Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-05T18:29:21.369Z Has data issue: false hasContentIssue false

14 - Theileria: life cycle stages associated with the ixodid tick vector

Published online by Cambridge University Press:  21 August 2009

R. Bishop
Affiliation:
International Livestock Research Institute (ILRI) P.O. Box 30709 Nairobi 00100 Kenya
A. Musoke
Affiliation:
Onderstepoort Veterinary Institute Private Bag X5 Onderstepoort 0110 South Africa
R. Skilton
Affiliation:
International Livestock Research Institute (ILRI) P.O. Box 30709 Nairobi 00100 Kenya
S. Morzaria
Affiliation:
Food and Agriculture Organization (FAO) 39 Phra Atit Road Bangkok 10200 Thailand
M. Gardner
Affiliation:
Seattle Biomedical Research Institute 307 Westlake Ave. N. Suite 500 Seattle WA 98109 USA
V. Nene
Affiliation:
The Institute for Genomic Research (TIGR) 9712 Medical Center Drive Rockville MD 20850 USA
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

INTRODUCTION

The genus Theileria comprises tick-transmitted sporozoan protozoa that are the causative agents of a variety of disease syndromes in domestic and wild ruminants, and are collectively responsible for economic losses amounting to hundreds of millions of dollars annually in sub-Saharan Africa and Asia. Theileria are unique among protozoa, in that certain species are capable of immortalizing either mammalian lymphocytes, or cells of the monocyte/macrophage lineage that they infect. Theileria has been included within a subphylum designated the Apicomplexa, based on the common possession of an apical complex containing secretory organelles involved in invasion, or establishment, in the cells of their mammalian and invertebrate hosts. However the evolutionary and functional equivalence of the apical complex between different genera and hence the taxonomic validity of the Apicomplexa remains unclear. Analysis of 18S ribosomal RNA gene sequences demonstrates that the genus Theileria is phylogenetically most closely related to Babesia, a genus of tick-borne protozoan infective to the red cells of mammals including domestic livestock, and more distantly to the genus Plasmodium which causes malaria in humans and other species of vertebrates (Allsopp et al., 1994). There are similarities, but also significant differences, in features of the life cycle, genome organization and mammalian host immune responses to infection between Theileria and Plasmodium.

Economically important Theileria species that infect cattle and small ruminants are transmitted by ixodid ticks of the genera Rhipicephalus, Amblyomma, Hyalomma and Haemaphysalis. Theileria species infective to domestic ruminants are summarized in Table 14.1.

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 308 - 324
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allsopp, B., Carrington, M., Bayliss, M. T., et al. (1989). Improved characterization of Theileria parva isolates using the polymerase chain reaction and oligonucleotide probes. Molecular and Biochemical Parasitology 35, 137–148.CrossRefGoogle ScholarPubMed
Allsopp, B., Baylis, H. A., Allsopp, M. T. E. P., et al. (1993). Discrimination between six species of Theileria using oligonucleotide probes which detect small ribosomal RNA sequences. Parasitology 107, 157–165.CrossRefGoogle ScholarPubMed
Allsopp, M. T. E. P., Cavalier-Smith, T., De, Waal D. T. & Allsopp, B. A. (1994). Phylogeny and evolution of the piroplasms. Parasitology 108, 147–152.CrossRefGoogle ScholarPubMed
Andrews, N. W. & Webster, P. (1991). Phagolysomal escape by intracellular pathogens. Parasitology Today 7, 335–340.CrossRefGoogle Scholar
Awadalla, P., Walliker, D., Babiker, H. & Mackinnon, M. (2001). The question of Plasmodium falciparum population structure. Trends in Parasitology 17, 351–353.CrossRefGoogle ScholarPubMed
