Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T13:44:28.675Z Has data issue: false hasContentIssue false

17 - Adrenocortical dysfunction in polycystic ovary syndrome

Published online by Cambridge University Press:  29 September 2009

Bulent O. Yildiz
Affiliation:
Hacettepe University, Turkey
Ricardo Azziz
Affiliation:
Cedars-Sinai Medical Centre, USA
Gabor T. Kovacs
Affiliation:
Monash University, Victoria
Robert Norman
Affiliation:
University of Adelaide
Get access

Summary

Introduction

Androgen excess is the most common endocrine disorder of reproductive-aged women, with the majority of patients having a functional abnormality, namely polycystic ovary syndrome (PCOS) (Azziz et al. 2004a). We and others have reported the estimated prevalence of this syndrome to be approximately 6–8% (Knochenhauer et al. 1998, Diamanti-Kandarakis et al. 1999, Asunción et al. 2000, Azziz et al. 2004b), using the 1990 National Institute of Child Health and Human Development (NICHD) conference diagnostic criteria for PCOS (Zawadzki and Dunaif 1992). This conference concluded that the diagnostic criteria of PCOS should include: (1) clinical and/or biochemical signs of hyperandrogenism, (2) oligo-ovulation, and (3) exclusion of other known disorders such as Cushing's syndrome, hyperprolactinemia, and non-classic congenital adrenal hyperplasia (NCAH) (Zawadzki and Dunaif 1992). A recent expert meeting sponsored by the European Society of Human Reproduction and Embryology (ESHRE) and the American Society for Reproductive Medicine (ASRM) expanded this definition, noting that PCOS should be diagnosed when at least two of the following three criteria are present: (1) oligo- and/or anovulation, (2) clinical and/or biochemical signs of hyperandrogenism, or (3) polycystic ovaries on ultrasonography, after the exclusion of related disorders (The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group 2004a, b).

The adrenal androgens (AAs) are primarily secreted by the zonae reticulares of the adrenal cortex, and include dehydroepiandrosterone (DHEA) and its sulfate (DHEAS), Δ5-androstene-3β, 17β-diol (androstenediol), and 11β-hydroxyandrostenedione (11-OHA4).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, G. E. (1974) Ovarian and adrenal contribution to peripheral androgens during the menstrual cycle. J. Clin. Endocrinol. Metab. 39:340–346.CrossRefGoogle ScholarPubMed
Abraham, G. E. and Chakmakjian, Z. H. (1973) Serum steroid levels during the menstrual cycle in a bilaterally adrenalectomized woman. J. Clin. Endocrinol. Metab. 37:581–587.CrossRefGoogle Scholar
Ackerman, G. E., Smith, M. E., Mendelson, C. R., MacDonald, P. C., and Simpson, E. R. (1981) Aromatization of androstenedione by human adipose tissue stromal cells in monolayer culture. J. Clin. Endocrinol. Metab. 53:412–417.CrossRefGoogle ScholarPubMed
Agarwal, A. K., Monder, C., Eckstein, B., and White, P. C. (1989) Cloning and expression of rat cDNA encoding corticosteroid 11 beta-dehydrogenase. J. Biol. Chem. 264:18939–18943.Google ScholarPubMed
Agarwal, A. K., Mune, T., Monder, C., and White, P. C. (1994) NAD(+)-dependent isoform of 11beta-hydroxysteroid dehydrogenase: cloning and characterization of cDNA from sheep kidney. J. Biol. Chem. 269:25959–25962.Google Scholar
Akamine, Y., Kato, K., and Ibayashi, H. (1980) Studies on changes in the concentration of serum adrenal androgens in pubertal twins. Acta Endocrinol. (Copenh.) 93:356–364.Google ScholarPubMed
Arlt, W., Auchus, R. J., and Miller, W. L. (2001) Thiazolidinediones but not metformin directly inhibit the steroidogenic enzymes P450c17 and 3beta-hydroxysteroid dehydrogenase. J. Biol. Chem. 276:16767–16771.CrossRefGoogle Scholar
