Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T11:24:32.893Z Has data issue: false hasContentIssue false

3 - Sea level: a primary control of long-term reef growth and geomorphological development

Published online by Cambridge University Press:  22 August 2009

David Hopley
Affiliation:
James Cook University, North Queensland
Scott G. Smithers
Affiliation:
James Cook University, North Queensland
Kevin Parnell
Affiliation:
James Cook University, North Queensland
Get access

Summary

Introduction

Coral reefs such as the Great Barrier Reef (GBR) are the net result of the productive efforts of marine animals and plants that build structures able to withstand waves and currents. These structures are predominantly composed of skeletal material produced by a myriad of simple organisms that can achieve high productivity and nutrient-cycling efficiency in seas that are generally nutrient poor. Scleractinian corals and coralline algae are the major contributors to reef growth on most coral reefs. Both utilize solar energy via photosynthesis to realize calcification rates that are significantly higher than those possible if they were solely heterotrophic (Chalker and Dunlap, 1983; Barnes and Chalker, 1990). Calcification rates, and thus the accumulation of calcium carbonate products, or reef growth, proceed most rapidly in the euphotic zone, where photosynthetically active radiation (PAR) can be accessed and utilized. In tropical seas, where the majority of corals live, this may extend to depths exceeding 100 m under exceptional circumstances; for example, corals are known to grow at depths below 140 m in the Red Sea, and to reach similar depths on outer reefs of the GBR such as Myrmidon Reef off Townsville (Hopley, 1994; see Fig. 9.12). Generally, however, PAR rapidly diminishes at depths below 30 m, or even shallower in turbid settings (Anthony and Fabricius, 2000). As a result, reefs grow best within 30 m of the sea surface, with reef accretion rates usually highest above 20 m (Hopley, 1982; Carter and Johnson, 1986).

Type
Chapter
Information
The Geomorphology of the Great Barrier Reef
Development, Diversity and Change
, pp. 42 - 91
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×