Babiker, H., Ranford-Cartwright, L., Currie, D., et al. (1994). Random mating in a natural population of the malaria parasite Plasmodium falciparum. Parasitology 109, 413–421.CrossRefGoogle Scholar
Baldwin, C. L., Black, S. J., Brown, W. C., et al. (1988). Bovine T cells, B cells, and null cells are transformed by the protozoan parasite Theileria parva. Infection and Immunity 56, 462–467.Google Scholar
Baylis, H. A., Sohal, S. K., Carrington, M., Bishop, R. P. & Allsopp, B. A. (1991). An unusual repetitive gene family in Theileria parva which is stage-specifically transcribed. Molecular and Biochemical Parasitology 49, 133–142.CrossRefGoogle ScholarPubMed
Bergman, D. K., Palmer, M. J., Caimano, M. J., Radolf, J. D. & Wikel, S. K. (2000). Isolation and molecular cloning of a secreted immunosuppressant protein from Dermacentor andersoni salivary glands. Journal of Parasitology 86, 516–525.CrossRefGoogle Scholar
Bishop, R. P., Sohanpal, B. K., Allsopp, B. A., et al. (1993). Detection of polymorphisms among Theileria parva stocks using repetitive, telomeric and ribosomal DNA probes and anti-schizont monoclonal antibodies. Parasitology 107, 19–31.CrossRefGoogle ScholarPubMed
Bishop, R. P., Sohanpal, B. K., Morzaria, S. P., et al. (1994). Discrimination between Theileria parva and T. taurotragi in the salivary glands of Rhipicephalus appendiculatus ticks using oligonucleotides homologous to ribosomal RNA sequences. Parasitology Research 80, 259–261.CrossRefGoogle Scholar
Bishop, R., Musoke, A., Morzaria, S., Sohanpal, B. & Gobright, E. (1997). Concerted evolution at a multicopy locus in the protozoan parasite Theileria parva: extreme divergence of potential protein coding sequences. Molecular and Cellular Biology 17, 1666–1673.CrossRefGoogle Scholar
Bishop, R., Geysen, D., Skilton, R., et al. (2002 a). Genomic polymorphism, sexual recombination and molecular epidemiology of Theileria parva. In World Class Parasites, vol. 3, Theileria, eds. Dobbelaere, D. A. E. & Mckeever, D. J., pp. 23–40. Amsterdam: Kluwer Academic.Google Scholar
Bishop, R., Lambson, B., Wells, C., et al. (2002 b). A cement protein of the tick Rhipicephalus appendiculatus, located in the secretory e cell granules of the type III salivary gland acini, induces strong antibody responses in cattle. International Journal for Parasitology 32, 833–842.CrossRefGoogle Scholar
Bishop, R., Nene, V., Staeyert, J., et al. (2003). Immunity to East Coast fever induced by a polypeptide fragment of the major surface coat of Theileria parva sporozoites. Vaccine 21, 1205–1212.CrossRefGoogle ScholarPubMed
Bishop, R., Shah, T., Pelle, R., et al. (2005). Analysis of the transcriptome of the protozoan Theileria parva using MPSS reveals that the majority of genes are transcriptionally active in the schizont stage. Nucleic Acids Research 33, 5503–5511.CrossRefGoogle ScholarPubMed
Blouin, M. S., Yowell, C. A., Courteney, C. H. & Dame, J. B. (1995). Host movement and the genetic structure of populations of parasitic nematodes. Genetics 141, 1007–1014.Google ScholarPubMed
Borst, P., Bitter, W., McCulloch, R., Leuwen, F. & Rudenko, G. (1995). Antigenic variation in malaria. Cell 82, 1–4.CrossRefGoogle ScholarPubMed
Boulter, N. & Hall, R. (1999). Immunity and vaccine development against bovine theilerioses. Advances in Parasitology 44, 41–97.CrossRefGoogle Scholar
Buscher, G. & Otim, B. (1986). Quantitative studies on Theileria parva in the salivary glands of Rhipicephalus appendiculatus adults: quantitation and prediction of infection. International Journal for Parasitology 16, 93–100.CrossRefGoogle Scholar
Carrington, M., Allsopp, B., Baylis, H., et al. (1995). Lymphoproliferation caused by Theileria parva and Theileria annulata. In Molecular Approaches to Parasitology, eds. Boothroyd, J. C. & Komuniecki, R., pp. 43–56. New York: Wiley–Liss.Google Scholar
