Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T06:17:25.893Z Has data issue: false hasContentIssue false

Part I - Evolution, Taxonomy, and Domestication

Published online by Cambridge University Press:  21 November 2017

Mario Melletti
Affiliation:
AfBIG (African Buffalo Initiative Group), IUCN SSC ASG
Erik Meijaard
Affiliation:
Australian National University, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adega, F., Chaves, R., Kofler, A., et al. (2006). High-resolution comparative chromosome painting in the Arizona Collared peccary (Pecari tajacu, Tayassuidae): a comparison with the karyotype of pig and sheep. Chromosome Research 14: 243251.Google Scholar
Aravena, P., Skewes, O. & Gouin, N. (2015). Mitochondrial DNA diversity of feral pigs from Karukinka Natural Park, Tierra del Fuego Island, Chile. Genetics and Molecular Research 14: 42454257.Google Scholar
Arribas, A. & Garrido, G. (2008). A new wild boar belonging to the genus Potamochoerus (Suidae, Artiodactyla, Mammalia) from the Eurasian Late Upper Pliocene (Fonelas P-1, Cuenca de Guadix, Granada). Cuadernos del Museo Geominero 10: 337364.Google Scholar
Asher, R. J. & Helgen, K. M. (2010). Nomenclature and placental mammal phylogeny. BMC Evolutionary Biology 10: 102.Google Scholar
Bender, F. A. (1992). A reconsideration of the fossil suid Potamochoeroides shawi, from the Makapansgat Limeworks, Potgietersrus, Northern Transvaal. Navorsinge van die Nasionale Museum Bloemfontein 8: 167.Google Scholar
Benirschke, K. & Kumamoto, A. T. (1989). Further studies on the chromosomes of three species of peccary. In Redford, K. H. & Eisenberg, J. F. (eds.), Advances in neotropical mammalogy. Gainesville, FL: Sandhill Crane Press, pp. 309316.Google Scholar
Bianco, E., Soto, H. W., Vargas, L. & Pérez-Enciso, M. (2015). The chimerical genome of Isla del Coco feral pigs (Costa Rica), an isolated population since 1793 but with remarkable levels of diversity. Molecular Ecology 24: 23642378.Google Scholar
Bosma, A. A., de Haan, N. A., Mellink, C. H. M., Yerle, M. & Zijlstra, C. (1996). Chromosome homology between the domestic pig and the babirusa (family Suidae) elucidated with the use of porcine painting probes. Cytogenetics and Cell Genetics 75: 3235.Google Scholar
Bosma, A. A., de Haan, N. A., Arkesteijn, G. J., et al. (2004). Comparative chromosome painting between the domestic pig (Sus scrofa) and two species of peccary, the Collared peccary (Tayassu tajacu) and the White-lipped peccary (T. pecari): a phylogenetic perspective. Cytogenetic and Genome Research 105: 115121.Google Scholar
Brunet, M. & MPFT Mission Paleoanthropologique Franco-Tchadienne (2000). Chad: discovery of a vertebrate fauna close to the Mio–Pliocene boundary. Journal of Vertebrate Paleontology 20: 205209.Google Scholar
Brunet, M. & White, T. (2001). Two new suin species (Mammalia, Suidae) from Africa (Chad, Ethiopia). Comptes Rendus De L'Academie des Sciences Serie II Fascicule A – Sciences de la Terre et des Planetes 332: 5157.Google Scholar
Builes, F. D. P., Loaiza, I. D. D. & López, J. B. O. (2004). Evidencia de estructuración cromosómica asociada con la distribución geográfica de pecarí de collar (Tayassu tajacu). Proceedings: VI Congreso Internacional sobre Manejo de Fauna Silvestre en la Amazonia y Latinoamérica 2004, 5–10 September 2004, Iquitos, Perú, pp. 152–57.Google Scholar
Choquenot, D., McIlroy, J. & Korn, T. (1996). Managing vertebrate pests: feral pigs. Bureau of Resource Sciences, Canberra, Australia: Australian Publishing Service.Google Scholar
Clarke, C. M. H. & Dzieciolowski, R. M. (1991). Feral pigs in the northern South Island, New Zealand: I. Origin, distribution, and density. Journal of the Royal Society of New Zealand 21: 237247.Google Scholar
Cooke, H. B. S. (1978). Suid evolution and correlation of African hominid localities: an alternative taxonomy. Science 4: 460463.Google Scholar
Cooke, H. B. S. & Wilkinson, , (1978). Suidae and Tayassuidae. In Maglio, X. J. & Cooke, H. B. S. (eds.), Evolution of African mammals. Cambridge, UK: Harvard University Press, pp. 435482.Google Scholar
Cucchi, T., Fujita, M. & Dobney, K. (2009). New insights into pig taxonomy, domestication and human dispersal in Island South East Asia: molar shape analysis of Sus remains from Niah Caves, Sarawak. International Journal of Osteoarchaeology 9: 508530.Google Scholar
Cucchi, T., Hulme-Beaman, A., Yuan, J. & Dobney, K. (2011). Early Neolithic pig domestication at Jiahu, Henan Province, China: clues from molar shape analyses using geometric morphometric approaches. Journal of Archaeological Science 38: 1122.Google Scholar
Cuddahee, R. E. (2008). East African hominin and suid environments in the Turkana basin: an analysis of fossil Suidae (Mammalia, Artiodactyla) mandibular ecomorphology. PhD thesis. Buffalo, NY: State University of New York.Google Scholar
Darfour-Oduro, K. A., Megens, H. J., Roca, A. L., Groenen, M. A. & Schook, L. B. (2015). Adaptive evolution of Toll-Like Receptors (TLRs) in the Family Suidae. PLoS ONE 10(4): 116.Google Scholar
De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56: 879886.CrossRefGoogle ScholarPubMed
Ducrocq, S. (1995). An Eocene peccary from Thailand and the biogeographical origins of the Artiodactyl family Tayassuidae. Palaeontology 37: 765779.Google Scholar
Ducrocq, S., Chaimanee, Y., Suteethorn, V. & Jaeger, J. J. (1998). The earliest known pig from the upper Eocene of Thailand. Palaeontology 41: 147156.Google Scholar
Ervynck, A., Dobney, K., Hongo, H. & Meadow, R. (2001). Born free? New Evidence for the status of ‘Sus scrofa’ at Neolithic Çayönü Tepesi (southeastern Anatolia, Turkey). Paléorient 27: 4773.Google Scholar
Fan, B., Gongora, J., Chen, Y., Garkavenko, O., Li, K. & Moran, C. (2005). Population genetic variability and origin of Auckland Island feral pigs. Journal of the Royal Society of New Zealand 35: 279285.CrossRefGoogle Scholar
Flad, R. K., Jing, Y. & Li, S. (2007). Zooarchaeological evidence for animal domestication in northwest China. In Madsen, D. B., Gao, X. & Chen, F. H. (eds.), Late quaternary climate change and human adaptation in arid China. Amsterdam: Elsevier, p. 167.Google Scholar
Frailey, C. D. & Campbell, K. E. Jr. (2012). Two new genera of peccaries (Mammalia, Artiodactyla, Tayassuidae) from upper Miocene deposits of the Amazon Basin. Journal of Paleontology 86: 852877.Google Scholar
Frantz, L., Schraiber, J. G., Madsen, O., et al. (2013). Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biology 4: R107.Google Scholar
Frantz, L. A. F., Madsen, O., Megens, H. J., Groenen, M. A. M. & Lohse, K. (2014). Testing models of speciation from genome sequences: divergence and asymmetric admixture in island South-East Asian Sus species during the Plio–Pleistocene climatic fluctuations. Molecular Ecology 23: 55665574.Google Scholar
Frantz, L., Meijaard, E., Gongora, J., Haile, J., Groenen, M. & Larson, G. (2016). The evolution of Suidae. Annual Review of Animal Biosciences 4: 3.13.25.Google Scholar
Funk, S. M., Verma, S. K., Larson, G., et al. (2007). The pygmy hog is a unique genus: 19th century taxonomists got it right first time round. Molecular Phylogenetics and Evolution 45: 427436.CrossRefGoogle ScholarPubMed
Gasparini, G. M. (2013). Records and stratigraphical ranges of South American Tayassuidae (Mammalia, Artiodactyla). Journal of Mammalian Evolution 20: 5768.Google Scholar
Gasparini, G. M. & Ubilla, M. (2011). Platygonus sp. (Mammalia: Tayassuidae) in Uruguay (Raigón? Formation; Pliocene–early Pleistocene), comments about its distribution and palaeoenvironmental significance in South America. Journal of Natural History 45: 28552870.Google Scholar
Gasparini, G.M., Ubilla, M. & Tonni, E. P. (2013). The Chacoan peccary, Catagonus wagneri (Mammalia, Tayassuidae), in the late Pleistocene (northern Uruguay, South America): paleoecological and paleobiogeographic considerations. Historical Biology 25: 679690.Google Scholar
Gasparini, G. M., Rodriguez, S. G., Soibelzon, L. H. et al. (2014). Tayassu pecari (Link, 1795) (Mammalia, Cetartiodactyla): comments on its South American fossil record, taxonomy and paleobiogeography. Historical Biology 26: 785800.Google Scholar
