephalitis: incidence and course under randomized therapy with tacrolimus or intravenous immunoglobulins. Epilepsia 2013;54:543550.Google Scholar
Hart, YM, Cortez, M, Andermann, F, et al. Medical treatment of Rasmussen’s syndrome (chronic encephalitis and epilepsy): effect of high-dose steroids or immunoglobulins in 19 patients. Neurology 1994;44:10301036.Google Scholar
Bahi-Buisson, N, Villanueva, V, Bulteau, C, et al. Long term response to steroid therapy in Rasmussen encephalitis. Seizure 2007;16:485492.Google Scholar
Villani, F, Spreafico, R, Farina, L, et al. Positive response to immunomodulatory therapy in an adult patient with Rasmussen’s encephalitis. Neurology 2001;56:248250.Google Scholar
Chinchilla, D, Dulac, O, Robain, O, et al. Reappraisal of Rasmussen’s syndrome with special emphasis on treatment with high doses of steroids. J Neurol Neurosurg Psychiatry 1994;57:13251333.Google Scholar
Bittner, S, Simon, OJ, Gobel, K, et al. Rasmussen encephalitis treated with natalizumab. Neurology 2013;81:395397.Google Scholar
Liba, Z, Sedlacek, P, Sebronova, V, et al. Alemtuzumab and intrathecal methotrexate failed in the therapy of Rasmussen encephalitis. Neurol Neuroimmunol Neuroinflamm 2017;4:e354.Google Scholar
Lagarde, S, Villeneuve, N, Trébuchon, A, et al. Anti-tumor necrosis factor alpha therapy (adalimumab) in Rasmussen’s encephalitis: an open pilot study. Epilepsia 2016;57:956966.Google Scholar
Bu, DF, Erlander, MG, Hitz, BC, et al. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA 1992;89:21152119.Google Scholar
Ellis, TM, Atkinson, MA. The clinical significance of an autoimmune response against glutamic acid decarboxylase. Nat Med 1996;2:148153.Google Scholar
Baekkeskov, S. Immunoreactivity to a 64,000 Mr human islet cell antigen in sera from insulin-dependent diabetes mellitus patients and individuals with abnormal glucose tolerance. Molec Biol Med 1986;3:137142.Google Scholar
Meinck, HM, Faber, L, Morgenthaler, N, et al. Antibodies against glutamic acid decarboxylase: prevalence in neurological diseases. J Neurol Neurosurg Psychiatry 2001;71:100103.Google Scholar
Saiz, A, Blanco, Y, Sabater, L, et al. Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain 2008;131:25532563.Google Scholar
Graus, F, Saiz, A, Dalmau, J. GAD antibodies in neurological disorders: insights and challenges. Nat Rev Neurol 2020;16:353365.Google Scholar
Walikonis, JE, Lennon, VA. Radioimmunoassay for glutamic acid decarboxylase (GAD65) autoantibodies as a diagnostic aid for stiff-man syndrome and a correlate of susceptibility to type 1 diabetes mellitus. Mayo Clin Proc 1998;73:11611166.Google Scholar
Peltola, J, Kulmala, P, Isojarvi, J, et al. Autoantibodies to glutamic acid decarboxylase in patients with therapy-resistant epilepsy. Neurology 2000;55:4650.Google Scholar
Dalakas, MC, Li, M, Fujii, M, Jacobowitz, DM. Stiff person syndrome: quantification, specificity, and intrathecal synthesis of GAD65 antibodies. Neurology 2001;57:780784.Google Scholar
Malter, MP, Helmstaedter, C, Urbach, H, Vincent, A, Bien, CG. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann Neurol 2010;67:470478.Google Scholar
Graus, F, Titulaer, MJ, Balu, R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391404.Google Scholar
Malter, MP, Frisch, C, Zeitler, H, et al. Treatment of immune-mediated temporal lobe epilepsy with GAD antibodies. Seizure 2015;30:5763.Google Scholar
Arino, H, Hoftberger, R, Gresa-Arribas, N, et al. Paraneoplastic neurological syndromes and glutamic acid decarboxylase antibodies. JAMA Neurol 2015;72:874881.Google Scholar
Sharma, A, Dubey, D, Sawhney, A, Janga, K. GAD65 positive autoimmune limbic encephalitis: a case report and review of literature. J Clin Med Res 2012;4:424428.Google Scholar
Blanc, F, Ruppert, E, Kleitz, C, et al. Acute limbic encephalitis and glutamic acid decarboxylase antibodies: a reality? J Neurol Sci 2009;287:6971.Google Scholar
Boronat, A, Sabater, L, Saiz, A, Dalmau, J, Graus, F. GABAB receptor antibodies in limbic encephalitis and anti-GAD-associated neurologic disorders. Neurology 2011;76:795800.Google Scholar
Widman, G, Golombeck, K, Hautzel, H, et al. Treating a GAD65 antibody-associated limbic encephalitis with basiliximab: a case study. Front Neurol 2015;6:167.Google Scholar
Khawaja, AM, Vines, BL, Miller, DW, Szaflarski, JP, Amara, AW. Refractory status epilepticus and glutamic acid decarboxylase antibodies in adults: presentation, treatment and outcomes. Epileptic Disord 2016;18:3443.Google Scholar
Nair, DR, Laxer, KD, Weber, PB, et al. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology 2020;95:e1244e1256.Google Scholar
Feyissa, AM, Mirro, EA, Wabulya, A, et al. Brain-responsive neurostimulation treatment in patients with GAD65 antibody-associated autoimmune mesial temporal lobe epilepsy. Epilepsia Open 2020;5:307313.Google Scholar
Chou, IC, Wang, CH, Lin, WD, et al. Risk of epilepsy in type 1 diabetes mellitus: a population-based cohort study. Diabetologia 2016;59:11961203.Google Scholar
Ho, MS, Weller, NJ, Ives, FJ, et al. Prevalence of structural central nervous system abnormalities in early-onset type 1 diabetes mellitus. J Pediatr 2008;153:385390.Google Scholar
Falip, M, Miro, J, Carreño, M, et al. Hypoglycemic seizures and epilepsy in type I diabetes mellitus. J Neurol Sci 2014;346:307309.Google Scholar
Watad, A, Tiosano, S, Bragazzi, NL, et al. Epilepsy among systemic lupus erythematosus patients: insights from a large database analysis. Neuroepidemiology 2018;50:16.Google Scholar
Andrade, RM, Alarcon, GS, Gonzalez, LA, et al. Seizures in patients with systemic lupus erythematosus: data from LUMINA, a multiethnic cohort (LUMINA LIV). Ann Rheumat Dis 2008;67:829834.Google Scholar
Tsai, JD, Lin, CL, Lin, CC, Sung, FC, Lue, KH. Risk of epilepsy in patients with systemic lupus erythematosus: a retrospective cohort study. Neuropsychiatric Dis Treat 2014;10:16351643.Google Scholar
Fleetwood, T, Cantello, R, Comi, C. Antiphospholipid syndrome and the neurologist: from pathogenesis to therapy. Front Neurol 2018;9:1001.Google Scholar
DeGiorgio, LA, Konstantinov, KN, Lee, SC, et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 2001;7:11891193.Google Scholar
Tay, SH, Fairhurst, AM, Mak, A. Clinical utility of circulating anti-N-methyl-d-aspartate receptor subunits NR2A/B antibody for the diagnosis of neuropsychiatric syndromes in systemic lupus erythematosus and Sjogren’s syndrome: an updated meta-analysis. Autoimmunity Rev 2017;16:114122.Google Scholar
Karaaslan, Z, Ekizoglu, E, Tekturk, P, et al. Investigation of neuronal auto-antibodies in systemic lupus erythematosus patients with epilepsy. Epilepsy Res 2017;129:132137.Google Scholar
Ludvigsson, JF, Zingone, F, Tomson, T, Ekbom, A, Ciacci, C. Increased risk of epilepsy in biopsy-verified celiac disease: a population-based cohort study. Neurology 2012;78:14011407.Google Scholar
Kurien, M, Ludvigsson, JF, Sanders, DS, et al. Persistent mucosal damage and risk of epilepsy in people with celiac disease. Eur J Neurol 2018;25:592-e38.Google Scholar
Gobbi, G. Coeliac disease, epilepsy and cerebral calcifications. Brain Dev 2005;27:189200.Google Scholar
McKeon, A, Lennon, VA, Pittock, SJ, Kryzer, TJ, Murray, J. The neurologic significance of celiac disease biomarkers. Neurology 2014;83:17891796.Google Scholar