Arslanian, S. A., Lewy, V., Danadian, K., and Saad, R. (2002) Metformin therapy in obese adolescents with polycystic ovary syndrome and impaired glucose tolerance: amelioration of exaggerated adrenal response to adrenocorticotropin with reduction of insulinemia/insulin resistance. J. Clin. Endocrinol. Metab. 87:1555–1559.CrossRefGoogle ScholarPubMed
Asunción, M., Calvo, R. M., San, Millan J. L., et al. (2000) A prospective study of the prevalence of the polycystic ovary syndrome in unselected Caucasian women from Spain. J. Clin. Endocrinol. Metab. 85:2434–2438.Google ScholarPubMed
Azziz R. (1997) Abnormalities of adrenocortical steroidogenesis in PCOS. In Azziz, R., Nestler, J. E., and Dewailly, D. (eds.) Androgen Excess Disorders in Women, pp. 403–414. Philadelphia, PA: Lippincott-Raven.Google Scholar
Azziz, R. and Koulianos, G. (1991) Adrenal androgens and reproductive aging in females. Semin. Reprod. Endocrinol. 9:249–260.CrossRefGoogle Scholar
Azziz, R. and Owerbach, D. (1995) Molecular abnormalities of the 21-hydroxylase gene in hyperandrogenic women with an exaggerated 17-hydroxyprogesterone response to short-term adrenal stimulation. Am. J. Obstet. Gynecol. 172:914–918.CrossRefGoogle ScholarPubMed
Azziz, R., Bradley, E. Jr., Huth, J., et al. (1990) Acute adrenocorticotropin-(1–24) (ACTH) adrenal stimulation in eumenorrheic women: reproducibility and effect of ACTH dose, subject weight, and sampling time. J. Clin. Endocrinol. Metab. 70:1273–1279.CrossRefGoogle ScholarPubMed
Azziz, R., Boots, L. R., Parker, C. R. Jr., Bradley, E. Jr., and Zacur, H. A. (1991a) 11beta-hydroxylase deficiency in hyperandrogenism. Fertil. Steril. 55:733–741.CrossRefGoogle Scholar
Azziz, R., Gay, F. L., Potter, S. R., Bradley, E. Jr., and Boots, L. R. (1991b) The effects of prolonged hypertestosteronemia on adrenocortical biosynthesis in oophorectomized women. J. Clin. Endocrinol. Metab. 72:1025–1030.CrossRefGoogle Scholar
Azziz, R., Wells, G., Zacur, H. A., and Acton, R. T. (1991c) Abnormalities of 21-hydroxylase gene ratio and adrenal steroidogenesis in hyperandrogenic women with an exaggerated 17-hydroxyprogesterone response to acute adrenal stimulation. J. Clin. Endocrinol. Metab. 73:1327–1331.CrossRefGoogle Scholar
Azziz, R., Zacur, H. A., Parker, C. R. Jr., Bradley, E. L. Jr., and Boots, L. R. (1991d) Effect of obesity on the response to acute adrenocorticotropin stimulation in eumenorrheic women. Fertil. Steril. 56:427–433.CrossRefGoogle Scholar
Azziz, R., Bradley, E. L. Jr., Potter, H. D., and Boots, L. R. (1993) 3beta-hydroxysteroid dehydrogenase deficiency in hyperandrogenism. Am. J. Obstet. Gynecol. 168:889–895.CrossRefGoogle Scholar
Azziz, R., Bradley, E. L. Jr., Potter, H. D., Parker, C. R. Jr., and Boots, L. R. (1995) Chronic hyperinsulinemia and the adrenal androgen response to acute corticotropin-(1–24) stimulation in hyperandrogenic women. Am. J. Obstet. Gynecol. 172:1251–1256.CrossRefGoogle ScholarPubMed
Azziz, R., Rittmaster, R. S., and Fox, L. M. (1998a) Role of the ovary in the adrenal androgen excess of hyperandrogenic women. Fertil. Steril. 69:851–859.CrossRefGoogle Scholar
Azziz, R., Black, V., Hines, G. A., Fox, L. M., and Boots, L. R. (1998b) Adrenal androgen excess in the polycystic ovary syndrome: sensitivity and responsivity of the hypothalamic–pituitary–adrenal axis. J. Clin. Endocrinol. Metab. 83:2317–2323.Google Scholar
