Skip to main content Accessibility help
×
  • Cited by 68
  • Volume 1
  • Kevin Costello, Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Owen Gwilliam, Max-Planck-Institut für Mathematik, Bonn
Publisher:
Cambridge University Press
Online publication date:
January 2017
Print publication year:
2016
Online ISBN:
9781316678626

Book description

Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.

Reviews

'Because the subject of this book touches many advanced leading theories of quantum physics which utilize heavily mathematical machineries from a diverse range of mathematical topics, the background material needed for this book is immense. So it is very helpful and much appreciated that a 103-page four-section appendix is included in this 387-page book, to provide a very well-organized and fairly detailed review of relevant mathematical background topics, including simplicial techniques, colored operads/multicategories and their algebras, differential graded (dg) Lie algebras and their cohomology, sheaves/cosheaves, formal Hodge theory, and ‘convenient, differentiable, or bornological' topological vector spaces facilitating the homological algebra for infinite-dimensional vector spaces.'

Albert Sheu Source: Zentralblatt MATH

'It is a truth universally acknowledged that one cannot make two independent measurements at the very same place and very same time. In this book full of wit, Costello and Gwilliam show what can actually be done by taking this common lore seriously. … Reading this book requires minimal prerequisites: essentially only the basic notions of topology, of differential geometry, of homological algebra and of category theory will be needed, while all other background material … is provided in the four appendices that take up about one third of the book. Yet some familiarity with the subject is needed to really appreciate it. The reader who has even occasionally been close to the interface between algebraic topology, derived geometry and quantum field theory will enjoy many pleasant moments with Costello and Gwilliam and will find many sources of enlightenment … in their treatment of the subject.'