References

Dalmau, J, Graus, F. Antibody-mediated encephalitis. N Engl J Med 2018;378:840851.Google Scholar
Dalmau, J, Geis, C, Graus, F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev 2017;97:839887.Google Scholar
Graus, F, Titulaer, MJ, Balu, R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391404.Google Scholar
Brooks-Kayal, AR, Russek, SJ. Regulation of GABA(A) receptor gene expression and epilepsy. In: Noebels, JL, Avoli, M, Rogawski, MA, eds. Jasper’s Basic Mechanisms of the Epilepsies. Bethesda, MD: National Center for Biotechnology Information, 2012.Google Scholar
Olney, JW, Farber, NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995;52:9981007.Google Scholar
Nakanishi, S. Molecular diversity of glutamate receptors and implications for brain function. Science 1992;258:597603.Google Scholar
Irani, SR, Michell, AW, Lang, B, et al. Faciobrachial dystonic seizures precede LGI1 antibody limbic encephalitis. Ann Neurol 2011;69:892900.Google Scholar
Maureille, A, Fenouil, T, Joubert, B, et al. Isolated seizures are a common early feature of paraneoplastic anti-GABAB receptor encephalitis. J Neurol 2019;266:195206.Google Scholar
Dalmau, J, Armangue, T, Planaguma, J, et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol 2019;18:10451057.Google Scholar
Do, LD, Chanson, E, Desestret, V, et al. Characteristics in limbic encephalitis with anti-adenylate kinase 5 autoantibodies. Neurology 2017;88:514524.Google Scholar
Flanagan, EP, McKeon, A, Lennon, VA, et al. Autoimmune dementia: clinical course and predictors of immunotherapy response. Mayo Clin Proc 2010;85:881897.Google Scholar
Dubey, D, Singh, J, Britton, JW, et al. Predictive models in the diagnosis and treatment of autoimmune epilepsy. Epilepsia 2017;58:11811189.Google Scholar
Pollak, TA, Lennox, BR, Müller, S, et al. Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiatry 2020;7:93108.Google Scholar
Toledano, M, Pittock, SJ. Autoimmune epilepsy. Semin Neurol 2015;35:245258.Google Scholar
Brenner, T, Sills, GJ, Hart, Y, et al. Prevalence of neurologic autoantibodies in cohorts of patients with new and established epilepsy. Epilepsia 2013;54:10281035.Google Scholar
Graus, F, Saiz, A, Dalmau, J. GAD antibodies in neurological disorders: insights and challenges. Nat Rev Neurol 2020;16:353365.Google Scholar
Bozzetti, S, Rossini, F, Ferrari, S, et al. Epileptic seizures of suspected autoimmune origin: a multicentre retrospective study. J Neurol Neurosurg Psychiatry 2020;91:11451153.Google Scholar
Steriade, C, Britton, J, Dale, RC, et al. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: conceptual definitions. Epilepsia 2020;61:13411351.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157165.Google Scholar
Kayser, MS, Titulaer, MJ, Gresa-Arribas, N, Dalmau, J. Frequency and characteristics of isolated psychiatric episodes in anti-N-methyl-D-aspartate receptor encephalitis. JAMA Neurol 2013;70:11331139.Google Scholar
Dahm, L, Ott, C, Steiner, J, et al. Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol 2014;76:8294.Google Scholar
Hammer, C, Stepniak, B, Schneider, A, et al. Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood–brain barrier integrity. Mol Psychiatry 2014;19:11431149.Google Scholar
Castillo-Gomez, E, Oliveira, B, Tapken, D, et al. All naturally occurring autoantibodies against the NMDA receptor subunit NR1 have pathogenic potential irrespective of epitope and immunoglobulin class. Mol Psychiatry 2016;22:17761784.Google Scholar
Lennox, BR, Palmer-Cooper, EC, Pollak, T, et al. Prevalence and clinical characteristics of serum neuronal cell surface antibodies in first-episode psychosis: a case–control study. Lancet Psychiatry 2017;4:4248.Google Scholar
Schou, MB, Saether, SG, Drange, OK, et al. The significance of anti-neuronal antibodies for acute psychiatric disorders: a retrospective case-controlled study. BMC Neurosci 2018;19:68.Google Scholar
Guasp, M, Gine-Serven, E, Maudes, E, et al. Clinical, neuro-immunological, and CSF investigations in first episode psychosis. Neurology 2021;97:e61e75.Google Scholar
Michaelson, DM, Alroy, G, Goldstein, D, Chapman, J, Feldon, J. Characterization of an experimental autoimmune dementia model in the rat. Ann N Y Acad Sci 1991;640:290294.Google Scholar
Vernino, S, Geschwind, M, Boeve, B. Autoimmune encephalopathies. Neurologist 2007;13:140147.Google Scholar
Hébert, J, Gros, P, Lapointe, S, et al. Searching for autoimmune encephalitis: beware of normal CSF. J Neuroimmunol 2020;345:577285.Google Scholar
Escudero, D, Guasp, M, Arino, H, et al. Antibody-associated CNS syndromes without signs of inflammation in the elderly. Neurology 2017;89:14711475.Google Scholar
McKeon, A. Autoimmune encephalopathies and dementias. Continuum (Minneapolis, Minn) 2016;22:538558.Google Scholar
Sechi, E, Flanagan, EP. Diagnosis and management of autoimmune dementia. Curr Treat Options Neurol 2019;21:11.Google Scholar
Long, JM, Day, GS. Autoimmune dementia. Semin Neurol 2018;38:303315.Google Scholar
Dubey, D, Kothapalli, N, McKeon, A, et al. Predictors of neural-specific autoantibodies and immunotherapy response in patients with cognitive dysfunction. J Neuroimmunol 2018;323:6272.Google Scholar
Prüss, H, Holtje, M, Maier, N, et al. IgA NMDA receptor antibodies are markers of synaptic immunity in slow cognitive impairment. Neurology 2012;78:17431753.Google Scholar
Doss, S, Wandinger, KP, Hyman, BT, et al. High prevalence of NMDA receptor IgA/IgM antibodies in different dementia types. Ann Clin Transl Neurol 2014;1:822832.Google Scholar
Hara, M, Martinez-Hernandez, E, Ariño, H, et al. Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology 2018;90:e1386e1394.Google Scholar
Steiner, J, Teegen, B, Schiltz, K, et al. Prevalence of N-methyl-D-aspartate receptor autoantibodies in the peripheral blood: healthy control samples revisited. JAMA Psychiatry 2014;71:838839.Google Scholar
Sperber, PS, Siegerink, B, Huo, S, et al. Serum anti-NMDA (N-methyl-D-aspartate)-receptor antibodies and long-term clinical outcome after stroke (PROSCIS-B). Stroke 2019;50:32133219.Google Scholar
Geschwind, MD, Shu, H, Haman, A, Sejvar, JJ, Miller, BL. Rapidly progressive dementia. Ann Neurol 2008;64:97108.Google Scholar
Geschwind, MD. Rapidly progressive dementia. Continuum (Minneapolis, Minn) 2016;22:510537.Google Scholar
Grau-Rivera, O, Gelpi, E, Nos, C, et al. Clinicopathological correlations and concomitant pathologies in rapidly progressive dementia: a brain bank series. Neuro-degener Dis 2015;15:350360.Google Scholar
Chitravas, N, Jung, RS, Kofskey, DM, et al. Treatable neurological disorders misdiagnosed as Creutzfeldt–Jakob disease. Ann Neurol 2011;70:437444.Google Scholar
Maat, P, de Beukelaar, JW, Jansen, C, et al. Pathologically confirmed autoimmune encephalitis in suspected Creutzfeldt–Jakob disease. Neurol Neuroimmunol Neuroinflamm 2015;2:e178.Google Scholar
Anuja, P, Venugopalan, V, Darakhshan, N, et al. Rapidly progressive dementia: an eight year (2008–2016) retrospective study. PLoS One 2018;13:e0189832.Google Scholar
Studart Neto, A, Soares Neto, HR, Simabukuro, MM, et al. Rapidly progressive dementia: prevalence and causes in a neurologic unit of a tertiary hospital in Brazil. Alzheimer Dis Assoc Disord 2017;31:239243.Google Scholar
