Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-07T07:32:31.090Z Has data issue: false hasContentIssue false

Chapter 4 - Volcanoes and the geological cycle

Published online by Cambridge University Press:  14 November 2009

Ray A. F. Cas
Affiliation:
School of Geosciences, Monash University, P.O. Box 28E, Victoria, 3800, Australia
Joan Marti
Affiliation:
Institut de Ciències de la Terra 'Jaume Almera', Barcelona
Gerald G. J. Ernst
Affiliation:
Universiteit Gent, Belgium
Get access

Summary

Introduction

Volcanoes are one of the most exciting landforms on Earth today, and frequent volcanic eruptions around the world every year are a constant reminder of the dynamic nature of the Earth as a planet. With many well-documented major volcanic eruptions in the last two decades (e.g., the eruptions of Mount St. Helens in 1980 in the northwestern United States, El Chichón in 1982 in Mexico, Galungung in 1982 in Indonesia, Hawaii from 1992 to present, Mt. Pinatubo in 1991 in the Philippines, Mt. Unzen from 1991 to 1994 in Japan, and Soufriere Hills, Montserrat from 1996 to present), it may appear that the frequency of eruptions is increasing and that volcanic eruptions are a relatively recent or increasingly significant phenomenon in the Earth's history. However, the remains of ancient volcanic rock successions around the world indicate that volcanic activity has been a fundamental aspect of the evolution of our planet throughout its history. The apparent increase in the frequency of eruptive activity in recent times is probably largely an artefact of improved surveillance opportunities, technology, and media coverage. In this chapter the significance of volcanic activity in the history and evolution of the Earth will be examined. In particular, we will explore how volcanism plays a fundamental role in the geological cycle and the dynamic mechanism that drives the geological cycle, plate tectonics. We will also explore how far back in time modern plate tectonics can be recognized as the driving force for the geological cycle and associated volcanism.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalto, K. 1989. The Franciscan complex of northernmost California: sedimentation and tectonics. Geological Society of London Special Publication, 10, 419–432CrossRefGoogle Scholar
Alvarez, L. W., Alvarez, W., Asaro, F., et al. 1980. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science, 208, 1095–1108CrossRefGoogle ScholarPubMed
Appel, P. W. U., Fedo, C. M., Moorbath, S., et al. 1998. Well preserved volcanic and sedimentary features from a low-strain domain in the 3.7–3.8 Ga Isua Greenstone Belt, West Greenland. Terra Nova, 10, 57–62CrossRefGoogle Scholar
Arndt, N. T. 1994. Archean komatiites. In , K. C. Condie (ed.) Developments in Precambrian Geology, vol. 11, Archean Crustal Evolution. Amsterdam, Elsevier, pp. 11–44Google Scholar
Bachman, S. B. 1982. The coastal belt of the Franciscan: youngest phase of northern California subduction. Geological Society of London Special Publication, 10, 401–418CrossRefGoogle Scholar
Barley, M. E., Krapez, B., Groves, D. I., et al. 1998. The Late Archaean bonanza: metallogenic and environmental consequences of the interaction between mantle plumes, lithospheric tectonics and global cyclicity. Precambrian Geology, 91, 65–90CrossRefGoogle Scholar
Bickle, M. J., Nisbet, E. G., and Martin, A. 1994. Archaean greenstone belts are not oceanic crust. Journal of Geology, 102, 121–138CrossRefGoogle Scholar
Bleeker, W. 2002. Archean tectonics: a review, with illustrations from the Slave Craton. Geological Society of London Special Publication, 199, 151–181CrossRefGoogle Scholar
Bowring, S. A., Williams, I. S., and Compston, W. 1989. 3.96 Ga gneisses from the Slave Province, Northwest Territories, Canada. Geology, 17, 971–9752.3.CO;2>CrossRefGoogle Scholar