Domenico Fiorenza Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Adámek, Jiřı, and Rosický, Jiřı. 1994. Locally presentable and accessible categories. London Mathematical Society Lecture Note Series, Vol. 189. Cambridge: Cambridge University Press.
Atiyah, M., and Bott, R. 1967. A Lefschetz fixed point formula for elliptic complexes: I. Ann. Math., (2), 86(2), 374–407.
Atiyah, Michael. 1988. Topological quantum field theories. Inst. Hautes Études Sci. Publ. Math., 175–186 (1989).
Ayala, David, and Francis, John. 2015. Factorization homology of topological manifolds. J. Topol., 8(4), 1045–1084.
Ayala, David, Francis, John, and Rozenblyum, Nick. 2015. Factorization homology from higher categories. Available at http://arxiv.org/abs/1504.04007.
Ayala, David, Francis, John, and Tanaka, Hiro Lee. 2016. Factorization homology for stratified manifolds. Available at http://arxiv.org/abs/1409.0848.
Behnke, Heinrich, and Stein, Karl. 1949. Entwicklung analytischer Funktionen auf Riemannschen Flächen. Math. Ann., 120, 430–461.
Beilinson, Alexander, and Drinfeld, Vladimir. 2004. Chiral algebras. American Mathematical Society Colloquium Publications, Vol. 51. Providence, RI: American Mathematical Society.
Ben Zvi, David, Brochier, Adrien, and Jordan, David. 2016. Integrating quantum groups over surfaces: Quantum character varieties and topological field theory. Available at http://arxiv.org/abs/1501.04652.
Boardman, J.M, and Vogt, R.M. 1973. Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, Vol. 347. Berlin and New York: Springer-Verlag.
Boavida de Brito, Pedro, and Weiss, Michael. 2013. Manifold calculus and homotopy sheaves. Homol. Homot. Appl., 15(2), 361–383.
Bödigheimer, C.-F. 1987. Stable splittings of mapping spaces. Algebraic topology (Seattle, Wash., 1985), pp. 174–187. Lecture Notes in Mathematics, Vol. 1286. Berlin: Springer-Verlag.
Borceux, Francis. 1994. Handbook of categorical algebra. 1. Encyclopedia of Mathematics and Its Applications, Vol. 50. Cambridge: Cambridge University Press. Basic category theory.
Borceux, Francis. 1994. Handbook of categorical algebra. 2. Encyclopedia of Mathematics and Its Applications, Vol. 51. Cambridge: Cambridge University Press. Categories and structures.
Bott, Raoul, and Tu, LoringW. 1982. Differential forms in algebraic topology. Graduate Texts in Mathematics, Vol. 82. Berlin and New York: Springer-Verlag.
Bousfield, A.K, and Kan, D.M. 1972. Homotopy limits, completions and localizations. Lecture Notes in Mathematics, Vol. 304. Springer-Verlag, Berlin-New York.
Calaque, Damien, and Willwacher, Thomas. 2015. Triviality of the higher formality theorem. Proc. Am. Math. Soc., 143(12), 5181–5193.
Costello, Kevin. 2004. The A∞ operad and the moduli space of curves. Available at http://arxiv.org/abs/math/0402015.
Costello, Kevin. 2007. Renormalisation and the Batalin-Vilkovisky formalism. Available at http://arxiv.org/abs/0706.1533.
Costello, Kevin. 2007. Topological conformal field theories and Calabi-Yau categories. Adv. Math., 210(1), 165–214.
Costello, Kevin. 2010. A geometric construction of the Witten genus, I. In: Proceedings of the International Congress of Mathematicians (Hyderabad, 2010).
Costello, Kevin. 2011. A geometric construction of the Witten genus, II. Available at http://arxiv.org/abs/1112.0816.
Costello, Kevin. 2011. Renormalization and effective field theory. Mathematical Surveys and Monographs, Vol. 170. Providence, RI: American Mathematical Society.
Costello, Kevin. 2013. Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4. Pure Appl. Math. Q., 9(1), 73–165.
Costello, Kevin. 2013. Supersymmetric gauge theory and the Yangian. Available at http://arxiv.org/abs/1303.2632.
Costello, Kevin. 2014. Integrable lattice models from four-dimensional field theories. String-Math 2013, pp. 3–23. Proceeding of Symposia in Pure Mathematics, Vol. 88. Providence, RI: American Mathematical Society.
Costello, Kevin, and Li, Si. 2011. Quantum BCOV theory on Calabi-Yau manifolds and the higher genus B-model. Available at http://arxiv.org/abs/1201. 4501.
Costello, Kevin, and Scheimbauer, Claudia. 2015. Lectures on mathematical aspects of (twisted) supersymmetric gauge theories. Mathematical aspects of quantum field theories, pp. 57–87. Mathematical Physics Studies. Berlin and New York: Springer.
Curry, Justin. 2014. Sheaves, Cosheaves and applications. Available at http://arxiv.org/abs/1303.3255.
Deligne, Pierre, Etingof,Pavel, Freed, Daniel, S., Jeffrey, Lisa C., Kazhdan, David, Morgan, John W., Morrison, David R., and Witten, Edward (eds). 1999. Quantum fields and strings: A course for mathematicians. Vols. 1, 2. American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ. Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 1996–1997.
Dugger, Daniel. 2008. A primer on homotopy colimits. Available at http://pages.uoregon.edu/ddugger/.
Dwyer, W.G, and Kan, D.M. 1980. Calculating simplicial localizations. J. Pure Appl. Algebra, 18(1), 17–35.
Dwyer, W.G, and Kan, D.M. 1980. Simplicial localizations of categories. J. Pure Appl. Algebra, 17(3), 267–284.
Eilenberg, Samuel, and Moore, John C. 1962. Limits and spectral sequences. Topology, 1, 1–23.