Sala, I, Marquié, M, Sánchez-Saudinós, MB, et al. Rapidly progressive dementia: experience in a tertiary care medical center. Alzheimer Dis Assoc Disord 2012;26:267271.Google Scholar
Papageorgiou, SG, Kontaxis, T, Bonakis, A, et al. Rapidly progressive dementia: causes found in a Greek tertiary referral center in Athens. Alzheimer Dis Assoc Disord 2009;23:337346.Google Scholar
Bien, CI, Nehls, F, Kollmar, R, et al. Identification of adenylate kinase 5 antibodies during routine diagnostics in a tissue-based assay: three new cases and a review of the literature. J Neuroimmunol 2019;334:576975.Google Scholar
Irani, SR, Michell, AW, Lang, B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011;69:892900.Google Scholar
Gaig, C, Graus, F, Compta, Y, et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 2017;88:17361743.Google Scholar
Saito, Y, Ruberu, NN, Sawabe, M, et al. Staging of argyrophilic grains: an age-associated tauopathy. J Neuropathol Exp Neurol 2004;63:911918.Google Scholar
Zarow, C, Sitzer, TE, Chui, HC. Understanding hippocampal sclerosis in the elderly: epidemiology, characterization, and diagnostic issues. Curr Neurol Neurosci Rep 2008;8:363370.Google Scholar
Sundal, C, Vedeler, C, Miletic, H, Andersen, O. Morvan syndrome with Caspr2 antibodies. Clinical and autopsy report. J Neurol Sci 2017;372:453455.Google Scholar
Körtvelyessy, P, Bauer, J, Stoppel, CM, et al. Complement-associated neuronal loss in a patient with CASPR2 antibody-associated encephalitis. Neurol Neuroimmunol Neuroinflamm 2015;2:e75.Google Scholar
Knopman, DS, Parisi, JE, Salviati, A, et al. Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 2003;62:10871095.Google Scholar
Beach, TG, Sue, L, Scott, S, et al. Hippocampal sclerosis dementia with tauopathy. Brain Pathol 2003;13:263278.Google Scholar
Saiz, A, Graus, F, Dalmau, J, et al. Detection of 14-3-3 brain protein in the cerebrospinal fluid of patients with paraneoplastic neurological disorders. Ann Neurol 1999;46:774777.Google Scholar
Geschwind, MD, Tan, KM, Lennon, VA, et al. Voltage-gated potassium channel autoimmunity mimicking Creutzfeldt-Jakob disease. Arch Neurol 2008;65:13411346.Google Scholar
Geschwind, MD, Martindale, J, Miller, D, et al. Challenging the clinical utility of the 14-3-3 protein for the diagnosis of sporadic Creutzfeldt–Jakob disease. Arch Neurol 2003;60:813816.Google Scholar
Tartaglia, MC, Johnson, DY, Thai, JN, et al. Clinical overlap between Jakob–Creutzfeldt disease and Lewy body disease. Can J Neurol Sci 2012;39:304310.Google Scholar
Candelise, N, Baiardi, S, Franceschini, A, Rossi, M, Parchi, P. Towards an improved early diagnosis of neurodegenerative diseases: the emerging role of in vitro conversion assays for protein amyloids. Acta Neuropathologica Commun 2020;8:117.Google Scholar
Tan, KM, Lennon, VA, Klein, CJ, Boeve, BF, Pittock, SJ. Clinical spectrum of voltage-gated potassium channel autoimmunity. Neurology 2008;70:18831890.Google Scholar
Rossi, M, Mead, S, Collinge, J, Rudge, P, Vincent, A. Neuronal antibodies in patients with suspected or confirmed sporadic Creutzfeldt–Jakob disease. J Neurol Neurosurg Psychiatry 2015;86:692694.Google Scholar
Fujita, K, Yuasa, T, Watanabe, O, et al. Voltage-gated potassium channel complex antibodies in Creutzfeldt–Jakob disease. J Neurol 2012;259:22492250.Google Scholar
Newey, CR, Appleby, BS, Shook, S, Sarwal, A. Patient with voltage-gated potassium-channel (VGKC) limbic encephalitis found to have Creutzfeldt–Jakob disease (CJD) at autopsy. J Neuropsychiatry Clin Neurosci 2013;25:E05E07.Google Scholar
Jammoul, A, Lederman, RJ, Tavee, J, Li, Y. Presence of voltage-gated potassium channel complex antibody in a case of genetic prion disease. BMJ Case Rep 2014;2014:bcr2013201622.Google Scholar
Jones, M, Odunsi, S, du Plessis, D, et al. Gerstmann–Straüssler–Scheinker disease: novel PRNP mutation and VGKC-complex antibodies. Neurology 2014;82:21072111.Google Scholar
Angus-Leppan, H, Rudge, P, Mead, S, Collinge, J, Vincent, A. Autoantibodies in sporadic Creutzfeldt–Jakob disease. JAMA Neurol 2013;70:919922.Google Scholar
Lang, B, Makuch, M, Moloney, T, et al. Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies. J Neurol Neurosurg Psychiatry 2017;88:353361.Google Scholar
Mackay, G, Ahmad, K, Stone, J, et al. NMDA receptor autoantibodies in sporadic Creutzfeldt–Jakob disease. J Neurol 2012;259:19791981.Google Scholar
Fujita, K, Yuasa, T, Takahashi, Y, et al. Antibodies to N-methyl-D-aspartate glutamate receptors in Creutzfeldt–Jakob disease patients. J Neuroimmunol 2012;251:9093.Google Scholar
Zuhorn, F, Hübenthal, A, Rogalewski, A, et al. Creutzfeldt–Jakob disease mimicking autoimmune encephalitis with CASPR2 antibodies. BMC Neurol 2014;14:227.Google Scholar
Grau-Rivera, O, Sanchez-Valle, R, Saiz, A, et al. Determination of neuronal antibodies in suspected and definite Creutzfeldt–Jakob disease. JAMA Neurol 2014;71:7478.Google Scholar
Cavallieri, F, Mandrioli, J, Tondelli, M, et al. Pearls & Oy-sters: rapidly progressive dementia: prions or immunomediated? Neurology 2014;82:e149152.Google Scholar
McKeon, A, Marnane, M, O’Connell, M, et al. Potassium channel antibody associated encephalopathy presenting with a frontotemporal dementia like syndrome. Arch Neurol 2007;64:15281530.Google Scholar
van Sonderen, A, Thijs, RD, Coenders, EC, et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 2016;87:14491456.Google Scholar
Uttley, L, Carroll, C, Wong, R, Hilton, DA, Stevenson, M. Creutzfeldt–Jakob disease: a systematic review of global incidence, prevalence, infectivity, and incubation. Lancet Infect Dis 2020;20:e2e10.Google Scholar
Arino, H, Armangue, T, Petit-Pedrol, M, et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 2016;87:759765.Google Scholar
Marquetand, J, van Lessen, M, Bender, B, et al. Slowly progressive LGI1 encephalitis with isolated late-onset cognitive dysfunction: a treatable mimic of Alzheimer’s disease. Eur J Neurol 2016;23:e28e29.Google Scholar
Iranzo, A, Graus, F, Clover, L, et al. Rapid eye movement sleep behavior disorder and potassium channel antibody-associated limbic encephalitis. Ann Neurol 2006;59:178181.Google Scholar
Gadoth, A, Pittock, SJ, Dubey, D, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol 2017;82:7992.Google Scholar
Yonelinas, AP. The hippocampus supports high-resolution binding in the service of perception, working memory and long-term memory. Behav Brain Res 2013;254:3444.Google Scholar
Dodich, A, Cerami, C, Iannaccone, S, et al. Neuropsychological and FDG-PET profiles in VGKC autoimmune limbic encephalitis. Brain Cogn 2016;108:8187.Google Scholar
Bettcher, BM, Gelfand, JM, Irani, SR, et al. More than memory impairment in voltage-gated potassium channel complex encephalopathy. Eur J Neurol 2014;21:13011310.Google Scholar
Vincent, A, Buckley, C, Schott, JM, et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 2004;127:701712.Google Scholar
Butler, CR, Miller, TD, Kaur, MS, et al. Persistent anterograde amnesia following limbic encephalitis associated with antibodies to the voltage-gated potassium channel complex. J Neurol Neurosurg Psychiatry 2014;85:387391.Google Scholar
Finke, C, Pruss, H, Heine, J, et al. Evaluation of cognitive deficits and structural hippocampal damage in encephalitis with leucine-rich, glioma-inactivated 1 antibodies. JAMA Neurol 2017;74:5059.Google Scholar