Azziz, R., Fox, L. M., Zacur, H. A., Parker, C. R. Jr., and Boots, L. R. (2001) Adrenocortical secretion of dehydroepiandrosterone in healthy women: highly variable response to adrenocorticotropin. J. Clin. Endocrinol. Metab. 86:2513–2517.Google ScholarPubMed
Azziz, R., Ehrmann, D. A., Legro, R. S., et al. (2003) Troglitazone decreases adrenal androgen levels in women with polycystic ovary syndrome. Fertil. Steril. 79:932–937.CrossRefGoogle ScholarPubMed
Azziz, R., Sanchez, L. A., Knochenhauer, E. S., et al. (2004a) Androgen excess in women: experience with over 1000 consecutive patients. J. Clin. Endocrinol. Metab. 89:453–462.CrossRefGoogle Scholar
Azziz, R., Woods, K. S., Reyna, R., et al. (2004b) The prevalence and features of the polycystic ovary syndrome in an unselected population. J. Clin. Endocrinol. Metab. 89:2745–2749.CrossRefGoogle Scholar
Barbieri, R. L., Makris, A., Randall, R. W., (1986) Insulin stimulates androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. J. Clin. Endocrinol. Metab. 62:904–910.CrossRefGoogle ScholarPubMed
Baulieu, E. E., Corpechot, C., Dray, F., et al. (1965) An adrenal-secreted “androgen”: dehydroisoandrosterone sulfate – its metabolism and a tentative generalization on the metabolism of other steroid conjugates in man. Recent. Prog. Horm. Res. 21:411–500.Google ScholarPubMed
Beer, N. A., Jakubowicz, D. J., Beer, R. M., and Nestler, J. E. (1994) Disparate effects of insulin reduction with diltiazem on serum dehydroepiandrosterone sulfate levels in obese hypertensive men and women. J. Clin. Endocrinol. Metab. 79:1077–1081.Google ScholarPubMed
Brody, S., Carlstrom, K., Lagrelius, A., Lunell, N. O., and Mollerstrom, G. (1987) Adrenal steroids in post-menopausal women: relation to obesity and to bone mineral content. Maturitas. 9:25–32.CrossRefGoogle ScholarPubMed
Bulun, S. E. and Simpson, E. R. (1994) Competitive reverse transcription–polymerase chain reaction analysis indicates that levels of aromatase cytochrome P450 transcripts in adipose tissue of buttocks, thighs, and abdomen of women increase with advancing age. J. Clin. Endocrinol. Metab. 78:428–432.Google ScholarPubMed
Carbunaru, G., Prasad, P., Scoccia, B., et al. (2004) The hormonal phenotype of nonclassic 3beta-hydroxysteroid dehydrogenase (HSD3B) deficiency in hyperandrogenic females is associated with insulin-resistant polycystic ovary syndrome and is not a variant of inherited HSD3B2 deficiency. J. Clin. Endocrinol. Metab. 89:783–794.CrossRefGoogle Scholar
Carmina, E., Rosato, F., and Janni, A. (1986) Increased DHEAs levels in PCO syndrome: evidence for the existence of two subgroups of patients. J. Endocrinol. Invest. 9:5–9.CrossRefGoogle ScholarPubMed
Carmina, E., Koyama, T., Chang, L., Stanczyk, F. Z., and Lobo, R. A. (1992) Does ethnicity influence the prevalence of adrenal hyperandrogenism and insulin resistance in polycystic ovary syndrome?Am. J. Obstet. Gynecol. 167:1807–1812.CrossRefGoogle ScholarPubMed
Carmina, E., Gonzalez, F., Chang, L., and Lobo, R. A. (1995) Reassessment of adrenal androgen secretion in women with polycystic ovary syndrome. Obstet. Gynecol. 85:971–976.CrossRefGoogle ScholarPubMed
Chin, D., Shackleton, C., Prasad, V. K., et al. (2000) Increased 5alpha-reductase and normal 11beta-hydroxysteroid dehydrogenase metabolism of C19 and C21 steroids in a young population with polycystic ovarian syndrome. J. Pediatr. Endocrinol. Metab. 13:253–259.CrossRefGoogle Scholar
Diamanti-Kandarakis, E., Kouli, C. R., Bergiele, A. T., et al. (1999) A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J. Clin. Endocrinol. Metab. 84:4006–4011.CrossRefGoogle ScholarPubMed