Genov, P. V. (1999). A review of the cranial characteristics in the Wild Boar (Sus scrofa Linnaeus, 1758), with systematic conclusions. Mammal Review 29: 205238.Google Scholar
Genov, P. V. (2004). Craniometric characteristics of the subgenus Sus Linnaeus, 1758 and a systematic conclusion. Galemys 16: 923.Google Scholar
Geraads, D. (2004). New skulls of Kolpochoerus phacochoeroides (Suidae: Mammalia) from the Late Pliocene of Ah1 a1 Oughlam, Morocco. Palaeontologia Africana 40: 6983.Google Scholar
Ghiselin, M. (1974). A radical solution to the species problem. Systematic Zoology 23: 536544.Google Scholar
Gongora, J. & Moran, C. (2005). Nuclear and mitochondrial evolutionary analyses of Collared, White-lipped, and Chacoan peccaries (Tayassuidae). Molecular Phylogenetics and Evolution 34: 181189.Google Scholar
Gongora, J., Bernal, J. E., Fajardo, L. C., et al. (2000). Mayores estudios citogeneticos de peccaries de Collar colombianos. El Astrolabio 2: 69.Google Scholar
Gongora, J., Peltoniemi, O. A. T., Tammen, I., Raadsma, H. & Moran, C. (2003). Analyses of possible domestic pig contribution in two populations of Finnish farmed wild boar. Acta Agriculturae Scandinavica, Section A – Animal Science 53: 161165.Google Scholar
Gongora, J., Fleming, P., Spencer, P. B., et al. (2004). Phylogenetic relationships of Australian and New Zealand feral pigs assessed by mitochondrial control region sequence and nuclear GPIP genotype, Molecular Phylogenetics and Evolution 33: 339348.Google Scholar
Gongora, J., Morales, S., Bernal, J. E. & Moran, C. (2006). Phylogenetic divisions among Collared peccaries (Pecari tajacu) detected using mitochondrial and nuclear sequences. Molecular Phylogenetics and Evolution 41: 111.Google Scholar
Gongora, J., Cuddahee, R., do Nascimento, F., et al. (2011a). Rethinking the evolution of extant sub-Saharan African suids (Suidae, Artiodactyla). Zoologica Scripta 40: 327335.Google Scholar
Gongora, J., Biondo, C., Cooper, J., et al. (2011b). Revisiting the species status of Pecari maximus van Roosmalen et al. 2007 (Mammalia) from the Brazilian Amazon. Bonn Zoological Bulletin 60: 95101.Google Scholar
Groenen, M. A., Archibald, A. L., Uenishi, H., et al. (2012). Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491: 393398.CrossRefGoogle ScholarPubMed
Groves, C. P. (1981). Ancestors for the pigs: taxonomy and phylogeny of the genus Sus. Technical bulletin number 3, Department of Prehistory Research School of Pacific Studies, Australian National University. Canberra, Australia: Australian National University Press.Google Scholar
Groves, C. P. (1997). Taxonomy of the wild pigs (Sus) of the Philippines. Zoological Journal of the Linnean Society 120: 163191.Google Scholar
Groves, C. P. & Grubb, P. (1993). The suborder Suiformes. In Oliver, W. L. R. (ed.), Pigs, peccaries and hippos: status survey and conservation action plan. Gland: IUCN, pp. 14.Google Scholar
Groves, C. P. & Grubb, P. (2011). Ungulate taxonomy. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Grubb, P. (2005). Order Artiodactyla. In Wilson, D. E. & Reeder, D. M. (eds.), Mammal species of the world: a taxonomic and geographic reference guide. Baltimore, MD: Johns Hopkins University Press, pp. 637722.Google Scholar
Han, D. F. (1987). Artiodactyla fossils from Liucheng Giagntopithecus Cave in Guangxi, Memoirs of Institute of Vertebrate Paleontology and Paleoanth-ropology. Academia Sinica 18: 135208.Google Scholar
Harris, J. & Liu, L. (2007). Superfamily Suoidea. In Prothero, D. R. & Foss, S. (eds.), The evolution of Artiodactyls. Baltimore, MD: John Hopkins University Press, pp. 130150.Google Scholar
Harris, J. M. (1983). The Koobi Fora Research Project volume II. The fossil ungulates: Proboscidea, Perissodactyla and Suidae. Oxford: Clarendon Press, pp. 215302.Google Scholar
Harris, J. M. & White, T. D. (1979). Evolution of the Plio–Pleistocene African Suidae. Transactions of the American Philosophical Society 69: 1128.Google Scholar
Herring, S. W. (1971). Functional aspects of suoid cranial anatomy. Chicago, IL: The University of Chicago.Google Scholar
Hodgson, B. H. (1847). On a new form of the hog kind or Suidae. Journal of the Asiatic Society of Bengal 16: 423428.Google Scholar
Hongo, H. & Meadow, R. H. (1998). Pig exploitation at Neolithic Çayönü Tepesi (southeastern Anatolia). In Nelson, S. M. (ed.), Ancestors for the pigs: pigs in prehistory. MASCA Research Papers in Science and Archaeology 15. Philadelphia, PA: University of Pennsylvania, Museum of Archaeology and Anthropology, pp. 7798.Google Scholar
Kiltie, R. A. (1985). Craniomandibular differences between rainforest and desert Collared peccaries. American Midland Naturalist Journal 113: 384387.Google Scholar
Kingdon, J. (1979). East African mammals: an atlas of evolution in Africa. London: Academic Press.Google Scholar
Kullmer, O. (1999). Evolution of Plio–Pleistocene suids (Artiodactyla, Suidae) based on tooth pattern analysis. Kaupia Current Research 2: 134.Google Scholar
Kumar, S. & Gaur, R. (2013). First record of maxillary dentition of Potamochoerus theobaldi (Suidae, Mammalia) from the Upper Siwaliks of India. Rivista Italiana di Paleontologia e Stratigrafia 119: 5763.Google Scholar
Larson, G. & Burger, J. (2013). A population genetics view of animal domestication. Trends in Genetics 29: 197205.Google Scholar
Larson, G. & Fuller, D. Q. (2014). The evolution of animal domestication. Annual Review of Ecology, Evolution, and Systematics 45: 115136.Google Scholar
Larson, G., Dobney, K., Albarella, U., et al. (2005). Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307(5715): 16181621.CrossRefGoogle ScholarPubMed
Larson, G., Arabella, U., Dobeny, K., et al. (2007a). Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proceedings of the National Academy of Sciences of the United States of America 104: 1527615281.Google Scholar
Larson, G., Cucchi, T., Fujita, M., et al. (2007b). Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania. Proceedings of the National Academy of Sciences 104: 48344839.Google Scholar
Leslie, D. M. & Huffman, B. A. Jr. (2013). Potamochoerus porcus. Mammalian Species 47: 1531.Google Scholar
Liu, L. (2001). Eocene suoids (Artiodactyla, Mammalia) from Bose and Yongle basins, China, and the classification and evolution of the Paleogene suoids. Vertebrata PalAsiatica 39: 115128.Google Scholar
Liu, L. (2003). Chinese fossil Suoidea systematics, evolution, and paleoecology. PhD thesis. Helsinki: Helsinki University Printing House.Google Scholar
Lopez, J., Hurwood, D., Dryden, B. & Fuller, S. (2014). Feral pig populations are structured at fine spatial scales in tropical Queensland, Australia. PLoS ONE 9(3): e91657.Google Scholar
Lucchini, V., Meijaard, E., Diong, C. H., Groves, C. P. & Randi, E. (2005). New phylogenetic perspectives among species of South-east Asian wild pig (Sus sp.) based on mtDNA sequences and morphometric data. Journal of Zoology 266: 2535.CrossRefGoogle Scholar
Macdonald, A. A. (1993). The Sulawesi Warty pig (Sus celebensis). In Oliver, W. L. R. (ed.), Pigs, peccaries and hippos. Gland: IUCN, The World Conservation Union, pp. 155160.Google Scholar
MacFadden, B. J., Kirby, M. X., Rincon, A., et al. (2010). Extinct peccary ‘Cynorca’ occidentale (Tayassuidae, Tayassuinae) from the Miocene of Panama and correlations to North America. Journal of Paleontology 84: 288298.Google Scholar
Marshall, L. G., Butler, R. F., Drake, R. E., Curtis, G. H., & Tedford, R. H. (1979). Calibration of the Great American interchange. Science 204: 272279.Google Scholar
Mayer, J. & Brisibin, L. (2014). Wild pigs in the United States: their history, comparative morphology, and current status. Athens, GA: University of Georgia Press.Google Scholar
Mayer, J. J. & Wetzel, R. M. (1987). Tayassu pecari. Mammalian Species 293: 17.Google Scholar
Meijaard, E. & Groves, C. P. (2002). Upgrading three subspecies of babirusa (Babyrousa sp.) to full species level. Asian Wild Pig News 2: 3339.Google Scholar
Meijaard, E. & Groves, C. P. (in preparation). A taxonomic revision of the Giant Forest Hog. Journal of Zoology.Google Scholar
Meijaard, E. & Rawson, B. (2015). The phylogenetic species concept and its role in Southeast Asian mammal conservation. In Behie, A. M. & Oxenham, M. F. (eds.), Taxonomic tapestries: the threads of evolutionary, behavioural and conservation research. Canberra: ANU Press, pp. 345360.Google Scholar