Chae, J., Levy, M., Hunt, J., et al. (1999). Theileria sp. infections associated with bovine fatalities in the United States confirmed by small-subunit rRNA gene analyses of blood and tick samples. Journal of Clinical Microbiology 37, 3037–3040.Google ScholarPubMed
Conrad, P. A., Stagg, D. A., Grootenhuis, J. G., et al. (1987). Isolation of Theileria parasites from African buffalo (Syncercus caffer) and characterization with anti-schizont monoclonal antibodies. Parasitology 94, 413–423.CrossRefGoogle Scholar
Day, K. P., Koella, J. C., Nee, S., Gupta, S. & Read, A. F. (1992). Population genetics and dynamics of Plasmodium falciparum: an ecological view. Parasitology 104, S35–S52.CrossRefGoogle Scholar
Dimopoulos, G. (2003). Insect immunity and its implication in mosquito–malaria interactions. Cellular Microbiology 5, 3–14.CrossRefGoogle ScholarPubMed
Dobbelaere, D. & Heussler, V. (1999). Transformation of leukocytes by Theileria parva and T. annulata. Annual Review of Microbiology 53, 1–42.CrossRefGoogle ScholarPubMed
Dobbelaere, D. & Kaenzi, P. (2004). The strategies of the Theileria parasite: a new twist in host–parasite interactions. Current Opinion in Immunology 16, 524–530.CrossRefGoogle Scholar
Dobbelaere, D. A. E., Spooner, P. R., Barry, W. C. & Irvin, A. D. (1984). Monoclonal antibodies neutralize the sporozoite stage of different Theileria parva stocks. Parasite Immunology 6, 361–370.CrossRefGoogle Scholar
Ebel, T., Middleton, J. F. S., Frisch, A. & Lipp, J. (1997). Characterization of a secretory type Theileria parva glutaredoxin homologue identified by novel screening procedures. Journal of Biological Chemistry 272, 3042–3048.CrossRefGoogle Scholar
Fawcett, D. W., Doxsey, S. & Buscher, G. (1982). Salivary glands of the tick vector of East Coast fever. III. Ultrastructure of sporogony inTheileria parva. Tissue Cell 14, 183–206.CrossRefGoogle Scholar
Gardner, M. J., Bishop, R., Shah, T., Villiers, E., Carlton, J. M., Hall, N., Ren, Q., Paulsen, I. T., Pain, A., Berriman, M., Wilson, R. J. M., Sato, Shigeharu., Ralph, S. A., Mann, D. J., Xiong, Zikai., Shallom, S. J., Weidman, J., Jiang, L., Lynn, J., Weaver, B., Shoaibi, A., Domingo, A. R., Wasawo, D., Crabtree, J., Wortman, J. R., Hass, B., Angiuoli, S. V., Creasy, T. H., Lu, C., Suh, B., Silva, J., Utterback, T. R., Feldblyum, T. V., Pertea, M., Allen, J., Nierman, W. C., Taracha, E., Salzberg, S. L., White, O. R., Fitzhugh, H. A., Morzaria, S., Venter, J. C., Fraser, C. M. & Nene, V. (2005). Genome sequences of Theileria parva, a bovine pathogen causing a lymphoproliferative disease. Science 309, 134–137.CrossRefGoogle Scholar
Gauer, M., Mackenstedt, U., Mehlhorn, H., et al. (1995). DNA measurements and ploidy determination of developmental stages in the life cycles of Theileria annulata and T. parva. Parasitology Research 81, 565–574.CrossRefGoogle ScholarPubMed
Heussler, V. T. (2002). Theileria survival strategies and host cell transformation. In World Class Parasites, vol. 3, Theileria, eds. Dobbelaere, D. A. E. & McKeever, D. J., pp. 69–84. Amsterdam: Kluwer Academic.Google Scholar
Iams, K. P., Young, J. R., Nene, V., et al. (1990). Characterization of the gene encoding a 104-kilodalton microneme-rhoptry protein of Theileria parva. Molecular and Biochemical Parasitology 39, 47–60.CrossRefGoogle Scholar
Irvin, A. D. & Morrison, W. I. (1987). Immunopathology, immunology and immunoprophylaxis of Theileria Infections. In Immune Responses in Parasitic Infections, ed. Soulsby, E. J. L., pp. 223–274. Boca Raton, FL: CRC Press.Google Scholar
Irvin, A. D., Ocama, J. G. & Spooner, P. R. (1982). Cycle of bovine lymphoblastoid cells parasitized by Theileria parva. Research in Veterinary Science 33, 298–304.Google Scholar
Janoo, R., Musoke, A., Wells, C. & Bishop, R. P. (1999). A Rab 1 homologue with a novel isoprenylation signal provides insight into the secretory pathway of Theileria parva. Molecular and Biochemical Parasitology 102, 131–143.CrossRefGoogle ScholarPubMed