Ditkoff, E. C., Fruzzetti, F., Chang, L., Stancyzk, F. Z., and Lobo, R. A. (1995) The impact of estrogen on adrenal androgen sensitivity and secretion in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 80:603–607.Google ScholarPubMed
Dolzan, V., Prezelj, J., Vidan-Jeras, B., and Breskvar, K. (1999) Adrenal 21-hydroxylase gene mutations in Slovenian hyperandrogenic women: evaluation of corticotrophin stimulation and HLA polymorphisms in screening for carrier status. Eur. J. Endocrinol. 141:132–139.CrossRefGoogle ScholarPubMed
Dunaif, A. (1997) Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr. Rev. 18:774–800.Google ScholarPubMed
Ehrhart-Bornstein, M., Hinson, J. P., Bornstein, S. R., Scherbaum, W. A., and Vinson, G. P. (1998) Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr. Rev. 19:101–143.CrossRefGoogle ScholarPubMed
Falcone, T., Finegood, D. T., Fantus, I. G., and Morris, D. (1990) Androgen response to endogenous insulin secretion during the frequently sampled intravenous glucose tolerance test in normal and hyperandrogenic women. J. Clin. Endocrinol. Metab. 71:1653–1657.CrossRefGoogle ScholarPubMed
Farah-Eways, L., Reyna, R., Knochenhauer, E. S., Bartolucci, A. A., and Azziz, R. (2004) Glucose action and adrenocortical biosynthesis in women with polycystic ovary syndrome. Fertil. Steril. 81:120–125.CrossRefGoogle ScholarPubMed
Feher, T., Poteczin, E., and Bodrogi, L. (1985) Relationship between serum dehydroepiandrosterone sulphate and urinary 17-ketosteroid values. Exp. Clin. Endocrinol. 85:209–216.CrossRefGoogle ScholarPubMed
Forney, J. P., Milewich, L., Chen, G. T., et al. (1981) Aromatization of androstenedione to estrone by human adipose tissue in vitro: correlation with adipose tissue mass, age, and endometrial neoplasia. J. Clin. Endocrinol. Metab. 53:192–199.CrossRefGoogle ScholarPubMed
Fruzzetti, F., De, Lorenzo D., Ricci, C., and Teti, G. (1995) Ovarian influence on adrenal androgen secretion in polycystic ovary syndrome. Fertil. Steril. 63:734–741.CrossRefGoogle ScholarPubMed
Futterweit, W., Green, G., Tarlin, N., and Dunaif, A. (1992) Chronic high-dosage androgen administration to ovulatory women does not alter adrenocortical steroidogenesis. Fertil. Steril. 58:124–128.CrossRefGoogle Scholar
Gallagher, T. F., Kappas, A., Hellman, L., et al. (1958) Adrenocortical hyperfunction in idiopathic hirsutism and the Stein–Leventhal syndrome. J. Clin. Invest. 37:794–799.CrossRefGoogle ScholarPubMed
Gant, N. F., Hutchinson, H. T., Siiteri, P. K., and MacDonald, P. C. (1971) Study of the metabolic clearance rate of dehydroisoandrosterone sulfate in pregnancy. Am. J. Obstet. Gynecol. 111:555–563.CrossRefGoogle ScholarPubMed
Gonzalez, F. and Speroff, L. (1990) Adrenal morphologic considerations in polycystic ovary syndrome. Obstet. Gynecol. Surv. 45:491–508.CrossRefGoogle ScholarPubMed
Gonzalez, F., Hatala, D. A., and Speroff, L. (1991) Adrenal and ovarian steroid hormone responses to gonadotropin-releasing hormone agonist treatment in polycystic ovary syndrome. Am. J. Obstet. Gynecol. 165:535–545.CrossRefGoogle ScholarPubMed
Graybeal, M. L. and Fang, V. S. (1985) Physiological dosing of exogenous ACTH. Acta Endocrinol. (Copenh.) 108:401–406.Google ScholarPubMed
Guido, M., Romualdi, D., Suriano, R., et al. (2004) Effect of pioglitazone treatment on the adrenal androgen response to corticotrophin in obese patients with polycystic ovary syndrome. Hum. Reprod. 19:534–539.CrossRefGoogle ScholarPubMed
Hammami, M. M. and Siiteri, P. K. (1991) Regulation of 11beta-hydroxysteroid dehydrogenase activity in human skin fibroblasts: enzymatic modulation of glucocorticoid action. J. Clin. Endocrinol. Metab. 73:326–334.CrossRefGoogle ScholarPubMed