Meijaard, E., d'Huart, J. P. & Oliver, W. (2011). Family Suidae (pigs). In Wilson, D. E. & Mittermeier, R. A. (eds.), Handbook of the mammals of the world vol 2: hoofed mammals. Barcelona: Lynx Edicion, pp. 248291.Google Scholar
Moravec, J. & Böhme, W. (2009). Second find of the recently discovered Amazonian giant peccary, Pecari maximus (Mammalia: Tayassuidae) van Roosmalen et al. 2007: first record from Bolivia. Bonn Zoological Bulletin 56: 4954.Google Scholar
Oliver, W. L. R. & Brisbin, I. L. (1993). Introduced and feral pigs: problems, policy, and priorities. In Oliver, W. L. R. (ed.), Pigs, peccaries and hippos. Gland: IUCN, pp. 179191.Google Scholar
Orliac, M. J. (2013). The petrosal bone of extinct Suoidea (Mammalia, Artiodactyla). Journal of Systematic Palaeontology 118: 925945.Google Scholar
Orliac, M. J., Antoine, P. O. & Ducrocq, S. (2010a). Phylogenetic relationships of the Suidae (Mammalia, Cetartiodactyla): new insights on the relationships within Suoidea. Zoologica Scripta 39: 315330.CrossRefGoogle Scholar
Orliac, M. J., Antoine, P. O., Roohi, G. & Welcomme, J. L. (2010b). Suoidea (Mammalia, Cetartiodactyla) from the Early Oligocene of the Bugti Hills, Balochistan, Pakistan. Journal of Vertebrate Paleontology 30: 13001305.Google Scholar
Owen, J. (2013). Morphological variation in wild and domestic suids. PhD thesis. Durham: Durham University.Google Scholar
Parisi, R., Casali, D. M., Missagia, R. V., Gasparini, G. M., Perini, F. A. & Cozzuol, M A. (2016). Phylogenetic systematics of peccaries (Tayassuidae: Artiodactyla) and a classification of South American tayassuids. Journal of Mammalian Evolution doi:10.1007/s10914-016-9347-8.Google Scholar
Perry, T., van Loenen, A. L., Heiniger, H., et al. (2017). Ancient DNA analysis of the extinct North American flat-headed peccary (Platygonus compressus). Molecular Phylogenetics and Evolution. doi: 10.1016/j.ympev.2017.03.024.Google Scholar
Pickford, M. (1993). Old world suoid systematics, phylogeny, biogeography and biostratigraphy. Paleontologia i Evolució 26–27: 237269.Google Scholar
Pickford, M. (2006). Synopsis of the biochronology of African Neogene and Quaternary Suiformes. Transactions of the Royal Society of South Africa 61: 5162.Google Scholar
Pickford, M. (2012). Ancestors of Broom's pigs. Transactions of the Royal Society of South Africa 67: 1735.Google Scholar
Pickford, M. (2013). Suids from the Pleistocene of Naungkwe Taung, Kayin State, Myanmar. Paleontological Research 16: 307317.Google Scholar
Pickford, M. & Morales, S. (2003). New Listriodontinae (Mammalia, Suidae) from Europe and a review of listriodont evolution, biostratigraphy and biogeography. Geodiversitas 25: 347404.Google Scholar
Pilgrim, G. E. (1926). The fossil Suidae of India. Palaeontologica Indica 8: 165.Google Scholar
Prevosti, F. J., Gasparini, G. M. & Bond, M. (2006). On the systematic position of a specimen previously assigned to Carnivora from the Pliocene of Argentina and its implications for the Great American Biotic Interchange. Neues Jahrbuch für Geologie und Paläontologie 242: 133144.CrossRefGoogle Scholar
Prothero, D. R. (2009). The early evolution of North American peccaries (Tayassuidae). Museum of Northern Arizona Bulletin 65: 509542.Google Scholar
Prothero, D. R. (2015). Evolution of the Early Miocene Hesperhyine peccaries. New Mexico Museum of Natural History and Science Bulletin 67: 235256.Google Scholar
Prothero, D. R. & Grenader, J. (2012). A new primitive species of the flat-headed peccary Platygonus (Tayassuidae, Artiodactyla, Mammalia) from the Late Miocene of the High Plains. Journal of Paleontology 86: 10211031.CrossRefGoogle Scholar
Prothero, D. R. & Pollen, A. (2013). New Late Miocene fossil peccaries from California and Nebraska. Kirtlandia, The Cleveland Museum of Natural History 58: 4253.Google Scholar
Pullar, E. M. (1953). The wild (feral) pigs of Australia: their origin, distribution and economic importance. Memoirs of the National Museum, Melbourne 18: 723.Google Scholar
Randi, E., Lucchini, V. & Diong, C. H. (1996). Evolutionary genetics of the Suiformes as reconstructed using mtDNA sequencing. Journal of Mammalian Evolution 3: 163194.Google Scholar
Randi, E., D'Huart, J. P., Lucchini, V. & Aman, R. (2002). Evidence of two genetically deeply divergent species of warthog, Phacochoerus africanus and P. aethiopicus (Artiodactyla: Suiformes) in East Africa. Mammalian Biology 67: 9196.Google Scholar
Ruvinsky, A., Rothschild, M., Larson, G. & Gongora, J. (2011). Systematics and evolution of the pig. In Rothschild, M. F. & Ruvinsky, A. (eds.), The genetics of the pig, 2nd ed. Wallingford: CABI Publishing, pp. 113.Google Scholar
Sabogal, S. (2011). Filogeografía y conservación genética del pecarí de collar, Pecari tajacu en cuatro departamentos de Colombia [Phylogeography and conservation genetics of collared peccari, Pecari tajacu in four Colombian departments]. Masters thesis. Universidad Nacional de Colombia.Google Scholar
Sánchez, P., Montenegro, O. & Gómez, B. (2009). Geographic size variation of peccaries (Tayassu pecari and Pecari tajacu) in Colombia. 10th International Mammalogical Congress Abstracts: Mendoza, Argentina, 9–14 August 2009. Abstract, p. 245.Google Scholar
Savage, D. & Russell, D. (1983). Mammalian paleofaunas of the world. Boston, MA: Addison-Wesley.Google Scholar
Souron, A., Boisserie, J. R. & White, T. D. (2015). A new species of the suid genus Kolpochoerus from Ethiopia. Acta Palaeontologica Polonica 60: 7996.Google Scholar
Stucky, R. K. (1992). Mammalian faunas in North America of Bridgerian to early Arikareean ‘Ages' (Eocene and Oligocence). In Prothero, D. R. & Berggren, W. A. (eds.), Eocene–Oligocene climatic and biotic evolution. Princeton, NJ: Princeton University Press, pp. 464493.Google Scholar
Suyono, (2009). The study of fossil faunas in the Walanae Basin, Indonesia. PhD thesis. Wollongong: University of Wollongong.Google Scholar
Taber, A., Altrichter, M., Harald, B. & Gongora, J. (2011). Family Tayassuidae (peccaries). In Wilson, D. E. & Mittermeier, R. A. (eds.). Handbook of the mammals of the world – volume 2: hoofed mammals. Barcelona: Lynx Edicions, pp. 292307.Google Scholar
Theimer, T. C. & Keim, P. (1998). Phylogenetic relationships of peccaries based on mitochondrial cytochrome b DNA sequences. Journal of Mammalogy 79: 566572.Google Scholar
Thenius, E. (1970). Zur evolution und verbreitungsgeschichte der Suidae (Artiodactyla, Mammalia). Zeitschrift für Säugetierkunde 35: 321342.Google Scholar
Tisdell, C. A. (1982). Wild pigs: environmental pest or economic resource? Sydney: Pergamon Press.Google Scholar
Todd, N. B. (1985). Significance of a diploid number of 20 in the peccary Catagonus wagneri. Journal of Heredity 76: 310.Google Scholar
Tong, Y. S. & Zhao, Z. R. (1986). Odoichoerus, a new suoid (Artiodactyla, Mammalia) from the early Tertiary of Guangxi. Vertebrata PalAsiatica 24: 129138.Google Scholar
van der Made, J. (2010). The pigs and ‘Old World peccaries' (Suidae and Palaeochoeridae, Suoidea, Artiodactyla) from the Miocene of Sandelzhausen (southern Germany): phylogeny and an updated classification of the Hyotheriinae and Palaeochoeridae. Paläontologische Zeitschrift 84: 43121.Google Scholar
van der Made, J. & Moya-Sola, S. (1989). European Suinae (Artiodactyla) from the Late Miocene onwards. Bolletino dellaSocieta Paleontologica Italiana 28: 239339.Google Scholar
van der Made, J., Morales, J. & Montoya, P. (2006). Late Miocene turnover in the Spanish mammal record in relation to palaeoclimate and the Messinian Salinity Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology 238: 228246.Google Scholar
van Roosmalen, M. G. M., Frenz, L., Van Hooft, P., De Iongh, H. H. & Leirs, H. (2007). A new species of living peccary (Mammalia: Tayassuidae) from the Brazilian Amazon. Bonner Zoologische Beiträge 55: 105112.Google Scholar
Vassart, M., Pinton, A., Seguela, A. & Dutertre, C. (1994). New data on chromosomes of peccaries. Mammalia 58: 504507.Google Scholar
Wang, N. W. & Xu, Q. Q. (2003). Quaternary biostratigraphy of China. In Wen-tang, Z., Pei-ji, C. & Palmer, A. R. (eds.), Biostratigraphy of China. Beijing: Science Press, pp. 577587.Google Scholar