Kaba, S. A., Nene, V., Musoke, A. J., Vlak, J. M. & van-Oers, M. M. (2002). Fusion of green fluorescent protein improves expression levels of Theileria parva sporozoite surface antigen p67 in insect cells. Parasitology 125, 497–505.CrossRefGoogle ScholarPubMed
Katzer, F., Carrington, M. & Knight, P. (1994). Polymorphism of SPAG-1, a candidate antigen for inclusion in a sub-unit vaccine against Theileria annulata. Molecular and Biochemical Parasitology 67, 1–10.CrossRefGoogle Scholar
Knight, P. A., Musoke, A. J., Gachanja, J. N., et al. (1996). Conservation of neutralizing determinants between the sporozoite surface antigens of Theileria annulata and Theileria parva. Experimental Parasitology 82, 229–241.CrossRefGoogle ScholarPubMed
Labuda, M., Trimnell, A. R., Lickova, M., et al. (2006). An antivector vaccine protects against a lethal vector-borne pathogen. PLoS Pathogens 2, 001–009.CrossRefGoogle ScholarPubMed
Lambson, B., Nene, V., Obura, M., et al. (2005). Identification of candidate sialome components expressed in tick salivary glands using secretion signal complementation in mammalian cells. Insect Molecular Biology 14, 403–414.CrossRefGoogle ScholarPubMed
McCutchan, T., Li, J., McConkey, G., Roegers, M. & Waters, A. (1995). The cytoplasmic RNAs of Plasmodium spp. Parasitology Today 11, 134–138.CrossRefGoogle ScholarPubMed
Medley, G. F., Perry, B. D. & Young, A. S. (1993). Preliminary analysis of the transmission dynamics of Theileria parva in eastern Africa. Parasitology 106, 251–264.CrossRefGoogle ScholarPubMed
Mehlhorn, H. & Schein, E. (1984). The piroplasms: life cycle and sexual stages. Advances in Parasitology 23, 37–103.CrossRefGoogle ScholarPubMed
Morzaria, S. P., Young, J. R., Spooner, P. R., Dolan, T. T. & Bishop, R. P. (1993). Theileria parva: a restriction map and genetic recombination. In Genome Analysis of Protozoan Parasites, ed. Mozaria, S. P., pp. 67–73. Nairobi: International Laboratory for Research on Animal Diseases.Google Scholar
Mukhebi, A. W., Perry, B. D. & Kruska, R. (1992). Estimated economics of theileriosis control in Africa. Preventive Veterinary Medicine 12, 73–85.CrossRefGoogle Scholar
Musoke, A. J., Nantulya, V. M., Rurangira, F. R. & Buscher, G. (1984). Evidence for a common protective antigenic determinant on sporozoites of several Theileria parva strains. Immunology 52, 231–238.Google ScholarPubMed
Musoke, A. J., Morzaria, S., Nkonge, C., Jones, E. & Nene, V. (1992). A recombinant sporozoite surface antigen of Theileria parva induces protection in cattle. Proceedings of the National Academy of Sciences of the USA 89, 514–518.CrossRefGoogle ScholarPubMed
Musoke, A., Rowlands, J., Nene, V., et al. (2005). Subunit vaccines based on the p67 major surface protein of Theileria parva sporozoites reduce severity of infection derived from field tick challenge. Vaccine 23, 3084–3095.CrossRefGoogle Scholar
Nene, V., Iams, K. P., Gobright, E. & Musoke, A. J. (1992). Characterization of the gene encoding a candidate vaccine antigen of Theileria parva sporozoites. Molecular and Biochemical Parasitology 51, 17–28.CrossRefGoogle Scholar
Nene, V., Inumaru, S., McKeever, D. J., et al. (1995). Characterization of an insect cell-derived Theileria parva sporozoite vaccine antigen and immunogenicity in cattle. Infection and Immunity 63, 503–508.Google ScholarPubMed
Nene, V., Musoke, A., Gobright, E. & Morzaria, S. (1996). Conservation of the sporozoite p67 vaccine antigen in cattle-derived Theileria parva stocks with different cross-immunity profiles. Infection and Immunity 64, 2056–2061.Google ScholarPubMed
Nene, V., Gobright, E., Bishop, R., Morzaria, S. & Musoke, A. (1999). Linear peptide specificity of antibody responses to p67 and sequence diversity of neutralizing epitopes: implications for a Theileria parva vaccine. Infection and Immunity 67, 1261–1266.Google ScholarPubMed