Hines, G. A. and Azziz, R. (1999) Impact of architectural disruption on adrenocortical steroidogenesis in vitro. J. Clin. Endocrinol. Metab. 84:1017–1021.Google ScholarPubMed
Hines, G. A., Smith, E. R., and Azziz, R. (2001) Influence of insulin and testosterone on adrenocortical steroidogenesis in vitro: preliminary studies. Fertil. Steril. 76:730–735.CrossRefGoogle ScholarPubMed
Hoffman, D. I., Klove, K., and Lobo, R. A. (1984) The prevalence and significance of elevated dehydroepiandrosterone sulfate levels in anovulatory women. Fertil. Steril. 42:76–81.CrossRefGoogle ScholarPubMed
Huerta, R., Dewailly, D., Decanter, C., et al. (1999) 11beta-hydroxyandrostenedione and delta5-androstenediol as markers of adrenal androgen production in patients with 21-hydroxylase-deficient nonclassic adrenal hyperplasia. Fertil. Steril. 72:996–1000.CrossRefGoogle ScholarPubMed
Ibañez, L., Potau, N., Virdis, R., et al. (1993) Postpubertal outcome in girls diagnosed of premature pubarche during childhood: increased frequency of functional ovarian hyperandrogenism. J. Clin. Endocrinol. Metab. 76:1599–1603.Google ScholarPubMed
Jakubowicz, D. J., Beer, N. A., Beer, R. M., and Nestler, J. E. (1995) Disparate effects of weight reduction by diet on serum dehydroepiandrosterone-sulfate levels in obese men and women. J. Clin. Endocrinol. Metab. 80:3373–3376.Google ScholarPubMed
Joehrer, K., Geley, S., Strasser-Wozak, E. M., et al. (1997) CYP11B1 mutations causing non-classic adrenal hyperplasia due to 11beta-hydroxylase deficiency. Hum. Mol. Genet. 6:1829–1834.CrossRefGoogle Scholar
Kahsar-Miller, M., Azziz, R., Feingold, E., and Witchel, S. F. (2000) A variant of the glucocorticoid receptor gene is not associated with adrenal androgen excess in women with polycystic ovary syndrome. Fertil. Steril. 74:1237–1240.CrossRefGoogle Scholar
Kahsar-Miller, M., Boots, L. R., Bartolucci, A., and Azziz, R. (2004) Role of a CYP17 polymorphism in the regulation of circulating dehydroepiandrosterone sulfate levels in women with polycystic ovary syndrome. Fertil. Steril. 82:973–975.CrossRefGoogle ScholarPubMed
Knochenhauer, E. S., Key, T. J., Kahsar-Miller, M., et al. (1998) Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J. Clin. Endocrinol. Metab. 83:3078–3082.Google ScholarPubMed
Komindr, S., Kurtz, B. R., Stevens, M. D., et al. (1986) Relative sensitivity and responsivity of serum cortisol and two adrenal androgens to alpha-adrenocorticotropin-(1–24) in normal and obese, nonhirsute, eumenorrheic women. J. Clin. Endocrinol. Metab. 63:860–864.CrossRefGoogle ScholarPubMed
Korth-Schutz, S., Levine, L. S., and New, M. I. (1976) Dehydroepiandrosterone sulfate (DS) levels, a rapid test for abnormal adrenal androgen secretion. J. Clin. Endocrinol. Metab. 42:1005–1013.CrossRefGoogle ScholarPubMed
Kristiansen, S. B., Endoh, A., Casson, P. R., Buster, J. E., and Hornsby, P. J. (1997) Induction of steroidogenic enzyme genes by insulin and IGF-1 in cultured adult human adrenocortical cells. Steroids 62:258–265.CrossRefGoogle ScholarPubMed
Kumar, A., Bartolucci, A. A., and Azziz, R. (2003) Prevalence of adrenal androgen excess in patients with the polycystic ovary syndrome (PCOS) using age-specific DHEAS levels adjusted for body mass and ethnicity. Fertil. Steril. 80:46.CrossRefGoogle Scholar
Kumar, A., Woods, K. S., Bartolucci, A., and Azziz, R. (2005) Prevalence of adrenal androgen excess in patients with the polycystic ovary syndrome (PCOS). Clin. Endocrinol. (Oxf.) 62:644–649.CrossRefGoogle Scholar