Wetzel, R. M. (1977a). The Chacoan peccary Catagonus wagneri (Rusconi). Bulletin of Carnegie Museum of Natural History, no. 3.CrossRefGoogle Scholar
Wetzel, R. M. (1977b). The extinction of peccaries and a new case of survival. Annals of the New York Academy of Sciences 288: 538544.Google Scholar
Wetzel, R. M., Dubos, R. E., Martin, R. L. & Myers, P. (1975). Catagonus, an ‘extinct’ peccary alive in Paraguay. Science 189: 379381.Google Scholar
White, T. (1995). African omnivores: global climatic change and Plio–Pleistocene hominids and suids. In Vrba, E., Denton, G., Partridge, T. & Burckle, L. (eds.), Paleoclimate and evolution, with emphasis on human origins. New Haven, CT: Yale University Press, pp. 369384.Google Scholar
White, T. D. & Harris, J. M. (1977). Suid evolution and correlation of African hominid localities. Science 198: 1321.Google Scholar
Woodburne, M. O. (1968). The cranial myology and osteology of Dycotyles tajacu, the Collared peccary, and its bearing on classification. Memoirs of the Southern California Academy of Science 7: 18.Google Scholar
Woodburne, M. O. (1969). A late Pleistocene occurrence of collared peccary, Dicotyles tajacu. Guatemalan Journal of Mammalogy 50: 121125.Google Scholar
Woodburne, M. O. (2010). The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution 17: 245264.Google Scholar
Wright, D. B. (1989). Phylogenetic relationships of Catagonus wagneri: sister taxa from the Tertiary of North America. In Eisenberg, J. F. & Redford, K. H. (eds.), Advances in neotropical mammalogy. Gainesville, FL: Sandhill Crane Press, pp. 281308.Google Scholar
Wright, D. B. (1993a). Evolution of sexually dimorphic characters in peccaries (Mammalia, Tayassuidae). Paleobiology 19: 5270.Google Scholar
Wright, D. B. (1993b). ‘Tayassuidae’ in evolution of sexually dimorphic characters in peccaries (Mammalia, Tayassuidae). Paleobiology 19: 5270.Google Scholar
Wright, D. B. (1998). Tayassuidae. In Janis, C. M., Scott, K.M. & Jacobs, L. L. (eds.), Evolution of tertiary mammals of North America vol 1: terrestrial carnivores, ungulates, and ungulate like mammals. London: Cambridge University Press, pp. 389401.Google Scholar
Wu, G. S., Yao, Y. G., Qu, K. X., et al. (2007). Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia. Genome Biology 8: R245.Google Scholar
Xue, X. X. (1981). An Early Pleistocene mammal fauna and its stratigraphy of the River You, Weinan, Shensi. Verterata PalAsiatica 19: 3544.Google Scholar
Yuan, J. & Flad, R. (2002). Pig domestication in ancient China. Antiquity 76: 724732.Google Scholar

References

Bishop, L. C. (1994). Pigs and the ancestors: hominids, suids and environments during the Plio-Pleistocene of East Africa. PhD dissertation, Yale University. Ann Arbor, MI: University Microforms International.Google Scholar
Bishop, L. C., Hill, A. & Kingston, J. (1999). Paleoecology of Suidae from the Tugen Hills, Baringo, Kenya. In Andrews, P. & Banham, P. (eds.), Late Cenozoic environments and hominid evolution: a tribute to Bill Bishop. London: Geological Society, pp. 99111.Google Scholar
Bishop, L. C., King, T., Hill, A. & Wood, B. (2006). Palaeoecology of Kolpochoerus heseloni (= K. limnetes): a multiproxy approach. Transactions of the Royal Society of South Africa 61(2): 8188.Google Scholar
Bishop, L. C., Plummer, T. W., Hertel, F. & Kovarovic, K. (2011). Paleoenvironments of Laetoli, Tanzania as determined by antelope habitat preferences. In Harrison, T. (ed.). Paleontology and geology of Laetoli: human evolution in context. Vol. 1: Geology, geochronology, paleoecology and paleoenvironment. Amsterdam: Springer, pp. 355366.CrossRefGoogle Scholar
Brown, F. H. & Feibel, C. S. (1986). Revision of lithostratigraphic nomenclature in the Koobi Fora region, Kenya. Journal of the Geological Society, London 143: 297310.Google Scholar
Carroll, R. L. (1988). Vertebrate paleontology and evolution. New York, NY: W.H. Freeman, pp. 507512.Google Scholar
Cooke, H. B. S. (1967). The Pleistocene sequence in South Africa and problems of correlation. Background to evolution in Africa. In Bishop, W. W. & Clark, J. D. (eds.), Background to evolution in Africa. Chicago, IL: University of Chicago Press, pp. 175184.Google Scholar
Cooke, H. B. S. (1978a). Pliocene Pleistocene Suidae from Hadar, Ethiopia. Kirtlandia 29: 163.Google Scholar
Cooke, H. B. S. (1978b). Suid evolution and correlation of African hominid localities: an alternate taxonomy. Science 201: 460463.Google Scholar
Cooke, H. B. S. & Ewer, R. F. (1972). Fossil Suidae from Kanapoi and Lothogam, Northwestern Kenya. Bulletin of the Museum of Comparitive Zoology 143(3): 149296.Google Scholar
Cooke, H. B. S. & Wilkinson, A.F. (1978). Suidae and Tayassuidae. In Maglio, V. J. & Cooke, H. B. S. (eds.), Evolution of African mammals. Cambridge, MA: Harvard University Press, pp. 435482.Google Scholar
DeGusta, D. & Vrba, E. (2005). Methods for inferring paleohabitats from the functional morphology of bovid phalanges. Journal of Archaeological Science 32: 10991113.Google Scholar
Deino, A. L., Kingston, J. D., Glen, J. M., Edgar, R. K. & Hill, A. (2006). Precessional forcing of lacustrine sedimentation in the late Cenozoic Chemeron Basin, Central Kenya Rift, and calibration of the Gauss/Matuyama boundary. Earth and Planetary Science Letters 247: 4160.Google Scholar
Dorst, J. & Dandelot, P. (1972). A field guide to the larger mammals of Africa. London: Collins.Google Scholar
Feibel, C. S. (2003). Stratigraphy and depositional history of the Lothagam sequence. In Leakey, M. G. & Harris, J. M. (eds.), Lothagam: the dawn of humanity in Eastern Africa. New York, NY: Columbia University Press, pp. 1729.Google Scholar
Feibel, C. S., Brown, F. H. & McDougall, I. (1989). Stratigraphic context of hominids from the Omo group deposits: Northern Turkana Basin, Kenya and Ethiopia. American Journal of Physical Anthropology 78: 595622.Google Scholar
Foley, R. (1987). Another unique species. New York, NY: John Wiley and Sons.Google Scholar
Frädrich, H. & Klös, H.-G. (eds.) (1991). Berichte der Internationalen Tagung über Wildschwein und Pekaris im Zoo Berlin, 12–15 Juli 1990. Bongo 18, 300 pp.Google Scholar
Gentry, A. W. (1970). The Bovidae (Mammalia) of the Fort Ternan fossil fauna. In Leakey, L. S. B. & Savage, R. J. G. (eds.), Fossil vertebrates of Africa. Volume 2. New York, NY: Academic Press, pp. 243322.Google Scholar
Harris, J. M. (1983). Family Suidae. In Harris, J. M. (ed.), Koobi Fora Research Project. Volume II. Oxford: Oxford University Press, pp. 215302.Google Scholar
Harris, J. M. & White, T. D. (1979). Evolution of the Plio Pleistocene African Suidae. Transactions of the American Philosophical Society 69(2): 1128.Google Scholar
Hatley, T. & Kappelman, J. (1980). Bears, pigs, and Plio Pleistocene hominids: a case for the exploitation of belowground food resources. Human Ecology 8: 371387.CrossRefGoogle Scholar
Hildebrand, M. (1974). Analysis of vertebrate structure. New York, NY: John Wiley and Sons.Google Scholar
Hill, A., Ward, S. & Brown, B. (1992). Anatomy and age of the Lothagam mandible. Journal of Human Evolution 22: 439451.Google Scholar
Kappelman, J. (1986). Plio Pleistocene marine continental correlation using habitat indicators from Olduvai Gorge, Tanzania. Quaternary Research 25: 141149.Google Scholar
Kappelman, J. (1988). Morphology and locomotor adaptations of the bovid femur in relation to habitat. Journal of Morphology 198: 119130.Google Scholar
Kappelman, J. (1991). The paleoenvironment of Kenyapithecus at Fort Ternan. Journal of Human Evolution 20: 95129.Google Scholar
Kappelman, J., Plummer, T., Bishop, L. C., Duncan, A. & Appleton, S. (1997). Bovids as indicators of Plio–Pleistocene paleoenvironments in East Africa. Journal of Human Evolution 32: 229256.Google Scholar
Karp, L. E. (1987). Allometric effects and habitat influences on the postcranial skeleton of suids and tayassuids. Unpublished MS thesis, Rutgers, the State University of New Jersey.Google Scholar
Kingdon, J. (1979). East African mammals. Volume IIIB. Large mammals. Chicago, IL: University of Chicago Press.Google Scholar
McCrossin, M. L. (1987). Post cranial remains of fossil Suidae from the Sahabi Formation, Libya. In Boaz, N.T. (ed.), Neogene paleontology and geology of Sahabi. New York, NY: Alan R. Liss, pp. 267286.Google Scholar
