Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T07:51:00.580Z Has data issue: false hasContentIssue false

3 - Gold and brass: affine algebras and generalisations

Published online by Cambridge University Press:  19 August 2009

Terry Gannon
Affiliation:
University of Alberta
Get access

Summary

This chapter introduces the nontwisted affine algebras – infinite-dimensional Lie algebras of considerable mathematical and physical interest – and searches for generalisations that preserve and enhance those special features. The affine algebras supply classic examples of Moonshine, in that the characters of their integrable modules are vectorvalued Jacobi functions for SL2(ℤ). They thread through the remainder of the book, guiding all subsequent mathematical developments. Their Lie groups are discussed in Section 3.2.6.

Algebraically, the affine algebras naturally generalise to the Kac–Moody algebras (Section 3.3.1), although that generalisation seems to lose some of their magic. In turn, the Kac–Moody algebras generalise naturally to the Borcherds–Kac–Moody algebras (Section 3.3.2), which play a significant role in Borcherds' proof of Monstrous Moonshine through their denominator identities (Section 3.4.2). Two other natural generalisations of affine algebras are described elsewhere in Section 3.3. In Section 3.4.1 we study an important special case of what we later call the orbifold construction, and in the final subsection we touch on a more recent and tangential development.

The Virasoro algebra (Section 3.1.2) plays a prominent structural role in conformal field theory (Chapter 4) and vertex operator algebras (Chapter 5); its relation to moduli spaces is a fundamental source of Moonshine itself.

Modularity from the circle

Central extensions

Let V be any (complex) vector space, and let GL(V) denote the group of all invertible linear maps VV. A projective representation of a group G is a map P : G → GL(V) such that P(e) = I (the identity), and given any elements g, hG, there is a nonzero complex number α(g, h) such that

Type
Chapter
Information
Moonshine beyond the Monster
The Bridge Connecting Algebra, Modular Forms and Physics
, pp. 176 - 225
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×