Labrie, Y., Couet, J., Simard, J., and Labrie, F. (1994) Multihormonal regulation of dehydroepiandrosterone sulfotransferase messenger ribonucleic acid levels in adult rat liver. Endocrinology 134:1693–1699.CrossRefGoogle ScholarPubMed
Lanzone, A., Fulghesu, A. M., Guido, M., et al. (1992) Differential androgen response to adrenocorticotropic hormone stimulation in polycystic ovarian syndrome: relationship with insulin secretion. Fertil. Steril. 58:296–301.CrossRefGoogle ScholarPubMed
Legrain, S., Massien, C., Lahlou, N., et al. (2000) Dehydroepiandrosterone replacement administration: pharmacokinetic and pharmacodynamic studies in healthy elderly subjects. J. Clin. Endocrinol. Metab. 85:3208–3217.Google ScholarPubMed
Legro, R. S., Kunselman, A. R., Dodson, W. C., and Dunaif, A. (1999) Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J. Clin. Endocrinol. Metab. 84:165–169.Google ScholarPubMed
Legro, R. S., Kunselman, A. R., Demers, L., et al. (2002) Elevated dehydroepiandrosterone sulfate levels as the reproductive phenotype in the brothers of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 87:2134–2138.CrossRefGoogle ScholarPubMed
Lobo, R. A., Paul, W. L., and Goebelsmann, U. (1981) Dehydroepiandrosterone sulfate as an indicator of adrenal androgen function. Obstet. Gynecol. 57:69–73.Google ScholarPubMed
Longcope, C. (1996) Dehydroepiandrosterone metabolism. J. Endocrinol. 150(Suppl): S125–S127.Google ScholarPubMed
Low, S. C., Chapman, K. E., Edwards, C. R., et al. (1994) Sexual dimorphism of hepatic 11beta-hydroxysteroid dehydrogenase in the rat: the role of growth hormone patterns. J. Endocrinol. 143:541–548.CrossRefGoogle ScholarPubMed
Lutfallah, C., Wang, W., Mason, J. I., et al. (2002) Newly proposed hormonal criteria via genotypic proof for type II 3beta-hydroxysteroid dehydrogenase deficiency. J. Clin. Endocrinol. Metab. 87:2611–2622.Google ScholarPubMed
Marca, A., Morgante, G., Paglia, T., et al. (1999) Effects of metformin on adrenal steroidogenesis in women with polycystic ovary syndrome. Fertil. Steril. 72:985–989.CrossRefGoogle ScholarPubMed
Marin, C. M, Bartolucci, A., and Azziz, R. (2003) Prevalence of insulin resistance in polycystic ovary syndrome (PCOS) patients using the homeostatic measurement assessment (HOMA-IR). Fertil. Steril. 80:274–275.CrossRefGoogle Scholar
Meikle, A. W., Stringham, J. D., Woodward, M. G., and Bishop, D. T. (1988) Heritability of variation of plasma cortisol levels. Metabolism 37:514–517.CrossRefGoogle ScholarPubMed
Mikulecky, M., Kreze, A., Putz, Z., and Moravcik, M. (1995) Daily variation of serum cortisol, 17-hydroxyprogesterone and five androgens in healthy women. Braz. J. Med. Biol. Res. 28:485–490.Google ScholarPubMed
Moran, C., Knochenhauer, E., Boots, L. R., and Azziz, R. (1999a) Adrenal androgen excess in hyperandrogenism: relation to age and body mass. Fertil. Steril. 71:671–674.CrossRefGoogle Scholar
Moran, C., Potter, H. D., Reyna, R., Boots, L. R., and Azziz, R. (1999b) Prevalence of 3beta-hydroxysteroid dehydrogenase-deficient nonclassic adrenal hyperplasia in hyperandrogenic women with adrenal androgen excess. Am. J. Obstet. Gynecol. 181:596–600.CrossRefGoogle Scholar
Moran, C., Reyna, R., Boots, L. S., and Azziz, R. (2004) Adrenocortical hyperresponsiveness to corticotropin in polycystic ovary syndrome patients with adrenal androgen excess. Fertil. Steril. 81:126–131.CrossRefGoogle ScholarPubMed
Nafziger, A. N., Bowlin, S. J., Jenkins, P. L., and Pearson, T. A. (1998) Longitudinal changes in dehydroepiandrosterone concentrations in men and women. J. Lab. Clin. Med. 131:316–323.CrossRefGoogle ScholarPubMed