McMahon, T. A. (1975). Allometry and biomechanics: limb bones in adult ungulates. American Naturalist 109: 547563.Google Scholar
Orliac, M. J., Antoine, P. O. & Ducrocq, S. (2010a). Phylogenetic relationships of the Suidae (Mammalia, Cetartiodactyla): new insights on the relationships within Suoidea. Zoologica Scripta 39: 315330.Google Scholar
Orliac, M. J., Antoine, P.O., Roohi, G. & Welcomme, J. L. (2010b). Suoidea (Mammalia, Cetartiodactyla) from the Early Oligocene of the Bugti Hills, Balochistan, Pakistan. Journal of Vertebrate Paleontology 30: 13001305.Google Scholar
Pickford, M. (1986). A revision of the Miocene Suidae and Tayassuidae (Artiodactyla, Mammalia) of Africa. Tertiary Research Special Paper. Number 7.Google Scholar
Plummer, T. & Bishop, L. C. (1994). Hominid paleoecology at Olduvai Gorge, Tanzania as indicated by antelope remains. Journal of Human Evolution 27: 4775.Google Scholar
Plummer, T., Bishop, L. C. & Hertel, F. (2008). Habitat preference of extant African bovids based on astragalus morphology: operationalizing ecomorphology for palaeoenvironmental reconstruction. Journal of Archaeological Science 35: 30163027.Google Scholar
Plummer, T. W., Ferraro, J. V., Louys, J., et al. (2015). Bovid ecomorphology and hominin paleoenvironments of the Shungura Formation, lower Omo River Valley, Ethiopia. Journal of Human Evolution 88: 108126.Google Scholar
Pocock, R. I. (1943). The external characteristics of a forest hog (Hylochoerus) and of a babirusa (Babirussa) that died in the Society's gardens. Proceedings of the Zoological Society, London, Series B, 112: 3642.Google Scholar
Potts, R., Behrensmeyer, A. K., Deino, A., Ditchfield, P. & Clark, J. (2004). Small mid-Pleistocene hominin associated with East African Acheulean technology. Science 305: 7578.Google Scholar
Savage, R. J. G. & Long, M. R. (1986). Mammal evolution. London: Facts on File.Google Scholar
Scott, K.M. (1979). Adaptation and allometry in bovid postcranial proportions. Unpublished PhD thesis, Yale University.Google Scholar
Scott, K. (1985). Allometric trends and locomotor adaptations in the Bovidae. Bulletin of the American Museum of Natural History 179: 197288.Google Scholar
Smith, J. M. & Savage, R. J. G. (1956). Some locomotory adaptations in mammals. Journal of the Linnean Society (Zoology) 42: 603622.Google Scholar
Van Neer, W. (1989). Contribution to the Archaeozoology of Central Africa. Annales Sciences Zoologiques. Tervuren, Belgium: Musée Royal de l'Afrique Centrale.Google Scholar
White, T. D. (1985). African suid evolution: the last six million years. South African Journal of Science 81: 271.Google Scholar
White, T. D. (1995). African omnivores: global climate change and Plio Pleistocene hominids and suids. In Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H. (eds.), Paleoclimate and evolution with emphasis on human origins. New Haven, CT: Yale University Press, pp. 369384.Google Scholar

References

Balasse, M. (2002). Reconstructing dietary and environmental history from enamel isotopic analysis: time resolution of intra-tooth sequential sampling. International Journal of Osteoarchaeology 12: 155165.Google Scholar
Bibi, F. & Kiessling, W. (2015). Continuous evolutionary change in Plio–Pleistocene mammals of eastern Africa. Proceedings of the National Academy of Sciences of the United States of America 112: 1062310628.Google Scholar
Bishop, L. C. (1999). Suid paleoecology and habitat preferences at African Pliocene and Pleistocene hominid localities. In Bromage, T. G. & Schrenk, F. (eds.), African biogeography, climate change and human evolution. Oxford: Oxford University Press, pp. 216225.Google Scholar
Boisserie, J.-R., Souron, A., Mackaye, H. T., et al. (2014). A new species of Nyanzachoerus (Cetartiodactyla: Suidae) from the Late Miocene Toros-Ménalla, Chad, Central Africa. PLoS ONE 9: e103221.Google Scholar
Bonnefille, R. (2010). Cenozoic vegetation, climate changes and hominid evolution in tropical Africa. Global and Planetary Change 72: 390411.Google Scholar
Calandra, I. & Merceron, G. (2016). Dental microwear texture analysis in mammalian ecology. Mammal Review 46: 215228.Google Scholar
Cerling, T. E. & Harris, J. M. (1999). Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120: 347363.Google Scholar
Cerling, T. E., Harris, J. M., Leakey, M. G., Passey, B. H. & Levin, N. E. (2010). Stable carbon and oxygen isotopes in East African mammals: modern and fossil. In Werdelin, L. & Sanders, W. J. (eds.), Cenozoic mammals of Africa. Berkeley, CA: University of California Press, pp. 941952.Google Scholar
Cerling, T. E., Andanje, S. A., Blumenthal, S. A., et al. (2015). Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proceedings of the National Academy of Sciences of the United States of America 112: 1146711472.Google Scholar
Cernusak, L. A., Tcherkez, G., Keitel, C., et al. (2009). Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology 36: 199213.Google Scholar
Clauss, M., Kaiser, T. & Hummel, J. (2008a). The morphophysiological adaptations of browsing and grazing mammals. In Gordon, I. J. & Prins, H. H. T. (eds.), The ecology of browsing and grazing. Berlin: Springer, pp. 4788.Google Scholar
Clauss, M., Nijboer, J., Loermans, J. H. M., et al. (2008b). Comparative digestion studies in wild suids at Rotterdam Zoo. Zoo Biology 27: 305319.Google Scholar
Codron, D., Codron, J., Sponheimer, M., Bernasconi, S.M. & Clauss, M. (2011). When animals are not quite what they eat: diet digestibility influences 13C-incorporation rates and apparent discrimination in a mixed-feeding herbivore. Canadian Journal of Zoology 89: 453465.Google Scholar
Codron, J., Codron, D., Lee-Thorp, J.A., et al. (2005). Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. Journal of Archaeological Science 32: 17571772.Google Scholar
Cooke, H. B. S. & Wilkinson, A. F. (1978). Suidae and Tayassuidae. In Maglio, V. J. & Cooke, H. B. S. (eds.), Evolution of African mammals. Cambridge, MA: Harvard University Press, pp. 435482.Google Scholar
deMenocal, P. B. (2004). African climate change and faunal evolution during the Pliocene–Pleistocene. Earth and Planetary Science Letters 220: 324.Google Scholar
d'Huart, J.-P. (1978). Ecologie de l'hylochère (Hylochoerus meinertzhageni Thomas) au Parc National des Virunga. Exploration du Parc National des Virunga, Deuxième Série, Fascicule 25, Fondation pour Favoriser les Recherches scientifiques en Afrique. Brussels.Google Scholar
Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40: 503537.Google Scholar
Francey, R. J., Allison, C. E., Etheridge, D. M., et al. (1999). A 1000-year high precision record of δ13C in atmospheric CO2. Tellus 51B: 170193.Google Scholar
Gearing, J. N. (1991). The study of diet and trophic relationships through natural abundance 13C. In Coleman, D. C. & Fry, B. (eds.), Carbon isotope techniques. New York, NY: Academic Press, pp. 201218.Google Scholar
Gilbert, W. H. (2008). Suidae. In Gilbert, W. H. & Asfaw, B. (eds.), Homo erectus: Pleistocene evidence from the Middle Awash, Ethiopia. Berkeley, CA: University of California Press, pp. 231260.Google Scholar
Harris, J. M. & Cerling, T. E. (2002). Dietary adaptations of extant and Neogene African suids. Journal of Zoology 256: 4554.Google Scholar
Harris, J. M. & White, T. D. (1979). Evolution of the Plio–Pleistocene African Suidae. Transactions of the American Philosophical Society 69: 1128.Google Scholar
Kohn, M. J. (2010). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences of the United States of America 107: 1969119695.Google Scholar
Kullmer, O. (1999). Evolution of African Plio–Pleistocene suids (Artiodactyla: Suidae) based on tooth pattern analysis. Kaupia Darmstädter Beiträg zur Naturgeschichte 9: 134.Google Scholar
Livingstone, D. A. & Clayton, W. D. (1980). An altitudinal cline in tropical African grass floras and its paleoecological significance. Quaternary Research 13: 392402.Google Scholar
Lucas, P. W. (2004). Dental functional morphology: how teeth work. Cambridge: Cambridge University Press.Google Scholar
Lüdecke, T., Mulch, A., Kullmer, O., et al. (2016). Stable isotope dietary reconstructions of herbivore enamel reveal heterogeneous savanna ecosystems in the Plio–Pleistocene Malawi Rift. Palaeogeography, Palaeoclimatology, Palaeoecology 459: 170181.Google Scholar