Loane, C, Argyropoulos, GPD, Roca-Fernandez, A, et al. Hippocampal network abnormalities explain amnesia after VGKCC-Ab related autoimmune limbic encephalitis. J Neurol Neurosurg Psychiatry 2019;90:965974.Google Scholar
Griffith, SP, Malpas, CB, Alpitsis, R, O’Brien, TJ, Monif, M. The neuropsychological spectrum of anti-LGI1 antibody mediated autoimmune encephalitis. J Neuroimmunol 2020;345:577271.Google Scholar
Sola-Valls, N, Arino, H, Escudero, D, et al. Telemedicine assessment of long-term cognitive and functional status in anti-leucine-rich, glioma-inactivated 1 encephalitis. Neurol Neuroimmunol Neuroinflamm 2020;7:e652.Google Scholar
Knopman, DS, DeKosky, ST, Cummings, JL, et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001;56:11431153.Google Scholar
Miller, TD, Chong, TT, Aimola Davies, AM, et al. Human hippocampal CA3 damage disrupts both recent and remote episodic memories. Elife 2020;9.Google Scholar
Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 2012;11:10061012.Google Scholar
Stern, Y, Arenaza-Urquijo, EM, Bartres-Faz, D, et al. Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement 2020;16:13051311.Google Scholar
Matyas, N, Keser Aschenberger, F, Wagner, G, et al. Continuing education for the prevention of mild cognitive impairment and Alzheimer’s-type dementia: a systematic review and overview of systematic reviews. BMJ Open 2019;9:e027719.Google Scholar
Sabater, L, Gaig, C, Gelpi, E, et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 2014;13:575586.Google Scholar
Honorat, JA, Komorowski, L, Josephs, KA, et al. IgLON5 antibody: neurological accompaniments and outcomes in 20 patients. Neurol Neuroimmunol Neuroinflamm 2017;4:e385.Google Scholar
Gelpi, E, Hoftberger, R, Graus, F, et al. Neuropathological criteria of anti-IgLON5-related tauopathy. Acta Neuropathol 2016;132:531543.Google Scholar
Gaig, C, Ercilla, G, Daura, X, et al. HLA and microtubule-associated protein tau H1 haplotype associations in anti-IgLON5 disease. Neurol Neuroimmunol Neuroinflamm 2019;6:e605.Google Scholar
Cagnin, A, Mariotto, S, Fiorini, M, et al. Microglial and neuronal TDP-43 pathology in anti-IgLON5-related tauopathy. J Alzheimer Dis 2017;59:1320.Google Scholar
Erro, ME, Sabater, L, Martinez, L, et al. Anti-IGLON5 disease: a new case without neuropathologic evidence of brainstem tauopathy. Neurol Neuroimmunol Neuroinflamm 2020;7:e651.Google Scholar
Landa, J, Gaig, C, Planagumà, J, et al. Effects of IgLON5 antibodies on neuronal cytoskeleton: a link between autoimmunity and neurodegeneration. Ann Neurol 2020;88:10231027.Google Scholar
Gaig, C, Compta, Y. Neurological profiles beyond the sleep disorder in patients with anti-IgLON5 disease. Curr Opin Neurol 2019;32:493499.Google Scholar
Hansen, N, Hirschel, S, Stöcker, W, et al. Figural memory impairment in conjunction with neuropsychiatric symptoms in IgLON5 antibody-associated autoimmune encephalitis. Front Psychiatry 2020;11:576.Google Scholar
Simabukuro, MM, Sabater, L, Adoni, T, et al. Sleep disorder, chorea, and dementia associated with IgLON5 antibodies. Neurol Neuroimmunol Neuroinflamm 2015;2:e136.Google Scholar
Brunetti, V, Della Marca, G, Spagni, G, Iorio, R. Immunotherapy improves sleep and cognitive impairment in anti-IgLON5 encephalopathy. Neurol Neuroimmunol Neuroinflamm 2019;6:e577.Google Scholar
Logmin, K, Moldovan, AS, Elben, S, Schnitzler, A, Groiss, SJ. Intravenous immunoglobulins as first-line therapy for IgLON5 encephalopathy. J Neurol 2019;266:10311033.Google Scholar
Gaig, C, Iranzo, A, Cajochen, C, et al. Characterization of the sleep disorder of anti-IgLON5 disease. Sleep 2019;42:zsz133.Google Scholar
Boronat, A, Gelfand, JM, Gresa-Arribas, N, et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol 2013;73:120128.Google Scholar
Hara, M, Arino, H, Petit-Pedrol, M, et al. DPPX antibody-associated encephalitis: main syndrome and antibody effects. Neurology 2017;88:13401348.Google Scholar
Tobin, WO, Lennon, VA, Komorowski, L, et al. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 2014;83:17971803.Google Scholar
Balint, B, Jarius, S, Nagel, S, et al. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology 2014;82:15211528.Google Scholar
Hara, M, Arino, H, Petit-Pedrol, M, et al. DPPX-antibody associated encephalitis: main syndrome and antibody effects. Neurology 2017;88:13401348.Google Scholar
Zhou, Q, Zhu, X, Meng, H, Zhang, M, Chen, S. Anti-dipeptidyl-peptidase-like protein 6 encephalitis, a rare cause of reversible rapid progressive dementia and insomnia. J Neuroimmunol 2020;339:577114.Google Scholar
Dalmau, J, Lancaster, E, Martinez-Hernandez, E, Rosenfeld, MR, Balice-Gordon, R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 2011;10:6374.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Late-onset anti-NMDA receptor encephalitis. Neurology 2013;81:10581063.Google Scholar
Joubert, B, Kerschen, P, Zekeridou, A, et al. Clinical spectrum of encephalitis associated with antibodies against the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor: case series and review of the literature. JAMA Neurol 2015;72:11631169.Google Scholar
Ricken, G, Zrzavy, T, Macher, S, et al. Autoimmune global amnesia as manifestation of AMPAR encephalitis and neuropathologic findings. Neurol Neuroimmunol Neuroinflamm 2021;8:e1019Google Scholar
Danve, A, Grafe, M, Deodhar, A. Amyloid beta-related angiitis: a case report and comprehensive review of literature of 94 cases. Semin Arthrit Rheumat 2014;44:8692.Google Scholar
Schielke, E, Nolte, C, Müller, W, Brück, W. Sarcoidosis presenting as rapidly progressive dementia: clinical and neuropathological evaluation. J Neurol 2001;248:522524.Google Scholar
De Maindreville, A, Bedos, L, Bakchine, S. Systemic sarcoidosis mimicking a behavioural variant of frontotemporal dementia. Cae Rep Neurol Med 2015;2015:409126.Google Scholar
Gómez-Puerta, JA, Cervera, R, Calvo, LM, et al. Dementia associated with the antiphospholipid syndrome: clinical and radiological characteristics of 30 patients. Rheumatology (Oxford, England) 2005;44:9599.Google Scholar
Abraham, P, Neel, I, Bishay, S, Sewell, DD. Central nervous system systemic lupus erythematosus (CNS-SLE) vasculitis mimicking Lewy body dementia: a case report emphasizing the role of imaging with an analysis of 33 comparable cases from the scientific literature. J Geriatr Psychiatry Neurol 2021;34:128141.Google Scholar
Seipelt, M, Zerr, I, Nau, R, et al. Hashimoto’s encephalitis as a differential diagnosis of Creutzfeldt–Jakob disease. J Neurol Neurosurg Psychiatry 1999;66:172176.Google Scholar
Mattozzi, S, Sabater, L, Escudero, D, et al. Hashimoto encephalopathy in the 21st century. Neurology 2020;94:e217e224.Google Scholar
Chang, T, Riffsy, MT, Gunaratne, PS. Hashimoto encephalopathy: clinical and MRI improvement following high-dose corticosteroid therapy. Neurologist 2010;16:394396.Google Scholar
Castillo, P, Woodruff, B, Caselli, R, et al. Steroid-responsive encephalopathy associated with autoimmune thyroiditis. Arch Neurol 2006;63:197202.Google Scholar
Slooter, AJC, Otte, WM, Devlin, JW, et al. Updated nomenclature of delirium and acute encephalopathy: statement of ten Societies. Intensive Care Med 2020;46:10201022.Google Scholar
Oldham, MA, Holloway, RG. Delirium disorder: integrating delirium and acute encephalopathy. Neurology 2020;95:173178.Google Scholar