Nestler, J. E., Clore, J. N., Strauss, J. F. III., and Blackard, W. G. (1987) The effects of hyperinsulinemia on serum testosterone, progesterone, dehydroepiandrosterone sulfate, and cortisol levels in normal women and in a woman with hyperandrogenism, insulin resistance, and acanthosis nigricans. J. Clin. Endocrinol. Metab. 64:180–184.CrossRefGoogle Scholar
Nestler, J. E., Usiskin, K. S., Barlascini, C. O., et al. (1989) Suppression of serum dehydroepiandrosterone sulfate levels by insulin: an evaluation of possible mechanisms. J. Clin. Endocrinol. Metab. 69:1040–1046.CrossRefGoogle ScholarPubMed
Nestler, J. E., Beer, N. A., Jakubowicz, D. J., and Beer, R. M. (1994) Effects of a reduction in circulating insulin by metformin on serum dehydroepiandrosterone sulfate in nondiabetic men. J. Clin. Endocrinol. Metab. 78:549–554.Google ScholarPubMed
Nieschlag, E., Loriaux, D. L., Ruder, H. J., et al. (1973) The secretion of dehydroepiandrosterone and dehydroepiandrosterone sulphate in man. J. Endocrinol. 57:123–134.CrossRefGoogle ScholarPubMed
Polderman, K. H., Gooren, L. J., and , Veen E. A. (1994) Testosterone administration increases adrenal response to adrenocorticotrophin. Clin. Endocrinol. (Oxf.) 40:595–601.CrossRefGoogle ScholarPubMed
Rice, T., Sprecher, D. L., Borecki, I. B., et al. (1993) The Cincinnati Myocardial Infarction and Hormone Family Study: family resemblance for dehydroepiandrosterone sulfate in control and myocardial infarction families. Metabolism 42:1284–1290.CrossRefGoogle ScholarPubMed
Rittmaster, R. S., Deshwal, N., and Lehman, L. (1993) The role of adrenal hyperandrogenism, insulin resistance, and obesity in the pathogenesis of polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 76:1295–1300.Google ScholarPubMed
Rodin, A., Thakkar, H., Taylor, N., and Clayton, R. (1994) Hyperandrogenism in polycystic ovary syndrome: evidence of dysregulation of 11beta-hydroxysteroid dehydrogenase. N. Engl. J. Med. 330:460–465.CrossRefGoogle ScholarPubMed
Rosenfeld, R. S., Rosenberg, B. J., Fukushima, D. K., and Hellman, L. (1975) 24-hour secretory pattern of dehydroisoandrosterone and dehydroisoandrosterone sulfate. J. Clin. Endocrinol. Metab. 40:850–855.CrossRefGoogle ScholarPubMed
Rotter, J. I., Wong, F. L., Lifrak, E. T., and Parker, L. N. (1985) A genetic component to the variation of dehydroepiandrosterone sulfate. Metabolism 34:731–736.CrossRefGoogle ScholarPubMed
Steinberger, E., Smith, K. D., and Rodriguez-Rigau, L. J. (1984) Testosterone, dehydroepiandrosterone, and dehydroepiandrosterone sulfate in hyperandrogenic women. J. Clin. Endocrinol. Metab. 59:471–477.CrossRefGoogle ScholarPubMed
Stewart, P. M. and Edwards, C. R. (1994) Hyperandrogenism in polycystic ovary syndrome. N. Engl. J. Med. 331:131–132.Google ScholarPubMed
Stewart, P. M., Shackleton, C. H., Beastall, G. H., and Edwards, C. R. (1990) 5alpha-reductase activity in polycystic ovary syndrome. Lancet 335:431–433.CrossRefGoogle Scholar
Stewart, P. M., Boulton, A., Kumar, S., Clark, P. M., and Shackleton, C. H. (1999) Cortisol metabolism in human obesity: impaired cortisone→cortisol conversion in subjects with central adiposity. J. Clin. Endocrinol. Metab. 84:1022–1027.Google ScholarPubMed
Szilagyi, A., Homoki, J., Bellyei, S., and Szabo, I. (2000) Hormonal and clinical effects of chronic gonadotropin-releasing hormone agonist treatment in polycystic ovary syndrome. Gynecol. Endocrinol. 14:337–341.CrossRefGoogle ScholarPubMed
The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group (2004a) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 81:19–25.