Etingof, Pavel, Gelaki, Shlomo, Nikshych, Dmitri, and Ostrik, Victor. 2015. Tensor categories. Mathematical Surveys and Monographs, Vol. 205. Providence, RI: American Mathematical Society.
Félix, Yves, Halperin, Stephen, and Thomas, Jean-Claude. 2001. Rational homotopy theory. Graduate Texts in Mathematics, Vol. 205. New York: Springer-Verlag.
Forster, Otto. 1991. Lectures on Riemann surfaces. Graduate Texts in Mathematics, Vol. 81. New York: Springer-Verlag. Translated from the 1977 German original by Bruce Gilligan, Reprint of the 1981 English translation.
Francis, John. 2013. The tangent complex and Hochschild cohomology o. En-rings. Compos. Math., 149(3), 430–480.
Freed, Daniel S. 1994. Higher algebraic structures and quantization. Comm. Math. Phys., 159(2), 343–398.
Frenkel, Edward, and Ben-Zvi, David. 2004. Vertex algebras and algebraic curves, 2nd ed. Mathematical Surveys and Monographs, Vol. 88. Providence, RI: American Mathematical Society.
Fresse, Benoit. 2016. Homotopy of operads and the Grothendieck-Teichmüller group. Available at http://math.univ-lille1.fr/fresse/OperadHomotopyBook/.
Friedman, Greg. 2012. Survey article: An elementary illustrated introduction to simplicial sets. Rocky Mountain J. Math., 42(2), 353–423.
Gelfand, Sergei I., and Manin, Yuri I. 2003. Methods of homological algebra, 2nd ed. Springer Monographs in Mathematics. Berlin: Springer-Verlag.
Getzler, E. 1994. Batalin-Vilkovisky algebras and two-dimensional topological field theories. Comm. Math. Phys., 159(2), 265–285.
Ginot, Grégory. 2015. Notes on factorization algebras, factorization homology and applications. Mathematical aspects of quantum field theories, pp. 429–552. Mathematical Physics Studies. Berlin and New York: Springer.
Ginot, Grégory, Tradler, Thomas, and Zeinalian, Mahmoud. 2012. Derived higher Hochschild homology, Topological chiral homology and factorization algebras. Available at http://arxiv.org/abs/1011.6483.
Ginot, Grégory, Tradler, Thomas, and Zeinalian, Mahmoud. 2014. Derived higher Hochschild cohomology, Brane topology and centralizers of En-algebra maps. Available at http://arxiv.org/abs/1205.7056.
Glimm, James, and Jaffe, Arthur. 1987. Quantum physics, 2nd ed. New York: Springer-Verlag. A functional integral point of view.
Goerss, Paul G., and Jardine, John F. 2009. Simplicial homotopy theory. Modern Birkhäuser Classics. Basel: Birkhäuser Verlag. Reprint of the 1999 edition.
Goerss, Paul, and Schemmerhorn, Kristen. 2007. Model categories and simplicial methods. Pages 3–49 of: Interactions between homotopy theory and algebra, pp. 3–49. Contemporary Mathematics, Vol. 436. Providence, RI: American Mathematical Society.
Grady, Ryan, Li, Qin, and Li, Si. 2015. BV quantization and the algebraic index. Available at http://arxiv.org/abs/1507.01812.
Griffiths, Phillip, and Harris, Joseph. 1994. Principles of algebraic geometry. Wiley Classics Library. New York: John Wiley & Sons Inc. Reprint of the 1978 original.
Grothendieck, A. 1952. Résumé des résultats essentiels dans la théorie des produits tensoriels topologiques et des espaces nucléaires. Ann. Inst. Fourier Grenoble, 4, 73–112.(1954).
Grothendieck, Alexander. 1957. Sur quelques points d'algèbre homologique. Tôhoku Math. J., 9(2), 119–221.
Grothendieck, Alexandre. 1955. Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc., 1955(16), 140.
Gunning, Robert C., and Rossi, Hugo. 1965. Analytic functions of several complex variables. Englewood Cliffs, NJ: Prentice-Hall.
Gwilliam, Owen. 2012. Factorization algebras and free field theories. ProQuest LLC, Ann Arbor, MI. PhD thesis, Northwestern University.
Gwilliam, Owen, and Grady, Ryan. 2014. One-dimensional Chern-Simons theory and the A genus. Algebr. Geom. Topol., 14(4), 2299–2377.
Gwilliam, Owen, and Johnson-Freyd, Theo. 2012. How to derive Feynman diagrams for finite-dimensional integrals directly from the BV formalism. Available at http://arxiv.org/abs/1202.1554.
Hatcher, Allen. 2007. Notes on basic 3-manifold topology. Available at http://www.math.cornell.edu/~hatcher/.
Horel, Geoffroy. 2015. Factorization homology and calculus á la Kontsevich Soibelman. Available at http://arxiv.org/abs/1307.0322.
Hörmander, Lars. 2003. The analysis of linear partial differential operators. I. Classics in Mathematics. Berlin: Springer-Verlag. Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin].
Hörmann, Fritz. 2014. Homotopy limits and colimits in nature: A motivation for derivators. Available at http://home.mathematik.uni-freiburg.de/hoermann/holimnature.pdf.
Huang, Yi-Zhi. 1997. Two-dimensional conformal geometry and vertex operator algebras. Progress in Mathematics, Vol. 148. Boston: Birkhäuser Boston.
Johansen, A. 1995. Twisting o. N = 1 SUSY gauge theories and heterotic topological theories. Int. J. Mod. Phys. A, 10(30), 4325–4357.
Kapustin, Anton. 2010. Topological field theory, higher categories, and their applications. Proceedings of the International Congress of Mathematicians, Vol. III, pp. 2021–2043. Hindustan Book Agency, New Delhi: Hindustan Book Agency.
Kapustin, Anton, and Saulina, Natalia. 2011. Topological boundary conditions in abelian Chern-Simons theory. Nucl. Phys. B, 845(3), 393–435.