References

Graus, F, Vogrig, A, Muñiz-Castrillo, S et al., Updated diagnostic criteria for paraneoplastic neurologic syndromes. Neurol Neuroimmunol Neuroinflamm 2021;8:e1014.Google Scholar
Dalmau, J, Graus, F. Antibody-mediated encephalitis. N Engl J Med 2018;378:840851.Google Scholar
Graus, F, Saiz, A, Dalmau, J. GAD antibodies in neurological disorders: insights and challenges. Nat Rev Neurol 2020;16:353365.Google Scholar
Do, LD, Chanson, E, Desestret, V, et al. Characteristics in limbic encephalitis with anti-adenylate kinase 5 autoantibodies. Neurology 2017;88:514524.Google Scholar
Dalmau, J, Geis, C, Graus, F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev 2017;97:839887.Google Scholar
Graus, F, Titulaer, MJ, Balu, R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391404.Google Scholar
Graus, F, Dalmau, J. Paraneoplastic neurological syndromes in the era of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2019;16:535548.Google Scholar
Vogrig, A, Fouret, M, Joubert, B, et al. Increased frequency of anti-Ma2 encephalitis associated with immune checkpoint inhibitors. Neurol Neuroimmunol Neuroinflamm 2019;6:e604.Google Scholar
Steriade, C, Britton, J, Dale, RC, et al. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: conceptual definitions. Epilepsia 2020;61:13411351.Google Scholar
de Bruijn, M, van Sonderen, A, van Coevorden-Hameete, MH, et al. Evaluation of seizure treatment in anti-LGI1, anti-NMDAR, and anti-GABABR encephalitis. Neurology 2019;92:e2185e2196.Google Scholar
Graus, F, Escudero, D, Oleaga, L, et al. Syndrome and outcome of antibody-negative limbic encephalitis. Eur J Neurol 2018;25:10111016.Google Scholar
Escudero, D, Guasp, M, Arino, H, et al. Antibody-associated CNS syndromes without signs of inflammation in the elderly. Neurology 2017;89:14711475.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157165.Google Scholar
Armangue, T, Olive-Cirera, G, Martinez-Hernandez, E, et al. Associations of paediatric demyelinating and encephalitic syndromes with myelin oligodendrocyte glycoprotein antibodies: a multicentre observational study. Lancet Neurol 2020;19:234246.Google Scholar
Titulaer, MJ, Soffietti, R, Dalmau, J, et al. Screening for tumours in paraneoplastic syndromes: report of an EFNS Task Force. Eur J Neurol 2011;18:19–e13.Google Scholar
Joubert, B, Saint-Martin, M, Noraz, N, et al. Characterization of a subtype of autoimmune encephalitis with anti-contactin-associated protein-like 2 antibodies in the cerebrospinal fluid, prominent limbic symptoms, and seizures. JAMA Neurol 2016;73:11151124.Google Scholar
Ruiz-García, R, Muñoz-Sánchez, G, Naranjo, L, et al., Limitations of a commercial assay as diagnostic test of autoimmune encephalitis. Front Immunol 2021;12:691536.Google Scholar
Reindl, M, Schanda, K, Woodhall, M, et al. International multicenter examination of MOG antibody assays. Neurol Neuroimmunol Neuroinflamm 2020;7:e674.Google Scholar
Graus, F, Lang, B, Pozo-Rosich, P, et al. P/Q type calcium-channel antibodies in paraneoplastic cerebellar degeneration with lung cancer. Neurology 2002;59:764766.Google Scholar
Ebright, MJ, Li, SH, Reynolds, E, et al. Unintended consequences of Mayo paraneoplastic evaluations. Neurology 2018;91:e2057e2066.Google Scholar
Spatola, M, Petit-Pedrol, M, Simabukuro, MM, et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology 2017;88:10121020.Google Scholar
Martinez-Hernandez, E, Guasp, M, Garcia-Serra, A, et al. Clinical significance of anti-NMDAR concurrent with glial or neuronal surface antibodies. Neurology 2020;94:e2302e2310.Google Scholar
Lang, B, Makuch, M, Moloney, T, et al. Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies. J Neurol Neurosurg Psychiatry 2017;88:353361.Google Scholar
van Sonderen, A, Schreurs, MW, de Bruijn, MA, et al. The relevance of VGKC positivity in the absence of LGI1 and Caspr2 antibodies. Neurology 2016;86:16921699.Google Scholar
Graus, F, Gorman, MP. Voltage-gated potassium channel antibodies: game over. Neurology 2016;86:16571658.Google Scholar
Rose, NR, Bona, C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today 1993;14:426430.Google Scholar
Witebsky, E, Rose, NR, Terplan, K, Paine, JR, Egan, RW. Chronic thyroiditis and autoimmunization. J Am Med Assoc 1957;164:14391447.Google Scholar
Sabater, L, Planaguma, J, Dalmau, J, Graus, F. Cellular investigations with human antibodies associated with the anti-IgLON5 syndrome. J Neuroinflammation 2016;13:226.Google Scholar
Koneczny, I. A new classification system for IgG4 autoantibodies. Front Immunol 2018;9:97.Google Scholar
Koneczny, I. Update on IgG4-mediated autoimmune diseases: new insights and new family members. Autoimmunity Rev 2020;19:102646.Google Scholar
Malviya, M, Barman, S, Golombeck, KS, et al. NMDAR encephalitis: passive transfer from man to mouse by a recombinant antibody. Ann Clin Transl Neurol 2017;4:768783.Google Scholar
Mueller, SH, Farber, A, Pruss, H, et al. Genetic predisposition in anti-LGI1 and anti-NMDA receptor encephalitis. Ann Neurol 2018;83:863869.Google Scholar
Kim, TJ, Lee, ST, Moon, J, et al. Anti-LGI1 encephalitis is associated with unique HLA subtypes. Ann Neurol 2017;81:183192.Google Scholar
Gaig, C, Ercilla, G, Daura, X, et al. HLA and microtubule-associated protein tau H1 haplotype associations in anti-IgLON5 disease. Neurol Neuroimmunol Neuroinflamm 2019;6:e605.Google Scholar
Binks, S, Varley, J, Lee, W, et al. Distinct HLA associations of LGI1 and CASPR2-antibody diseases. Brain 2018;141:22632271.Google Scholar
Muñiz-Castrillo, S, Joubert, B, Elsensohn, MH, et al. Anti-CASPR2 clinical phenotypes correlate with HLA and immunological features. J Neurol Neurosurg Psychiatry 2020;91:10761084.Google Scholar
Planaguma, J, Leypoldt, F, Mannara, F, et al. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain 2015;138:94109.Google Scholar
Sayyah, M, Javad-Pour, M, Ghazi-Khansari, M. The bacterial endotoxin lipopolysaccharide enhances seizure susceptibility in mice: involvement of proinflammatory factors – nitric oxide and prostaglandins. Neuroscience 2003;122:10731080.Google Scholar
Jurek, B, Chayka, M, Kreye, J, et al. Human gestational N-methyl-D-aspartate receptor autoantibodies impair neonatal murine brain function. Ann Neurol 2019;86:656670.Google Scholar
Joubert, B, García-Serra, A, Planagumà, J, et al. Pregnancy outcomes in anti-NMDA receptor encephalitis: case series. Neurol Neuroimmunol Neuroinflamm 2020;7:e668.Google Scholar
Wagnon, I, Hélie, P, Bardou, I, et al. Autoimmune encephalitis mediated by B-cell response against N-methyl-D-aspartate receptor. Brain 2020;143:29572972.Google Scholar
Jones, BE, Tovar, KR, Goehring, A, et al. Autoimmune receptor encephalitis in mice induced by active immunization with conformationally stabilized holoreceptors. Sci Transl Med 2019;11:eaaw0044.Google Scholar
Chow, FC, Glaser, CA, Sheriff, H, et al. Use of clinical and neuroimaging characteristics to distinguish temporal lobe herpes simplex encephalitis from its mimics. Clin Infect Dis 2015;60:13771383.Google Scholar
Seeley, WW, Marty, FM, Holmes, TM, et al. Post-transplant acute limbic encephalitis: clinical features and relationship to HHV6. Neurology 2007;69:156165.Google Scholar
Vogrig, A, Joubert, B, Ducray, F, et al. Glioblastoma as differential diagnosis of autoimmune encephalitis. J Neurol 2018;265:669677.Google Scholar
