Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-29T11:04:32.626Z Has data issue: false hasContentIssue false

7 - Program organization

Published online by Cambridge University Press:  18 August 2009

Sverre J. Aarseth
Affiliation:
University of Cambridge
Get access

Summary

Introduction

We now make an abrupt transition to a presentation of various algorithms utilized by the direct summation codes. Before proceeding further, it will be useful to include some practical aspects in order to have a proper setting for the subsequent more technical procedures. First we introduce the main codes that have been developed for studying different gravitational N-body problems. Where possible, the same data structure has been employed, except that the most recent versions are formulated in terms of the Hermite integration scheme. Since the largest codes are quite complicated, we attempt to describe the overall organization by tables and a flowchart to provide some enlightenment. Later sections give further details concerning input parameters, variables and data structure; each of these elements play an important role for understanding the general construction. We also discuss a variety of optional features which provide enhanced flexibility for examining different processes.

N-body codes

Before describing the characteristics of the codes, we introduce some short-hand notation to illustrate the different solution methods employed [cf. Makino & Aarseth, 1992]. Thus by ITS we denote the basic individual time-step scheme, whereas ACS defines the Ahmad–Cohen [1973] neighbour scheme. Likewise, HITS and HACS are used for the corresponding Hermite integration methods. Finally, MREG refers to the implementations of unperturbed three-body [Aarseth & Zare, 1974] and four-body chain regularization [Mikkola & Aarseth, 1990], as well as perturbed chain regularization [Mikkola & Aarseth, 1993].

Type
Chapter
Information
Gravitational N-Body Simulations
Tools and Algorithms
, pp. 105 - 119
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Program organization
  • Sverre J. Aarseth, University of Cambridge
  • Book: Gravitational N-Body Simulations
  • Online publication: 18 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535246.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Program organization
  • Sverre J. Aarseth, University of Cambridge
  • Book: Gravitational N-Body Simulations
  • Online publication: 18 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535246.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Program organization
  • Sverre J. Aarseth, University of Cambridge
  • Book: Gravitational N-Body Simulations
  • Online publication: 18 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535246.008
Available formats
×