Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T09:03:19.071Z Has data issue: false hasContentIssue false

3 - The Expansion of the Universe

Published online by Cambridge University Press:  10 August 2009

James E. Lidsey
Affiliation:
Queen Mary University of London
Get access

Summary

If the stars in distant galaxies have the same composition as those in our own galaxy, the light we receive from them should exhibit the characteristic signatures of hydrogen and helium. This is indeed observed. However, there is one crucial difference between galactic and stellar light, and this has profound consequences for our understanding of the universe. Although it is true that the relative separation of the dark lines observed in the galactic light corresponds to hydrogen and helium atoms, the lines do not appear quite in their expected positions. When we examine the light from galaxies, we find that the dark lines have all been shifted slightly along the photograph.

Figure 3.1 shows schematic pictures of the light emitted by a typical star in our galaxy and the light received from an average distant galaxy. Light of a longer wavelength is positioned towards the right of the diagram. If this were a colour photograph, the picture would appear redder on the right-hand side and bluer on the left. Notice how the absorption lines in the galactic light are all positioned at slightly longer wavelengths than in the stellar case.

The key to understanding what causes the dark lines to be moved towards longer wavelengths lies in the fact that light travels through space as a wave. Consider what happens when a wave is emitted by a source and is then picked up by a receiver positioned some distance away.

Type
Chapter
Information
The Bigger Bang , pp. 18 - 22
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×