The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group (2004b) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 19:41–47.
Thomas, G., Frenoy, N., Legrain, S., et al. (1994) Serum dehydroepiandrosterone sulfate levels as an individual marker. J. Clin. Endocrinol. Metab. 79:1273–1276.Google ScholarPubMed
Tsilchorozidou, T., Honour, J. W., and Conway, G. S. (2003) Altered cortisol metabolism in polycystic ovary syndrome: insulin enhances 5alpha-reduction but not the elevated adrenal steroid production rates. J. Clin. Endocrinol. Metab. 88:5907–5913.CrossRefGoogle Scholar
Vermeulen A. (1983) Androgen secretion by adrenals and gonads. In Mahesh, V. B., and Greenblatt, R. M. (eds.) Hirsutism and Virilism, pp.17–34. Boston, MA: John Wright/PSG.Google Scholar
Vicennati, V. and Pasquali, R. (2000) Abnormalities of the hypothalamic–pituitary–adrenal axis in nondepressed women with abdominal obesity and relations with insulin resistance: evidence for a central and a peripheral alteration. J. Clin. Endocrinol. Metab. 85:4093–4098.CrossRefGoogle Scholar
Vicennati, V., Calzoni, F., Gambineri, A., et al. (1998) Secretion of major adrenal androgens following ACTH administration in obese women with different body fat distribution. Horm. Metab. Res. 30:133–136.CrossRefGoogle ScholarPubMed
Walker, B. R., Rodin, A., Taylor, N. F., and Clayton, R. N. (2000) Endogenous inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 do not explain abnormal cortisol metabolism in polycystic ovary syndrome. Clin. Endocrinol. (Oxf.) 52:77–80.CrossRefGoogle Scholar
Wang, D. Y., Bulbrook, R. D., Sneddon, A., and Hamilton, T. (1967) The metabolic clearance rates of dehydroepiandrosterone, testosterone and their sulphate esters in man, rat and rabbit. J. Endocrinol. 38:307–318.CrossRefGoogle ScholarPubMed
Wild, R. A., Umstot, E. S., Andersen, R. N., Ranney, G. B., and Givens, J. R. (1983) Androgen parameters and their correlation with body weight in one hundred thirty-eight women thought to have hyperandrogenism. Am. J. Obstet. Gynecol. 146:602–606.CrossRefGoogle ScholarPubMed
Witchel, S. F., Kahsar-Miller, M., Aston, C. E., White, C., and Azziz, R. (2005) Prevalence of CYP21 mutations and0 IRS-1 variants among women with polycystic ovary syndrome and adrenal androgen excess. Fertil. Steril. 83:371–375.CrossRefGoogle Scholar
Yamaguchi, Y., Tanaka, S., Yamakawa, T., et al. (1998) Reduced serum dehydroepiandrosterone levels in diabetic patients with hyperinsulinaemia. Clin. Endocrinol. (Oxf.) 49:377–383.CrossRefGoogle ScholarPubMed
Yildiz, B. O., Woods, K. S., Stanczyk, F., Bartolucci, A., and Azziz, R. (2004) Stability of adrenocortical steroidogenesis over time in healthy women and women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 89:5558–5562.CrossRefGoogle ScholarPubMed
Zawadzki J. K. and Dunaif A. (1992) Diagnostic criteria for polycystic ovary syndrome. In Dunaif, A., Givens, J. R., Haseltine, F., and Merriam, G. R. (eds.) Polycystic Ovary Syndrome, pp. 377–384. Boston, MA: Blackwell Scientific Publications.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×