Budhram, A, Britton, JW, Liebo, GB, et al. Use of diffusion-weighted imaging to distinguish seizure-related change from limbic encephalitis. J Neurol 2020;267:33373342.Google Scholar
Malter, MP, Helmstaedter, C, Urbach, H, Vincent, A, Bien, CG. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann Neurol 2010;67:470478.Google Scholar
Malter, MP, Widman, G, Galldiks, N, et al. Suspected new-onset autoimmune temporal lobe epilepsy with amygdala enlargement. Epilepsia 2016;57:14851494.Google Scholar
Arino, H, Armangue, T, Petit-Pedrol, M, et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 2016;87:759765.Google Scholar
Irani, SR, Stagg, CJ, Schott, JM, et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 2013;136:31513162.Google Scholar
Flanagan, EP, Kotsenas, AL, Britton, JW, et al. Basal ganglia T1 hyperintensity in LGI1-autoantibody faciobrachial dystonic seizures. Neurol Neuroimmunol Neuroinflamm 2015;2:e161.Google Scholar
Geschwind, MD, Tan, KM, Lennon, VA, et al. Voltage-gated potassium channel autoimmunity mimicking Creutzfeldt–Jakob disease. Arch Neurol 2008;65:13411346.Google Scholar
Irani, SR, Pettingill, P, Kleopa, KA, et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann Neurol 2012;72:241255.Google Scholar
Gadoth, A, Pittock, SJ, Dubey, D, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol 2017;82:7992.Google Scholar
Guasp, M, Giné-Servén, E, Maudes, E, et al. Clinical, neuroimmunologic, and CSF investigations in first episode psychosis. Neurology 2021;97:e61e75.Google Scholar
Pollak, TA, Lennox, BR, Müller, S, et al. Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiatry 2020;7:93108.Google Scholar
Rubio-Agustí, I, Dalmau, J, Sevilla, T, et al. Isolated hemidystonia associated with NMDA receptor antibodies. Mov Disord 2011;26:351352.Google Scholar
Kayser, MS, Titulaer, MJ, Gresa-Arribas, N, Dalmau, J. Frequency and characteristics of isolated psychiatric episodes in anti-N-methyl-D-aspartate receptor encephalitis. JAMA Neurol 2013;70:11331139.Google Scholar
Guasp, M, Modena, Y, Armangue, T, Dalmau, J, Graus, F. Clinical features of seronegative, but CSF antibody-positive, anti-NMDA receptor encephalitis. Neurol Neuroimmunol Neuroinflamm 2020;7:e659.Google Scholar
Nosadini, M, Mohammad, SS, Ramanathan, S, Brilot, F, Dale, RC. Immune therapy in autoimmune encephalitis: a systematic review. Expert Rev Neurother 2015;15:13911419.Google Scholar
Scheibe, F, Pruss, H, Mengel, AM, et al. Bortezomib for treatment of therapy-refractory anti-NMDA receptor encephalitis. Neurology 2017;88:366370.Google Scholar
Behrendt, V, Krogias, C, Reinacher-Schick, A, Gold, R, Kleiter, I. Bortezomib treatment for patients with anti-N-methyl-D-aspartate receptor encephalitis. JAMA Neurol 2016;73:12511253.Google Scholar
Shin, YW, Lee, ST, Kim, TJ, Jun, JS, Chu, K. Bortezomib treatment for severe refractory anti-NMDA receptor encephalitis. Ann Clin Transl Neurol 2018;5:598605.Google Scholar
Lee, WJ, Lee, ST, Moon, J, et al. Tocilizumab in autoimmune encephalitis refractory to rituximab: an institutional cohort study. Neurotherapeutics 2016;13:824832.Google Scholar
Armangue, T, Spatola, M, Vlagea, A, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 2018;17:760772.Google Scholar
Liu, X, Yan, B, Wang, R, et al. Seizure outcomes in patients with anti-NMDAR encephalitis: a follow-up study. Epilepsia 2017;58:21042111.Google Scholar
Zheng, F, Ye, X, Shi, X, Poonit, ND, Lin, Z. Management of refractory orofacial dyskinesia caused by anti-N-methyl-D-aspartate receptor encephalitis using botulinum toxin. Front Neurol 2018;9:81.Google Scholar
Arino, H, Gresa-Arribas, N, Blanco, Y, et al. Cerebellar ataxia and glutamic acid decarboxylase antibodies: immunologic profile and long-term effect of immunotherapy. JAMA Neurol 2014;71:10091016.Google Scholar
Joubert, B, Rostasy, K, Honnorat, J. Immune-mediated ataxias. Handb Clin Neurol 2018;155:313332.Google Scholar
Spatola, M, Pedrol, MP, Maudes, E, et al. Clinical features, prognostic factors, and antibody effects in anti-mGluR1 encephalitis. Neurology 2020;95:e3012e3025.Google Scholar
Emelifeonwu, JA, Shetty, J, Kaliaperumal, C, et al. Acute cerebellitis in children: a variable clinical entity. J Child Neurol 2018;33:675684.Google Scholar
Iizuka, T, Kaneko, J, Tominaga, N, et al. Association of progressive cerebellar atrophy with long-term outcome in patients with anti-N-methyl-D-aspartate receptor encephalitis. JAMA Neurol 2016;73:706713.Google Scholar
Tobin, WO, Guo, Y, Krecke, KN, et al. Diagnostic criteria for chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain 2017;140:24152425.Google Scholar
Taieb, G, Mulero, P, Psimaras, D, et al. CLIPPERS and its mimics: evaluation of new criteria for the diagnosis of CLIPPERS. J Neurol Neurosurg Psychiatry 2019;90:10271038.Google Scholar
Dalmau, J, Graus, F, Villarejo, A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127:18311844.Google Scholar
Dubey, D, Wilson, MR, Clarkson, B, et al. Expanded clinical phenotype, oncological associations, and immunopathologic insights of paraneoplastic Kelch-like protein-11 encephalitis. JAMA Neurol 2020;77:14201429.Google Scholar
Simard, C, Vogrig, A, Joubert, B, et al. Clinical spectrum and diagnostic pitfalls of neurologic syndromes with Ri antibodies. Neurol Neuroimmunol Neuroinflamm 2020;7:e699.Google Scholar
Saiz, A, Bruna, J, Stourac, P, et al. Anti-Hu-associated brainstem encephalitis. J Neurol Neurosurg Psychiatry 2009;80:404407.Google Scholar
Yoshikawa, K, Kuwahara, M, Morikawa, M, Kusunoki, S. Bickerstaff brainstem encephalitis with or without anti-GQ1b antibody. Neurol Neuroimmunol Neuroinflamm 2020;7:e889.Google Scholar
Jarius, S, Kleiter, I, Ruprecht, K, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: brainstem involvement – frequency, presentation and outcome. J Neuroinflammation 2016;13:281.Google Scholar
Gaig, CGF, Compta, Y, Högl, B, et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 2017;88:17361743.Google Scholar
Armangue, T, Sabater, L, Torres-Vega, E, et al. Clinical and immunological features of opsoclonus-myoclonus syndrome in the era of neuronal cell surface antibodies. JAMA Neurol 2016;73:417424.Google Scholar
Berridge, G, Menassa, DA, Moloney, T, et al. Glutamate receptor delta2 serum antibodies in pediatric opsoclonus myoclonus ataxia syndrome. Neurology 2018;91:e714e723.Google Scholar
Petit-Pedrol, M, Guasp, M, Armangue, T, et al. Absence of GluD2 antibodies in patients with opsoclonus-myoclonus syndrome. Neurology 2021;96:e1082e1087.Google Scholar
Swayne, A, Tjoa, L, Broadley, S, et al. Antiglycine receptor antibody related disease: a case series and literature review. Eur J Neurol 2018;25:12901298.Google Scholar
Hinson, SR, Lopez-Chiriboga, AS, Bower, JH, et al. Glycine receptor modulating antibody predicting treatable stiff-person spectrum disorders. Neurol Neuroimmunol Neuroinflamm 2018;5:e438.Google Scholar
Martinez-Hernandez, E, Arino, H, McKeon, A, et al. Clinical and immunological investigations in 121 patients with stiff-person spectrum disorder. JAMA Neurol 2016;73:714720.Google Scholar
Carvajal-Gonzalez, A, Leite, MI, Waters, P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 2014;137:21782192.Google Scholar