Nene, V., Lee, D., Quackenbush, J., et al. (2002). AvGI, an index of genes transcribed in the salivary glands of the ixodid tickAmblyomma variegatum. International Journal for Parasitology 32, 1447–1456.CrossRefGoogle ScholarPubMed
Nene, V., Lee, D., K'anga, S., et al. (2004). Genes transcribed in the salivary glands of female Rhipicephalus appendiculatus ticks infected with Theileria parva. Insect Biochemistry and Molecular Biology 34, 1117–1118.CrossRefGoogle ScholarPubMed
Ngumi, P. N., Lesan, A. C., Williamson, S. M., et al. (1994). Isolation and preliminary characterization of a previously unidentified Theileria parasite of cattle in Kenya. Research in Veterinary Science 57, 1–9.CrossRefGoogle Scholar
Norval, R. A. I., Perry, B. D. & Young, A. S. (1992). The Epidemiology of Theileriosis in Africa. London: Academic Press.Google Scholar
Nuttall, P. A., Trimnell, A. R., Kazimirova, M. & Labuda, M. (2006). Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases. Parasite Immunology 28, 155–163.CrossRefGoogle ScholarPubMed
Ochanda, H., Young, A. S., Wells, C., Medley, G. F. & Perry, B. D. (1996). Comparison of the transmission of Theileria parva between different instars of Rhipicephalus appendiculatus. Parasitology 113, 243–253.CrossRefGoogle ScholarPubMed
Ochanda, H., Young, A. S., Medley, G. F. & Perry, B. D. (1998). Vector competence of seven rhipicephalid tick stocks in transmitting two Theileria parva parasite stocks from Kenya and Zimbabwe. Parasitology 116, 539–545.CrossRefGoogle Scholar
Odongo, D., Oura, C. A. L., Spooner, P., et al. (2006). Linkage disequilibrium and genetic diversity at mini- and micro-satellite loci of Theileria parva isolated from cattle in three regions of Kenya. International Journal for Parasitology 36, 937–946.CrossRefGoogle ScholarPubMed
Oura, C. A. L., Odongo, D., Lubega, G., et al. (2003). A panel of microsatellite and minisatellite markers for the characterization of field isolates of Theileria parva. International Journal for Parasitology 33, 1641–1653.CrossRefGoogle Scholar
Oura, C. A. L., Bishop, R., Lubega, G. W. & Tait, A. (2004). Application of a reverse line blot to the study of haemoparasites in cattle in Uganda. International Journal for Parasitology 34, 603–613.CrossRefGoogle Scholar
Pain, A., Renauld, H., Berriman, M., Murphy, L., Yeats, C. A., Weir, W., Kerhornou, A., Aslett, M., Bishop, R., Bouchier, C., Cochet, M., Culson, R. M. R., Cronin, A., Villiers, E., Fraser, A., Fosker, N., Gardner, M., Goble, A., Griffiths-Jones, S., Harris, D. E., Katzer, F., Larke, N., Lord, A., Maser, P., Mckellar, S., Mooney, P., Morton, F., Nene, V., Neil, O' S., Price, C., Quail, M. A., Rabbinowitsch, E., Rawlings, N. D., Rutter, S., Saunders, D., Seeger, K., Shah, T., Squares, R., Squares, S., Tivey, A., Walker, A. R., Woodward, J., Dobbelaere, D. A. E., Langsley, G., Rajandream, M. A., McKeever, D., Shiels, B., Tait, A., Barrell, B. & Hall, N. (2005). The genome of the host-cell transforming parasite Theileria annulata and a comparison withT. parva. Science 309, 131–133.Google Scholar
Paul, R. E. L. & Day, K. P. (1998). Mating patterns of Plasmodium falciparum. Parasitology Today 14, 197–202.CrossRefGoogle ScholarPubMed
Paul, R., Packer, M., Walmsley, M., et al. (1995). Mating patterns in malaria parasite populations of Papua New Guinea. Science 269, 1709–1711.CrossRefGoogle ScholarPubMed
Radley, D. E., Brown, C. G. D., Burridge, M. P., et al. (1975). East Coast fever. I. Chemoprophylactic immunization of cattle against Theileria parva (Muguga) and five theilerial strains. Veterinary Parasitology 1, 35–41.CrossRefGoogle Scholar
Schnittger, L., Hong, Y., Jianxun, L., et al. (2000). Phylogenetic analysis by rRNA comparison of the highly pathogenic sheep-infecting parasites Theileria lestoquardi and a Theileria species identified in China. Annals of New York Academy of Sciences 916, 271–275.CrossRefGoogle Scholar
