Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-16T10:22:48.602Z Has data issue: false hasContentIssue false

4 - Approach safety and collision avoidance

Published online by Cambridge University Press:  13 October 2009

Wigbert Fehse
Affiliation:
European Space Technology Centre, The Netherlands
Get access

Summary

The objective of this chapter is to explain the requirements for trajectory safety, to discuss the causes for trajectory deviations due to the orbital environment and to imperfections and errors of the onboard system, and to investigate the possibilities of employing protection against trajectory deviations. The discussions concerning trajectory deviations and trajectory safety concentrate on the rendezvous phases, since the mission phases of launch and phasing are generally controlled by operators or computer functions on ground. In the rendezvous phases the two spacecraft are relatively close together, their orbital planes are well aligned and the trajectory of the chaser, by definition, leads toward the target, so that any deviation from the planned trajectory can potentially lead to a collision, directly or after one or more orbital revolutions.

Trajectory safety – trajectory deviations

Rendezvous and docking is in fact a ‘planned collision’ of two spacecraft, which is controlled by considering the geometric location of the contact points on the two vehicles and the linear velocities and angular rates at contact. To achieve the contact conditions within the allowed margins, the trajectories have to be maintained within close tolerances prior to contact. Any deviation from such tolerances may lead either to a loss of the rendezvous and mating opportunity or even to the danger of collision of the two spacecraft at unsuitable points and dynamic conditions, with the risk of serious damage. For this reason, rendezvous operations, and all functions and systems involved in them, have to comply with failure tolerance and safety requirements.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×