Kashiwara, Masaki, and Schapira, Pierre. 2006. Categories and sheaves. Grundlehren derMathematischenWissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 332. Berlin: Springer-Verlag.
Knudsen, Ben. 2014. Higher enveloping algebras. Available at http://www.math.northwestern.edu/~knudsen/.
Kontsevich, Maxim. 1994. Feynman diagrams and low-dimensional topology. First European Congress of Mathematics, Vol. II (Paris, 1992), pp. 97–121. Progress in Mathematics, Vol. 120. Basel: Birkhäuser.
Kriegl, Andreas, and Michor, Peter W. 1997. The convenient setting of global analysis. Mathematical Surveys and Monographs, Vol. 53. Providence, RI: American Mathematical Society.
Leinster, Tom. 2004. Higher operads, higher categories. London Mathematical Society Lecture Note Series, Vol. 298. Cambridge: Cambridge University Press.
Li, Qin, and Li, Si. 2016. On the B-twisted topological sigma model and Calabi–Yau geometry. J. Differ. Geom., 102(3), 409–484.
Loday, Jean-Louis. 1998. Cyclic homology, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 301. Berlin: Springer-Verlag. Appendix E by Marıa O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili.
Loday, Jean-Louis, and Vallette, Bruno. 2012. Algebraic operads. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 346. Heidelberg: Springer.
Lurie, Jacob. 2009. Derived Algebraic Geometry X: Formal Moduli Problems. Available at http://math.mit.edu/∼lurie/papers.
Lurie, Jacob. 2009. Higher topos theory. Annals of Mathematics Studies, Vol. 170. Princeton, NJ: Princeton University Press.
Lurie, Jacob. 2009. On the classification of topological field theories. Current developments in mathematics, 2008, pp. 129–280. Somerville, MA: Internation Press. Lurie, Jacob. 2016. Higher Algebra. Available at http://math.mit.edu/~lurie/papers.
MacLane, Saunders. 1998. Categories for the working mathematician, 2nd ed. Graduate Texts in Mathematics, Vol. 5. New York: Springer-Verlag.
Matsuoka, Takuo. 2014. Descent and the Koszul duality for factorization algebras. Available at http://arxiv.org/abs/1312.2562.
McDuff, Dusa. 1975. Configuration spaces of positive and negative particles. Topology, 14, 91–107.
Morrison, Scott, and Walker, Kevin. 2012. Blob homology. Geom. Topol., 16(3), 1481–1607.
Ramanan, S. 2005. Global calculus. Graduate Studies in Mathematics, Vol. 65. Providence, RI: American Mathematical Society.
Salvatore, Paolo. 2001. Configuration spaces with summable labels. Cohomological methods in homotopy theory (Bellaterra, 1998), pp. 375–395. Progress in Mathematics, Vol. 196. Basel: Birkhäuser.
Scheimbauer, Claudia. 2014. On fully extended topological field theories. PhD thesis, ETH Zurich.
Segal, Graeme. 1973. Configuration-spaces and iterated loop-spaces. Invent. Math., 21, 213–221.
Segal, Graeme. 1991. Geometric aspects of quantum field theory. Pages 1387–1396 of: Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990). Math. Soc. Japan, Tokyo.
Segal, Graeme. 2004. The definition of conformal field theory. Topology, geometry and quantum field theory, pp. 421–577. London Mathematical Society Lecture Note Ser., Vol. 308. Cambridge: Cambridge Univ. Press. First circulated in 1988.
Segal, Graeme. 2010. Locality of holomorphic bundles, and locality in quantum field theory. The many facets of geometry, pp. 164–176. Oxford: Oxford University Press.
Serre, Jean-Pierre. 1953. Quelques problèmes globaux relatifs aux variétés de Stein. Colloque sur les fonctions de plusieurs variables, tenu á Bruxelles, 1953, pp. 57–68. Liège: Georges Thone.
Stacks Project Authors, The. 2016. Stacks Project. http://stacks.math.columbia.edu.
Stasheff, Jim. 2004. What it … an operad? Notices Am. Math. Soc., 51(6), 630–631.
Tarkhanov, N.N. 1987. On Alexander duality for elliptic complexes. Math. USSR Sbornik, 58(1): 62–85.
Trèves, François. 1967. Topological vector spaces, distributions and kernels. New York: Academic Press.
Vallette, Bruno. 2014. Algebra + homotopy = operad. Symplectic, Poisson, and noncommutative geometry, pp. 229–290. Mathematical Sciences Research Institute Publications, Vol. 62. New York: Cambridge University Press.
Wallbridge, James. 2015. Homotopy theory in a quasi-abelian category. Available at http://arxiv.org/abs/1510.04055.
Weibel, Charles A. 1994. An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, Vol. 38. Cambridge: Cambridge University Press.
Weiss, Michael. 1999. Embeddings from the point of view of immersion theory. I. Geom. Topol., 3, 67–101.(electronic).
Wells, Jr., Raymond, O. 2008. Differential analysis on complex manifolds, 3rd ed. Graduate Texts inMathematics, Vol. 65. New York: Springer. With a new appendix by Oscar Garcia-Prada.
Williams, Brian. 2016. The Virasoro vertex algebra and factorization algebras on Riemann surfaces. Available at http://www.math.northwestern.edu/∼bwill/ now at http://arXiv.org/abs/1603.02349.
Witten, Edward. 1988. Topological quantum field theory. Comm. Math. Phys., 117(3), 353–386.
Witten, Edward. 1988. Topological quantum field theory. Comm. Math. Phys., 117(2), 014. 21 pp. (electronic).
Witten, Edward. 1992. Mirror manifolds and topological field theory. Essays on mirror manifolds, pp. 120–158. Hong Kong: International Press.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.