Shaw, M. K. (1997). The same but different: the biology of Theileria sporozoite entry into bovine cells. International Journal for Parasitology 27, 457–474.CrossRefGoogle ScholarPubMed
Shaw, M. K. (2002). Theileria development and host cell invasion. In World Class Parasites, vol. 3, Theileria, eds. Dobbelaere, D. A. E. & McKeever, D. J., pp. 1–22. Amsterdam: Kluwer Academic.Google Scholar
Shaw, M. K. & Tilney, L. G. (1992). How individual cells develop from a syncytium: merogony in Theileria parva (Apicomplexa). Journal of Cell Science 101, 109–123.Google Scholar
Shaw, M. K. & Tilney, L. G. (1995). The entry of Theileria parva merozoites into bovine erythrocytes occurs by a process similar to sporozoite invasion of lymphocytes. Parasitology 111, 455–461.CrossRefGoogle ScholarPubMed
Shaw, M. K. & Young, A. S. (1994). The biology of Theileria species in ixodid ticks in relation to parasite transmission. Advances in Disease Vector Research 10, 23–63.CrossRefGoogle Scholar
Shaw, M. K., Tilney, L. G. & Musoke, A. J. (1991). The entry of Theileria parva sporozoites into bovine lymphocytes: evidence for MHC Class I involvement. Journal of Cell Biology 113, 87–101.CrossRefGoogle ScholarPubMed
Shaw, M. K., Tilney, L. G. & McKeever, D. J. (1993). Tick salivary gland extract and interlukeukin-2 stimulation enhance susceptibility of lymphocytes to infection by Theileria parva sporozoites. Infection and Immunity 61, 1486–1495.Google ScholarPubMed
Shiels, B., Langsley, G., Weir, W., et al. (2006). Alteration of host cell phenotype by Theileria annulata and Theileria parva: mining for manipulators in the parasite genomes. International Journal for Parasitology 36, 9–12.CrossRefGoogle ScholarPubMed
Sinden, R. E., Butcher, G. A., Billker, O. & Fleck, S. L. (1996). Regulation of infectivity of Plasmodium to the mosquito vector. Advances in Parasitology 38, 53–117.CrossRefGoogle ScholarPubMed
Skilton, R. A., Bishop, R. P., Wells, C. W., et al. (1998). Cloning and characterisation of a 150 kDa microsphere antigen of Theileria parva that is immunologically cross-reactive with the polymorphic immunodominant molecule (PIM). Parasitology 117, 321–330.CrossRefGoogle Scholar
Skilton, R. A., Musoke, A. J., Nene, V., et al. (2000). Molecular characterization of a Theileria lestoquardi gene encoding a candidate sporozoite vaccine antigen. Molecular and Biochemical Parasitology 107, 309–314.CrossRefGoogle Scholar
Skilton, R. A., Bishop, R. P., Katende, J. M., Mwaura, S. & Morzaria, S. P. (2002). The persistence of Theileria parva infection in cattle immunized using two stocks which differ in their ability to induce a carrier state: analysis using a novel blood spot PCR assay. Parasitology 124, 265–276.CrossRefGoogle ScholarPubMed
Stagg, D. A., Young, A. S., Leitch, B. L., Grootenhuis, J. G. & Dolan, T. T. (1983) Infection of mammalian cells with Theileria species. Parasitology 86, 243–254.CrossRefGoogle ScholarPubMed
Swan, D. G., Phillips, K., Tait, A. & Shiels, B. R. (1999). Evidence for localization of a Theileria parasite AT hook DNA-binding protein to the nucleus of immortalized bovine host cells. Molecular and Biochemical Parasitology 101, 117–129.CrossRefGoogle Scholar
Tatchell, R. J. (1987). Tick control in the context of ECF immunization. Parasitology Today 3, 7–10.CrossRefGoogle ScholarPubMed
Trimnell, A. R., Hails, R. S. & Nuttall, P. A. (2002). Dual action ectoparasite vaccine targeting ‘exposed’ and ‘concealed’ antigens. Vaccine 20, 3360–3568.CrossRefGoogle ScholarPubMed
Walker, A. R., Latif, A. A., Morzaria, S. P. & Jongehan, F. (1983). Natural infection rate of Hyalomma anatolicum with Theileria in Sudan. Research in Veterinary Science 35, 87–90.Google Scholar