Folli, F, Solimena, M, Cofiell, R, et al. Autoantibodies to a 128-kd synaptic protein in three women with the stiff-man syndrome and breast cancer. N Engl J Med 1993;328:546551.Google Scholar
Dropcho, EJ. Antiamphiphysin antibodies with small-cell lung carcinoma and paraneoplastic encephalomyelitis. Ann Neurol 1996;39:659667.Google Scholar
Pittock, SJ, Lucchinetti, CF, Parisi, JE, et al. Amphiphysin autoimmunity: paraneoplastic accompaniments. Ann Neurol 2005;58:96107.Google Scholar
Reindl, M, Waters, P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat Rev Neurol 2019;15:89102.Google Scholar
Baumann, M, Sahin, K, Lechner, C, et al. Clinical and neuroradiological differences of paediatric acute disseminating encephalomyelitis with and without antibodies to the myelin oligodendrocyte glycoprotein. J Neurol Neurosurg Psychiatry 2015;86:265272.Google Scholar
Waters, P, Fadda, G, Woodhall, M, et al. Serial anti-myelin oligodendrocyte glycoprotein antibody analyses and outcomes in children with demyelinating syndromes. JAMA Neurol 2019;77:8293.Google Scholar
Hoftberger, R, Sepulveda, M, Armangue, T, et al. Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease. Mult Scler 2015;21:866874.Google Scholar
Sepulveda, M, Delgado-García, G, Blanco, Y, et al. Late-onset neuromyelitis optica spectrum disorder: the importance of autoantibody serostatus. Neurol Neuroimmunol Neuroinflamm 2019;6:e607.Google Scholar
Cheng, C, Jiang, Y, Chen, X, et al. Clinical, radiographic characteristics and immunomodulating changes in neuromyelitis optica with extensive brain lesions. BMC Neurol 2013;13:72.Google Scholar
Kim, W, Park, MS, Lee, SH, et al. Characteristic brain magnetic resonance imaging abnormalities in central nervous system aquaporin-4 autoimmunity. Mult Scler 2010;16:12291236.Google Scholar
Pittock, SJ, Berthele, A, Fujihara, K, et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N Engl J Med 2019;381:614625.Google Scholar
Traboulsee, A, Greenberg, BM, Bennett, JL, et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol 2020;19:402412.Google Scholar
Yamamura, T, Kleiter, I, Fujihara, K, et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med 2019;381:21142124.Google Scholar
Cree, BAC, Bennett, JL, Kim, HJ, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019;394:13521363.Google Scholar
Tahara, M, Oeda, T, Okada, K, et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2020;19:298306.Google Scholar
Chen, JJ, Tobin, WO, Majed, M, et al. Prevalence of myelin oligodendrocyte glycoprotein and aquaporin-4-IgG in patients in the optic neuritis treatment trial. JAMA Ophthalmol 2018;136:419422.Google Scholar
Chen, JJ, Flanagan, EP, Jitprapaikulsan, J, et al. Myelin oligodendrocyte glycoprotein antibody-positive optic neuritis: clinical characteristics, radiologic clues, and outcome. Am J Ophthalmol 2018;195:815.Google Scholar
Kim, SM, Woodhall, MR, Kim, JS, et al. Antibodies to MOG in adults with inflammatory demyelinating disease of the CNS. Neurol Neuroimmunol Neuroinflamm 2015;2:e163.Google Scholar
Ramanathan, S, Prelog, K, Barnes, EH, et al. Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult Scler 2016;22:470482.Google Scholar
Fang, B, McKeon, A, Hinson, SR, et al. Autoimmune glial fibrillary acidic protein astrocytopathy: a novel meningoencephalomyelitis. JAMA Neurol 2016;73:12971307.Google Scholar
Astaras, C, de Micheli, R, Moura, B, Hundsberger, T, Hottinger, AF. Neurological adverse events associated with immune checkpoint inhibitors: diagnosis and management. Curr Neurol Neurosci Rep 2018;18:19.Google Scholar
Horn, L, Mansfield, AS, Szczęsna, A, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med 2018;379:22202229.Google Scholar
Brahmer, JR, Lacchetti, C, Schneider, BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 2018;36:17141768.Google Scholar
Giavridis, T, van der Stegen, SJC, Eyquem, J, et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med 2018;24:731738.Google Scholar
Sterner, RM, Sakemura, R, Cox, MJ, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 2019;133:697709.Google Scholar
Lennox, BR, Palmer-Cooper, EC, Pollak, T, et al. Prevalence and clinical characteristics of serum neuronal cell surface antibodies in first-episode psychosis: a case–control study. Lancet Psychiatry 2017;4:4248.Google Scholar
Kelleher, E, McNamara, P, Dunne, J, et al. Prevalence of N-methyl-D-aspartate receptor antibody (NMDAR-Ab) encephalitis in patients with first episode psychosis and treatment resistant schizophrenia on clozapine, a population based study. Schizophr Res 2020;222:455461.Google Scholar
Hara, M, Martinez-Hernandez, E, Ariño, H, et al. Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology 2018;90:e1386e1394.Google Scholar
Dahm, L, Ott, C, Steiner, J, et al. Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol 2014;76:8294.Google Scholar
Herken, J, Prüss, H. Red flags: clinical signs for identifying autoimmune encephalitis in psychiatric patients. Front Psychiatry 2017;8:25.Google Scholar
Dalmau, J, Armangue, T, Planaguma, J, et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol 2019;18:10451057.Google Scholar
Armangue, T, Olivé-Cirera, G, Martínez-Hernandez, E, et al. Associations of paediatric demyelinating and encephalitic syndromes with myelin oligodendrocyte glycoprotein antibodies: a multicentre observational study. Lancet Neurol 2020;19:234246.Google Scholar
Maureille, A, Fenouil, T, Joubert, B, et al. Isolated seizures are a common early feature of paraneoplastic anti-GABAB receptor encephalitis. J Neurol 2019;266:195206.Google Scholar
de Bruijn, MAAM, Bastiaansen, AEM, Mojzisova, H, et al., Antibodies contributing to focal epilepsy signs and symptoms score. Ann Neurol 2021;89:698710.Google Scholar
Khawaja, AM, Vines, BL, Miller, DW, Szaflarski, JP, Amara, AW. Refractory status epilepticus and glutamic acid decarboxylase antibodies in adults: presentation, treatment and outcomes. Epileptic Disord 2016;18:3443.Google Scholar
Carreño, M, Bien, CG, Asadi-Pooya, AA, et al. Epilepsy surgery in drug resistant temporal lobe epilepsy associated with neuronal antibodies. Epilepsy Res 2017;129:101105.Google Scholar
Feyissa, AM, Mirro, EA, Wabulya, A, et al. Brain-responsive neurostimulation treatment in patients with GAD65 antibody-associated autoimmune mesial temporal lobe epilepsy. Epilepsia Open 2020;5:307313.Google Scholar
Specchio, N, Pietrafusa, N. New-onset refractory status epilepticus and febrile infection-related epilepsy syndrome. Dev Med Child Neurol 2020;62:897905.Google Scholar
Jun, JS, Lee, ST, Kim, R, Chu, K, Lee, SK. Tocilizumab treatment for new onset refractory status epilepticus. Ann Neurol 2018;84:940945.Google Scholar
Brenner, T, Sills, GJ, Hart, Y, et al. Prevalence of neurologic autoantibodies in cohorts of patients with new and established epilepsy. Epilepsia 2013;54:10281035.Google Scholar
Liimatainen, S, Peltola, M, Sabater, L, et al. Clinical significance of glutamic acid decarboxylase antibodies in patients with epilepsy. Epilepsia 2010;51:760767.Google Scholar
Schmitt, SE, Pargeon, K, Frechette, ES, et al. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology 2012;79:10941100.Google Scholar
Sonderen, AV, Arends, S, Tavy, DLJ, et al. Predictive value of electroencephalography in anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry 2018;89:11011106.Google Scholar