Luyt, J., Lee-Thorp, J. A. & Avery, G. (2000). New light on Middle Pleistocene west coast environments from Elandsfontein, Western Cape Province, South Africa. South African Journal of Science 96: 399403.Google Scholar
Martin, J. E., Vance, D. & Balter, V. (2015). Magnesium stable isotope ecology using mammal tooth enamel. Proceedings of the National Academy of Sciences of the United States of America 112: 430435.Google Scholar
Meijaard, E., Oliver, W. L. R. & d'Huart, J.-P. (2011). Suidae. In Wilson, D. E. & Mittermeier, R. (eds.), Handbook of the mammals of the world. Vol. 2. Hoofed mammals. Madrid: Lynx Edicions, pp. 248291.Google Scholar
Merceron, G., Ramdarshan, A., Blondel, C., et al. (2016). Untangling the environmental from the dietary: dust does not matter. Proceedings of the Royal Society B 283: 20161032.Google Scholar
Passey, B. H., Robinson, T. F., Ayliffe, L. K., et al. (2005). Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. Journal of Archaeological Science 32: 14591470.Google Scholar
Rossouw, L. & Scott, L. (2011). Phytoliths and pollen, the microscopic plant remains in Pliocene volcanic sediments around Laetoli, Tanzania. In Harrison, T. (ed.), Paleontology and geology of Laetoli: human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment. Berlin: Springer, pp. 201215.Google Scholar
Sage, R. F. & Monson, R. K. (eds.). (1999). C4 plant biology. In Mooney, H. A. (series ed.), Physiological ecology series. New York, NY: Academic Press, p. 596.Google Scholar
Smedley, M. P., Dawson, T. E., Comstock, J. P., et al. (1991). Seasonal carbon isotope discrimination in a grassland community. Oecologia 85: 314320.Google Scholar
Souron, A. (2012). Histoire évolutive du genre Kolpochoerus (Cetartiodactyla : Suidae) au Plio–Pléistocène en Afrique orientale. Université de Poitiers, Poitiers, p. 517.Google Scholar
Souron, A., Balasse, M. & Boisserie, J.-R. (2012). Intra-tooth isotopic profiles of canines from extant Hippopotamus amphibius and late Pliocene hippopotamids (Shungura Formation, Ethiopia): insights into the seasonality of diet and climate. Palaeogeography, Palaeocli-matology, Palaeoecology 342–343: 97110.Google Scholar
Souron, A., Boisserie, J.-R. & White, T. D. (2015a). A new species of the suid genus Kolpochoerus from the Pliocene of Ethiopia. Acta Palaeontologica Polonica 60: 7996.Google Scholar
Souron, A., Merceron, G., Blondel, C., et al. (2015b). Three-dimensional dental microwear texture analysis and diet in extant Suidae (Mammalia: Cetartiodactyla). Mammalia 79: 279291.Google Scholar
Sponheimer, M., Ruiter, D. d., Lee-Thorp, J. A. & Späth, A. (2005). Sr/Ca and early hominin diets revisited: new data from modern and fossil tooth enamel. Journal of Human Evolution 48: 147156.Google Scholar
Tseng, Z. J. (2012). Connecting Hunter–Schreger Band microstructure to enamel microwear features: new insights from durophagous carnivores. Acta Palaeontologica Polonica 57: 473484.Google Scholar
Uno, K. T., Cerling, T. E., Harris, J. M., et al. (2011). Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. Proceedings of the National Academy of Sciences of the United States of America 108: 65096514.Google Scholar
Vercammen, P. & Mason, D. R. (1993). The warthogs (Phacochoerus africanus and P. aethiopicus). In Oliver, W. L. R. (ed.), Pigs, peccaries and hippos: status survey and conservation action plan. Gland: IUCN, pp. 7584.Google Scholar
Wang, Y. & Cerling, T. E. (1994). A model of fossil tooth and bone diagenesis: implications for paleodiet reconstruction from stable isotopes. Palaeogeography, Palaeocli-matology, Palaeoecology 107: 281289.Google Scholar
Warinner, C. & Tuross, N. (2009). Alkaline cooking and stable isotope tissue-diet spacing in swine: archaeological implications. Journal of Archaeological Research 36: 16901697.Google Scholar
White, T. D. (1995). African omnivores: global climatic change and Plio–Pleistocene hominids and suids. In Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H. (eds.). Paleoclimate and evolution with emphasis on human origins. New Haven, CT: Yale University Press, pp. 369384.Google Scholar
White, T. D., Howell, F. C. & Gilbert, H. (2006). The earliest Metridiochoerus (Artiodactyla: Suidae) from the Usno Formation, Ethiopia. Transactions of the Royal Society of South Africa 61: 7579.Google Scholar
Zazzo, A., Lécuyer, C., Sheppard, S. M. F., Grandjean, P. & Mariotti, A. (2004). Diagenesis and the reconstruction of paleoenvironments: a method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel. Geochimica et Cosmochimica Acta 68: 22452248.Google Scholar

References

Albarella, U., Davis, S. J. M., Detry, C. & Rowley-Conwy, P. (2005). Pigs of the ‘Far West’: the biometry of Sus from archaeological sites in Portugal. Anthropozoologica 40(2): 2754.Google Scholar
Albarella, U., Dobney, K. & Rowley-Conwy, P. (2006). The domestication of the pig (Sus scrofa): new challenges and approaches. In Zeder, M. A., Bradley, D. G., Emshwiller, E. & Smith, B. D. (eds.), Documenting domestication: new genetic and archaeological paradigms. Berkeley, CA: University of California Press, pp. 209227.Google Scholar
Alexandri, P., Triantafyllidis, A., Papakostas, S., et al. (2012). The Balkans and the colonization of Europe: the post-glacial range expansion of the wild boar, Sus scrofa. Journal of Biogeography 39: 713723.Google Scholar
Arbuckle, B. S. (2006). Experimental animal domestication and its application to the study of animal exploitation in prehistory. In Vigne, J.-D., Helmer, D. & Peters, J. (eds.), The first steps of animal domestication: new archaeological approaches. Proc. 9th ICAZ Conf. Oxford: Oxbow Books, pp. 1833.Google Scholar
Balasse, M., Evin, A., Tornero, C., et al. (2016). Wild, domestic and feral? Investigating the status of suids in the Romanian Gumelniţa (5th mil. cal BC) with biogeochemistry and geometric morphometrics. Journal of Anthropological Archaeology 42: 2736.Google Scholar
Bartosiewicz, L., Gillis, R., Girdland Flink, L., et al. (2013). Chalcolithic pig remains from Çamlibel Tarlasi, Central Anatolia. In De Cupere, B., Linseele, V. & Hamilton-Dyer, S. (eds.), Archaeozoology of the Near East X. Proceedings of the Tenth International Symposium on the Archaeozoology of South-Western Asia and Adjacent Areas. Leuven/Walpole, MA: Peeters, pp. 101120.Google Scholar
Boessneck, J. & Von Den Driesch, A. (1978). The significance of measuring animal bones from archaeological sites. In Meadow, R. H. & Zeder, M. A. (eds.), Approaches to faunal analysis in the Middle East. Bulletin No. 2. Cambridge, MA: Peabody Museum, Harvard University, pp. 2540.Google Scholar
Bookstein, F. L. (1991). Morphometric tools for land-mark data: geometry and biology. New York, NY: Cambridge University Press.Google Scholar
Bosse, M., Megens, H. J., Madsen, O., et al. (2014). Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically distinct and highly divergent Sus scrofa populations. Molecular Ecology 23(16): 40894102.Google Scholar
Burger, P., Terral, J.-F., Ruas, M.-P., Ivorra, S. & Picq, S. (2011). Assessing past agrobiodiversity of Prunus avium L. (Rosaceae): a morphometric approach focussed on the stones from the archaeological site Hôtel-Dieu (16th century, Tours, France). Vegetation History and Archaeobotany 20(5): 447458.Google Scholar
Caumul, R. & Polly, P. D. (2005). Phylogenetic and environmental components of morphological variation: skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution 59(11): 24602472.Google Scholar
Chen, B. Z., Zhang, J. Z. & Lu, H. Y. (1995). Discovery of rice phytoliths in the Neolithic site at Jiahu-of-Henan Province and its significance. Chinese Science Bulletin 40: 11861191.Google Scholar
Conolly, J., Colledge, S., Dobney, K., et al. (2011). Meta-analysis of zooarchaeological data from SW Asia and SE Europe provides insight into the origins and spread of animal husbandry. Journal of Archaeological Science 38(3): 538545.Google Scholar
Cornette, R., Herrel, A., Stoetzel, E., et al. (2015). Specific information levels in relation to fragmentation patterns of shrew mandibles: do fragments tell the same story? Journal of Archaeological Science 53: 323330.Google Scholar