Watt, D. M., Walker, A. R., Lamza, K. A. & Ambrose, N. C. (2001). Tick–Theileria interactions in response to immune activation of the vector. Experimental Parasitology 97, 89–94.CrossRefGoogle ScholarPubMed
Willadsen, P. (2004). Anti-tick vaccines. Parasitology 129, S367–S387.CrossRef
Wilson, R. J. M. & Williamson, D. H. (1997). Extrachromosomal DNA in the Apicomplexa. Microbiology and Molecular Biology Reviews 61, 1–16.Google ScholarPubMed
Young, A. S. & Leitch, B. L. (1982). Epidemiology of East Coast fever: some effects of temperature on the development of Theileria parva in the tick vector, Rhipicephalus appendiculatus. Parasitology 83, 199–211.CrossRefGoogle Scholar
Young, A. S., Leitch, B. L., Newson, R. L. & Cunningham, P. M. (1986). Maintenance of Theileria parva parva infections in an endemic area of Kenya. Parasitology 93, 9–16.CrossRefGoogle Scholar
Young, A. S., Dolan, T. T., Mwakima, F. N., et al. (1995). Estimation of heritability of susceptibility to infection with Theileria parva in the tick Rhipicephalus appendiculatus. Parasitology 111, 31–38.CrossRefGoogle ScholarPubMed
Young, A. S., Dolan, T. T., Morzaria, S. P., et al. (1996). Factors influencing infections in Rhipicephalus appendiculatus ticks fed on cattle infected with Theileria parva. Parasitology 113, 255–266.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Theileria: life cycle stages associated with the ixodid tick vector
    • By R. Bishop, International Livestock Research Institute (ILRI) P.O. Box 30709 Nairobi 00100 Kenya, A. Musoke, Onderstepoort Veterinary Institute Private Bag X5 Onderstepoort 0110 South Africa, R. Skilton, International Livestock Research Institute (ILRI) P.O. Box 30709 Nairobi 00100 Kenya, S. Morzaria, Food and Agriculture Organization (FAO) 39 Phra Atit Road Bangkok 10200 Thailand, M. Gardner, Seattle Biomedical Research Institute 307 Westlake Ave. N. Suite 500 Seattle WA 98109 USA, V. Nene, The Institute for Genomic Research (TIGR) 9712 Medical Center Drive Rockville MD 20850 USA
  • Edited by Alan S. Bowman, University of Aberdeen, Patricia A. Nuttall
  • Book: Ticks
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511551802.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Theileria: life cycle stages associated with the ixodid tick vector
    • By R. Bishop, International Livestock Research Institute (ILRI) P.O. Box 30709 Nairobi 00100 Kenya, A. Musoke, Onderstepoort Veterinary Institute Private Bag X5 Onderstepoort 0110 South Africa, R. Skilton, International Livestock Research Institute (ILRI) P.O. Box 30709 Nairobi 00100 Kenya, S. Morzaria, Food and Agriculture Organization (FAO) 39 Phra Atit Road Bangkok 10200 Thailand, M. Gardner, Seattle Biomedical Research Institute 307 Westlake Ave. N. Suite 500 Seattle WA 98109 USA, V. Nene, The Institute for Genomic Research (TIGR) 9712 Medical Center Drive Rockville MD 20850 USA
  • Edited by Alan S. Bowman, University of Aberdeen, Patricia A. Nuttall
  • Book: Ticks
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511551802.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Theileria: life cycle stages associated with the ixodid tick vector
    • By R. Bishop, International Livestock Research Institute (ILRI) P.O. Box 30709 Nairobi 00100 Kenya, A. Musoke, Onderstepoort Veterinary Institute Private Bag X5 Onderstepoort 0110 South Africa, R. Skilton, International Livestock Research Institute (ILRI) P.O. Box 30709 Nairobi 00100 Kenya, S. Morzaria, Food and Agriculture Organization (FAO) 39 Phra Atit Road Bangkok 10200 Thailand, M. Gardner, Seattle Biomedical Research Institute 307 Westlake Ave. N. Suite 500 Seattle WA 98109 USA, V. Nene, The Institute for Genomic Research (TIGR) 9712 Medical Center Drive Rockville MD 20850 USA
  • Edited by Alan S. Bowman, University of Aberdeen, Patricia A. Nuttall
  • Book: Ticks
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511551802.015
Available formats
×