Gibbs, EL, Gibbs, FA. Extreme spindles: correlation of electroencephalographic sleep pattern with mental retardation. Science 1962;138:11061107.Google Scholar
Gaig, C, Iranzo, A, Cajochen, C, et al. Characterization of the sleep disorder of anti-IgLON5 disease. Sleep 2019;42:zsz133.Google Scholar
Gaig, C, Compta, Y. Neurological profiles beyond the sleep disorder in patients with anti-IgLON5 disease. Curr Opin Neurol 2019;32:493499.Google Scholar
Nissen, MS, Blaabjerg, M. Anti-IgLON5 disease: a case with 11-year clinical course and review of the literature. Front Neurol 2019;10:1056.Google Scholar
Cabezudo-García, P, Mena-Vázquez, N, Estivill Torrús, G, Serrano-Castro, P. Response to immunotherapy in anti-IgLON5 disease: a systematic review. Acta Neurol Scand 2020;141:263270.Google Scholar
Lugaresi, E, Provini, F. Agrypnia excitata: clinical features and pathophysiological implications. Sleep Med Rev 2001;5:313322.Google Scholar
Provini, F, Marconi, S, Amadori, M, et al. Morvan chorea and agrypnia excitata: when video-polysomnographic recording guides the diagnosis. Sleep Med 2011;12:10411043.Google Scholar
Wingerchuk, DM, Banwell, B, Bennett, JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015;85:177189.Google Scholar
Syrbe, S, Stettner, GM, Bally, J, et al. CASPR2 autoimmunity in children expanding to mild encephalopathy with hypertension. Neurology 2020;94:e2290e2301.Google Scholar
Navarro, V, Kas, A, Apartis, E, et al. Motor cortex and hippocampus are the two main cortical targets in LGI1-antibody encephalitis. Brain 2016;139:10791093.Google Scholar
Wennberg, R, Steriade, C, Chen, R, Andrade, D. Frontal infraslow activity marks the motor spasms of anti-LGI1 encephalitis. Clin Neurophysiol 2018;129:5968.Google Scholar
Höglinger, GU, Respondek, G, Stamelou, M, et al. Clinical diagnosis of progressive supranuclear palsy: the Movement Disorder Society criteria. Mov Disord 2017;32:853864.Google Scholar
Varley, JA, Webb, AJS, Balint, B, et al. The movement disorder associated with NMDAR antibody-encephalitis is complex and characteristic: an expert video-rating study. J Neurol Neurosurg Psychiatry 2019;90:724726.Google Scholar
Duan, BC, Weng, WC, Lin, KL, et al. Variations of movement disorders in anti-N-methyl-D-aspartate receptor encephalitis: a nationwide study in Taiwan. Medicine (Baltimore) 2016;95:e4365.Google Scholar
Baizabal-Carvallo, JF, Stocco, A, Muscal, E, Jankovic, J. The spectrum of movement disorders in children with anti-NMDA receptor encephalitis. Mov Disord 2013;28:543547.Google Scholar
Mohammad, SS, Fung, VS, Grattan-Smith, P, et al. Movement disorders in children with anti-NMDAR encephalitis and other autoimmune encephalopathies. Mov Disord 2014;29:15391542.Google Scholar
Vernino, S, Tuite, P, Adler, CH, et al. Paraneoplastic chorea associated with CRMP-5 neuronal antibody and lung carcinoma. Ann Neurol 2002;51:625630.Google Scholar
Vigliani, MC, Honnorat, J, Antoine, JC, et al. Chorea and related movement disorders of paraneoplastic origin: the PNS EuroNetwork experience. J Neurol 2011;258:20582068.Google Scholar
O’Toole, O, Lennon, VA, Ahlskog, JE, et al. Autoimmune chorea in adults. Neurology 2013;80:11331144.Google Scholar
Joubert, B, Gobert, F, Thomas, L, et al. Autoimmune episodic ataxia in patients with anti-CASPR2 antibody-associated encephalitis. Neurol Neuroimmunol Neuroinflamm 2017;4:e371.Google Scholar
Lopez Chiriboga, AS, Pittock, S. Episodic ataxia in CASPR2 autoimmunity. Neurol Neuroimmunol Neuroinflamm 2019;6:e536.Google Scholar
Govert, F, Witt, K, Erro, R, et al. Orthostatic myoclonus associated with Caspr2 antibodies. Neurology 2016;86:13531355.Google Scholar
Tay, SH, Fairhurst, AM, Mak, A. Clinical utility of circulating anti-N-methyl-D-aspartate receptor subunits NR2A/B antibody for the diagnosis of neuropsychiatric syndromes in systemic lupus erythematosus and Sjogren’s syndrome: an updated meta-analysis. Autoimmunity Rev 2017;16:114122.Google Scholar
Choi, MY, FitzPatrick, RD, Buhler, K, Mahler, M, Fritzler, MJ. A review and meta-analysis of anti-ribosomal P autoantibodies in systemic lupus erythematosus. Autoimmunity Rev 2020;19:102463.Google Scholar
Hara, M, Martinez-Hernandez, E, Arino, H, et al. Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology 2018;90:e1386e1394.Google Scholar
Armangue, T, Spatola, M, Vlagea, A, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 2018;17:760772.Google Scholar
DeGiorgio, LA, Konstantinov, KN, Lee, SC, et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 2001;7:11891193.Google Scholar
The International Criteria for Behcet’s Disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria. J Eur Acad Dermatol Venereol 2014;28:338347.Google Scholar
Akman-Demir, G, Serdaroglu, P, Tasci, B. Clinical patterns of neurological involvement in Behcet’s disease: evaluation of 200 patients. The Neuro-Behcet Study Group. Brain 1999;122:21712182.Google Scholar
Cohen Aubart, F, Bouvry, D, Galanaud, D, et al. Long-term outcomes of refractory neurosarcoidosis treated with infliximab. J Neurol 2017;264:891897.Google Scholar
Gelfand, JM, Bradshaw, MJ, Stern, BJ, et al. Infliximab for the treatment of CNS sarcoidosis: a multi-institutional series. Neurology 2017;89:20922100.Google Scholar
Fritz, D, Timmermans, WMC, van Laar, JAM, et al. Infliximab treatment in pathology-confirmed neurosarcoidosis. Neurol Neuroimmunol Neuroinflamm 2020;7:e847.Google Scholar
Jin, H, Qu, Y, Guo, ZN, et al. Primary angiitis of the central nervous system mimicking glioblastoma: a case report and literature review. Front Neurol 2019;10:1208.Google Scholar
Caputi, L, Erbetta, A, Marucci, G, et al. Biopsy-proven primary angiitis of the central nervous system mimicking leukodystrophy: a case report and review of the literature. J Clin Neurosci 2019;64:4244.Google Scholar
de Boysson, H, Boulouis, G, Aouba, A, et al. Adult primary angiitis of the central nervous system: isolated small-vessel vasculitis represents distinct disease pattern. Rheumatology (Oxford, England) 2017;56:439444.Google Scholar
Schuster, S, Bachmann, H, Thom, V, et al. Subtypes of primary angiitis of the CNS identified by MRI patterns reflect the size of affected vessels. J Neurol Neurosurg Psychiatry 2017;88:749755.Google Scholar
Danve, A, Grafe, M, Deodhar, A. Amyloid beta-related angiitis: a case report and comprehensive review of literature of 94 cases. Semin Arthrit Rheumat 2014;44:8692.Google Scholar
Regenhardt, RW, Thon, JM, Das, AS, et al. Association between immunosuppressive treatment and outcomes of cerebral amyloid angiopathy-related inflammation. JAMA Neurol 2020;77:110.Google Scholar
Castillo, P, Woodruff, B, Caselli, R, et al. Steroid-responsive encephalopathy associated with autoimmune thyroiditis. Arch Neurol 2006;63:197202.Google Scholar
Mattozzi, S, Sabater, L, Escudero, D, et al. Hashimoto encephalopathy in the 21st century. Neurology 2020;94:e217e224.Google Scholar
Gitlits, VM, Toh, BH, Sentry, JW. Disease association, origin, and clinical relevance of autoantibodies to the glycolytic enzyme enolase. J Investig Med 2001;49:138145.Google Scholar
Kishitani, T, Matsunaga, A, Ikawa, M, et al. Limbic encephalitis associated with anti-NH2-terminal of alpha-enolase antibodies: a clinical subtype of Hashimoto encephalopathy. Medicine (Baltimore) 2017;96:e6181.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×