Cucchi, T., Fujita, M. & Dobney, K. (2009). New insights into pig taxonomy, domestication and human dispersal in Island South East Asia: molar shape analysis of Sus remains from Niah Caves, Sarawak. International Journal of Osteoarchaeology 19(4): 508530.CrossRefGoogle Scholar
Cucchi, T., Balasescu, A., Bem, C., Radu, V. & Tresset, A. (2011a). New insights into the invasive process of the eastern house mouse (Mus musculus musculus): evidence from the burnt houses of Chalcolithic Romania. The Holocene 21: 1195.Google Scholar
Cucchi, T., Hulme-Beaman, A., Yuan, J. & Dobney, K. (2011b). Early Neolithic pig domestication at Jiahu, Henan Province, China: clues from molar shape analyses using geometric morphometric approaches. Journal of Archaeological Science 38(1): 1122.Google Scholar
Cucchi, T., Kovács, Z. E., Berthon, R., et al. (2013). On the trail of Neolithic mice and men towards Transcaucasia: zooarchaeological clues from Nakhchivan (Azerbaijan). Biological Journal of the Linnean Society 108(4): 917928.Google Scholar
Cucchi, T., Barnett, R., Martínková, N., et al. (2014). The changing pace of insular life: 5000 years of microevolution in the orkney vole (Microtus arvalis orcadensis). Evolution 68(10): 28042820.Google Scholar
Cucchi, T., Dai, L., Balasse, M., et al. (2016). Social complexification and pig husbandry in Ancient China: a combined geometric morphometric and isotopic approach. PLoS ONE 11(7): e0158523.Google Scholar
Darwin, C. (1868). The variation of animals and plants under domestication. London: John Murray.Google Scholar
Davis, S. J. M. (1981). The effects of temperature change and domestication on the body size of late Pleistocene to Holocene mammals of Israel. Paleobiology 7(1): 101114.Google Scholar
Dobney, K. & Larson, G. (2006). Genetics and animal domestication: new windows on an elusive process, Journal of Zoology 269(2): 261271.Google Scholar
Dobney, K., Cucchi, T. & Larson, G. (2008). The pigs of Island Southeast Asia and the Pacific: new evidence for taxonomic status and human-mediated dispersal. Asian Perspectives 44: 5974.Google Scholar
Duval, C., Lepetz, S., Horard-Herbin, M.-P. & Cucchi, T. (2015). Did Romanization impact Gallic pig morphology? New insights from molar geometric morphometrics. Journal of Archaeological Science 57: 345354.Google Scholar
Ervynck, A., Dobney, K., Hongo, H. & Meadow, R. (2001). Born free? New evidence for the status of Sus scrofa at Neolithic Çayönü Tepesi (Southeastern Anatolia, Turkey). Paléorient 27(2): 4773.Google Scholar
Evin, A., Cucchi, T., Cardini, A., et al. (2013). The long and winding road: identifying pig domestication through molar size and shape. Journal of Archaeological Science 40(1): 735743.Google Scholar
Evin, A., Girdland Flink, L., Krause-Kyora, B., et al. (2014). Exploring the complexity of domestication: a response to Rowley-Conwy and Zeder. World Archaeology 46: 825834. doi:10.1080/00438243.2014.953711Google Scholar
Evin, A., Dobney, K., Schafberg, R., et al. (2015a). Phenotype and animal domestication: a study of dental variation between domestic, wild, captive, hybrid and insular Sus scrofa. BMC Evolutionary Biology 15(1): 6.Google Scholar
Evin, A., Flink, L.G., Balasescu, A., et al. (2015b). Unravelling the complexity of domestication: a case study using morphometrics and ancient DNA analyses of archaeological pigs from Romania. Philosophical Transactions of the Royal Society B: Biological Sciences 370(1660): 20130616.Google Scholar
Frantz, L. A., Schraiber, J. G., Madsen, O., et al. (2013). Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biology 14(9): R107.Google Scholar
Frantz, L. A. F., Schraiber, J. G., Madsen, O., et al. (2015). Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nature Genetics 47(10): 11411148.Google Scholar
Groenen, M. A. M., Archibald, A. L., Uenishi, H., et al. (2012). Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491(7424): 393398.Google Scholar
Groves, C. P. (1983). Pigs east of the Wallace Line. Journal de la Société des océanistes 39: 105119.Google Scholar
Hongo, H., Pearson, J., Öksüz, B. & Ilgezdi, G. (2009). The process of ungulate domestication at Çayönü, Southeastern Turkey: a multidisciplinary approach focusing on Bos sp. and Cervus elaphus. Anthropozoologica 44(1): 6378.Google Scholar
Jing, Y. & Flad, R. K. (2002). Pig domestication in ancient China. Antiquity 76: 724732.Google Scholar
Krause-Kyora, B., Makarewicz, C., Evin, A., et al. (2013). Use of domesticated pigs by Mesolithic hunter-gatherers in northwestern Europe. Nature Communications 4: 2348.Google Scholar
Kuhl, F. P. & Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18: 236258.Google Scholar
Larson, G., Dobney, K., Albarella, U., et al. (2005). Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science (New York, N.Y.) 307(5715): 16181621.Google Scholar
Larson, G., Albarella, U., Dobney, K., et al. (2007a). Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proceedings of the National Academy of Sciences of the United States of America 104(39): 1527615281.Google Scholar
Larson, G., Cucchi, T., Fujita, M., et al. (2007b). Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania. Proceedings of the National Academy of Sciences of the United States of America 104(12): 48344839.Google Scholar
Lucchini, V., Meijaard, E., Diong, C. H., Groves, C. P. & Randi, E. (2005). New phylogenetic perspectives among species of South-east Asian wild pig (Sus sp.) based on mtDNA sequences and morphometric data. Journal of Zoology 266: 2535. doi:10.1017/S0952836905006588Google Scholar
MacKinnon, M. (2001). High on the hog: linking zooarchaeological, literary, and artistic data for pig breeds in Roman Italy. American Journal of Archaeology 105(4): 649.Google Scholar
Mayer, J. J. & Brisbin, I. L. (1991). Wild pigs in the United States: their history, comparative morphology, and current status. Athens, GA and London: University of Georgia Press.Google Scholar
Meadow, R. H. (1989). Osteological evidence for the process of animal domestication. In Clutton-Brock, J. (ed.), The walking larder: patterns of domestication, pastoralism, and predation. London: Unwin Hyman, pp. 8090.Google Scholar
Megens, H. J. J., Crooijmans, R. P. M. A., Cristobal, M.S.S., et al. (2008). Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genetics Selection Evolution 40(1): 103128.Google Scholar
Meiri, S. & Dayan, T. (2003). On the validity of Bergmann's rule. Journal of Biogeography 30(3): 331351.Google Scholar
Meiri, M., Huchon, D., Bar-Oz, G., et al. (2013). Ancient DNA and population turnover in southern levantine pigs – signature of the sea peoples migration? Scientific Reports 3: 3035.Google Scholar
Nelson, S. M. (1998). Ancestors for the pigs: pigs in prehistory. Philadilphia, PA: MASCA Rese.Google Scholar
Newton, C., Lorre, C., Sauvage, C., Ivorra, S. & Terral, J. F. (2014). On the origins and spread of Olea europaea L. (olive) domestication: evidence for shape variation of olive stones at Ugarit, Late Bronze Age, Syria – a window on the Mediterranean Basin and on the westward diffusion of olive varieties. Vegetation History and Archaeobotany 23(5): 567575.Google Scholar
O'Regan, H. J. & Kitchener, A. C. (2005). The effects of captivity on the morphology of captive, domesticated and feral mammals. Mammal Review 35(3–4): 215230.Google Scholar
Ottoni, C., Flink, L. G., Evin, A., et al. (2013). Pig domestication and human-mediated dispersal in western Eurasia revealed through ancient DNA and geometric morphometrics. Molecular Biology and Evolution 30(4): 824832.Google Scholar
Owen, J., Dobney, K., Evin, A., et al. (2014). The zooarchaeological application of quantifying cranial shape differences in wild boar and domestic pigs (Sus scrofa) using 3D geometric morphometrics. Journal of Archaeological Science 43: 159167.Google Scholar
Pagnoux, C., Bouby, L., Ivorra, S., et al. (2014). Inferring the agrobiodiversity of Vitis vinifera L. (grapevine) in ancient Greece by comparative shape analysis of archaeological and modern seeds. Vegetation History and Archaeobotany 24(1): 7584.Google Scholar
Peters, J., Helmer, D., Von Den Driesch, A. & Segui, M. S. (1999). Early animal husbandry in the Northern Levant. Paléorient 25(2): 2748.Google Scholar
Pond, W. G. & Mersmann, H. J. (2001). Biology of the domestic pig. Ithaca, NY: Cornell University Press.Google Scholar
Price, E. O. (2002). Animal domestication and behavior. Wallingford and New York: CABI Publishing.Google Scholar
Rehfeldt, C., Henning, M. & Fiedler, I. (2008). Consequences of pig domestication for skeletal muscle growth and cellularity. Livestock Science 116: 3041.Google Scholar
Rohlf, J. F. & Marcus, L. F. L. F. (1993). A revolution in morphometrics. Trends in Ecology & Evolution 8(4): 129132.Google Scholar
Ros, J., Evin, A., Bouby, L. & Ruas, M.-P. (2014). Geometric morphometric analysis of grain shape and the identification of two-rowed barley (Hordeum vulgare subsp. distichum L.) in southern France. Journal of Archaeological Science 41: 568575.Google Scholar
Rowley-Conwy, P. & Zeder, M. (2014). Mesolithic domestic pigs at Rosenhof – or wild boar? A critical re-appraisal of ancient DNA and geometric morphometrics. World Archaeology 46: 813824. doi:10.1080/00438243.2014.953704Google Scholar
Rowley-Conwy, P., Albarella, U. & Dobney, K. (2012). Distinguishing wild boar from domestic pigs in prehistory: a review of approaches and recent results. Journal of World Prehistory 25: 144. doi:10.1007/s10963-012-9055-0Google Scholar
Rubin, C.-J., Megens, H.-J., Barrio, A. M., et al. (2012). Strong signatures of selection in the domestic pig genome. Proceedings of the National Academy of Sciences of the United States of America 109(48): 1952919536.Google Scholar
Shelach, G. (2000). The earliest Neolithic cultures of northeast China: recent discoveries and new perspectives on the beginning of agriculture. Journal of World Prehistory 14(4): 363413.Google Scholar
Stoetzel, E., Denys, C., Michaux, J. & Renaud, S. (2013). Mus in Morocco: a Quaternary sequence of intraspecific evolution. Biological Journal of the Linnean Society 109(3): 599621.Google Scholar
Terral, J. F., Alonso, N., Capdevila, R. B., et al. (2004). Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. Journal of Biogeography 31(1): 6377.Google Scholar
Terral, J. F., Tabard, E., Bouby, L., et al. (2010). Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Annals of Botany 105(3): 443455.Google Scholar
Valenzuela-Lamas, S., Baylac, M., Cucchi, T. & Vigne, J. (2011). House mouse dispersal in Iron Age Spain: a geometric morphometrics appraisal. Biological Journal of the Linnean Society 102: 483497.Google Scholar
Vigne, J.-D. (1998). Faciès culturels et sous-système technique de l'acquisition des ressources animales. Application au Néolithique ancien méditerranéen. In Rencontres Méridionales de Préhistoire Récente. Deuxième Session, Arles, 1996. Antibes: Editions APDCA, 2745.Google Scholar
Vigne, J.-D., Peters, J. & Helmer, D. (2005). The first steps of animal domestication: new archaeozoological techniques (Proceedings of the 9th ICAZ Conference). Oxford: Oxbow Books Limited.Google Scholar
Zeder, M. A. (2006). Central questions in the domestication of plants and animals. Evolutionary Anthropology: Issues, News, and Reviews 15(3): 105117.Google Scholar

References

Albarella, U. (2004). The archaeology of pig domestication and husbandry: approaches and case studies. Unpublished PhD dissertation, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3179/Google Scholar
Albarella, U. (2007). Pigs and humans: 10,000 years of interaction. Oxford: Oxford University Press.Google Scholar
Bauman, Z. (2000a). Time and space reunited. Time & Society 9(2/3): 171185.Google Scholar
Bauman, Z. (2000b). Liquid modernity. Cambridge: Polity Press.Google Scholar
Bauman, Z. (2007). Liquid times: living in an age of uncertainty. Cambridge: Polity Press.Google Scholar
Buringh, P. & Dudal, R. (1987). Agricultural land use in space and time. In Wolman, M. G. & Fournier, F. (eds.), SCOPE Report, Number 32. New York, NY: John Wiley & Sons Ltd, pp. 943.Google Scholar
Choi, S-K., Lee, J-E., Kim, Y-J., et al. (2014). Genetic structure of wild boar (Sus scrofa) populations from East Asia based on microsatellite loci analyses. BMC Genetics 15: 85.Google Scholar
Coe, S. (2015). Factory Pharm: the animals went insane. Downloaded 14 October 2015 from https://torontopigsave.wordpress.com/2-art-by-sue-coe/Google Scholar
Crary, D. (2013). ‘The Someone Project’ campaign aims to highlight farm animals’ intelligence. 29 July 2013. Downloaded 10 December 2015 from www.huffingtonpost.com/2013/07/29/the-someone-project-animal-intelligence_n_3669797.htmlGoogle Scholar
FAO. (2014). Animal production and health; themes; meat and meat products; sources of meat; diagram. Downloaded 16 February 2016 from www.fao.org/ag/againfo/themes/images/meat/backgr_sources_data.jpgGoogle Scholar
FAO. (2015). The state of food insecurity in the world (SOFI) 2015. Rome: Agriculture and Economic Development Analysis Division, FAO Current Statistics.Google Scholar
Gade, D. W. (2000). Hogs (pigs). In Kiple, K. H. & Ornelas-Kiple, C. K. (eds.), The Cambridge world history of food and nutrition. New York, NY: Cambridge University Press, Vol. I, pp. 536542.Google Scholar
Harris, M. (1997). The abominable pig. In Counihan, C. & Van Esterik, P. (eds.), Food and culture: a reader. New York, NY: Routledge, pp. 6779.Google Scholar
Harvey, D. (1977). Social justice and the city. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Harvey, D. (1990). The condition of postmodernity: an enquiry into the origins of cultural change. Oxford: Blackwell.Google Scholar
Hill, B. (2014). An introduction to economics: concepts for students of agriculture and the rural sector. 4th ed. Wallingford: CABI Pub.Google Scholar
Horback, K. (2014). Nosing around: play in pigs. Animal Behavior and Cognition 1(2): 186196.Google Scholar
Huis, A. van. (2013). Edible insects: future prospects for food and feed security. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
Kim, J-H., Han, S-H., Kang, M-C. & Oh, M-Y. (2011). Ancient pigs on Jeju Island, Korea: molecular identification and phylogenetic relationship with extant native pigs. Korean J. Genetics 28(4): 385393.Google Scholar
Kim, S.-O. (1994). Burials, pigs, and political prestige in Neolithic China. Current Anthropology 35: 119141.Google Scholar
Marchant-Forde, J. N. (2009). Introduction to the welfare of pigs. In Marchant-Forde, J. N. (ed.), The welfare of pigs. Dordrecht: Springer, pp. 112.Google Scholar
Marino, L. & Colvin, C. M. (2015). Thinking pigs: a comparative review of cognition, emotion, and personality in Sus domesticus. International Journal of Comparative Psychology 28: 122.Google Scholar
McKay, J. P., Hill, D. B., Buckler, J., et al. (2011). A history of world societies. 9th ed. Boston: Bedford/St. Martin's.Google Scholar
Nash, R. (1967). Wilderness and the American mind. New Haven, CT: Yale University Press.Google Scholar
Nelson, S. M. (1998). Introduction: pigs in prehistory. In Ancestors for the pigs: pigs in prehistory. Philadelphia, PA: Museum Applied Science Center for Archaeology, University of Pennsylvania Museum of Archaeology and Anthropology, pp. 14.Google Scholar
Nemeth, D. J. (1987). The Architecture of ideology: Neo-Confucian imprinting on Cheju Island, Korea. Berkeley and Los Angeles, CA: University of California Press.Google Scholar
O'Connell, N. E. (2009). Housing the fattening pig. In Marchant-Forde, J. N. (ed.), The welfare of pigs. Dordrecht: Springer, pp. 189210.Google Scholar
Rufus, W. C. (1913). The celestial planisphere of King Yi Tai-jo. Transactions of the Royal Asiatic Society, Korea Branch 4: 2372.Google Scholar
Simoons, F. J. (1991). Food in China: a cultural and historical inquiry. Boca Raton, FL: CRC Press.Google Scholar
Spoolder, H. A. M. & Waiblinger, S. (2009). Pigs and humans. In Marchant-Forde, J. N. (ed.), The welfare of pigs. Dordrecht: Springer, pp. 211236.Google Scholar
Stevens, P. S. (1974). Patterns in nature. Boston, MA: Little, Brown.Google Scholar
Stilgoe, J. R. (1976). The Puritan townscape: ideal and reality. Landscape (Berkeley) 20(3): 37.Google Scholar
T'angso (History of the T'ang Dynasty). Compiled AD 945 by Liu Hsu.Google Scholar
Webster, A. J. F. (2001). Farm animal welfare: the five freedoms and the free market. The Veterinary Journal 161: 229223.Google Scholar
Wiseman, J. (2000). The pig: a British history. London: Duckworth.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×