Brown, J., Colling, A., Park, D., et al. 1989. The Ocean Basins: Their Structure and Evolution. New York, Pergamon PressGoogle Scholar
Byerly, G. R., Lowe, D. R., and Walsh, M. M. 1986. Stromatolites from the 3300–3500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature, 319, 489–491CrossRefGoogle Scholar
Campbell, R. I. and Hill, R. I. 1988. A two stage model for the formation of the granite-greenstone terrains of the Kalgoorlie–Norseman area, Western Australia. Earth and Planetary Science Letters, 90, 117–130CrossRefGoogle Scholar
Campbell, R. I., Griffiths, R. W., and Hill, R. I. 1989. Melting in an Archaean mantle plume: heads it's basalts, tails it's komatiites. Nature, 339, 697–699CrossRefGoogle Scholar
Cas, R. A. F. 1983. A Review of the Palaeogeographic and Tectonic Evolution of the Palaeozoic Lachlan Fold Belt, Southeastern Australia, Special Publication no. 10. Sydney, Australia, Geological Society of AustraliaGoogle Scholar
Cas, R. A. F. 1989. Physical volcanology in Australian and New Zealand Cainozoic intraplate terrains. In , R. W. Johnson (ed.) Intraplate Volcanism in Australia and New Zealand. Cambridge, UK, Cambridge University Press, pp. 55–85Google Scholar
Cas, R. A. F. and Wright, J. V. 1987. Volcanic Successions: Modern and Ancient. London, Allen and UnwinCrossRefGoogle Scholar
Chappell, B. W., White, A. J. R., and Hine, R. 1988. Granite provinces and basement terranes in the Lachlan Fold Belt, southeastern Australia. Australian Journal of Earth Sciences, 35, 505–524CrossRefGoogle Scholar
Chardon, D., Choukrone, P., and Jayananda, M. 1998. Sinking of the Dharwar Basin (South India): implications for Archaean tectonics. Precambrian Research, 91, 15–39CrossRefGoogle Scholar
Choukrone, P., Ludden, J. N., Chardon, D., et al. 1997. Archaean crustal growth and tectonic processes: a comparison of the Superior Province, Canada and the Dharwar Craton, India. Geological Society of London Special Publication, 121, 63–98CrossRefGoogle Scholar
Christiansen, R. L. and Lipman, P. W. 1972. Cenozoic volcanism and plate tectonic evolution of the western United States. II. Late Cenozoic. Philosophical Transactions of the Royal Society of London, Series A, 271, 249–284CrossRefGoogle Scholar
Cloud, P. E. 1988. Oasis in Space: Earth History from the Beginning. New York, W. W. NortonGoogle Scholar
Coleman, R. G. 1977. Ophiolites. Berlin, Springer-VerlagCrossRefGoogle Scholar
Coleman, R. G. 1984. The diversity of ophiolites. Geologie Mijnbouw, 63, 141–150Google Scholar
Condie, K. C. (ed.) 1992. Developments in Precambrian Geology, vol. 10, Proterozoic Crustal Evolution. Amsterdam, ElsevierGoogle Scholar
Condie, K. C. (ed.) 1994. Developments in Precambrian Geology, vol. 11, Archean Crustal Evolution. Amsterdam, ElsevierGoogle Scholar
Condie, K. C. 1997. Plate Tectonics and Crustal Evolution. Oxford, UK, Butterworth HeinemannGoogle Scholar
Courtillot, V., Vandamme, D., Besse, J., et al. 1990. Deccan volcanism at the Cretaceous/Tertiary boundary: data and inferences. Geological Society of America Special Paper, 247, 401–410CrossRefGoogle Scholar
Coward, M. P. and Ries, A. C. (eds.) 1995. Early Precambrian Processes, Special Publication no. 95. London, Geological SocietyGoogle Scholar
Crawford, A. J. and Keays, R. R. 1978. Cambrian greenstone belts in Victoria: marginal sea-crust slices in the Lachlan Fold Belt of southeastern Australia. Earth and Planetary Science Letters, 41, 197–208CrossRefGoogle Scholar
Crowell, J. C. and Frakes, L. A. 1970. Phanerozoic glaciation and the causes of ice ages. American Journal of Science, 268, 193–224CrossRefGoogle Scholar
Dalziel, I. W. D., Wit, M. J., and Palmer, K. F. 1974. Fossil marginal basin in the southern Andes. Nature, 250, 291–294CrossRefGoogle Scholar
Davies, P. 1998. The Fifth Miracle: The Search for the Origin of Life. Melbourne, Australia, Penguin BooksGoogle Scholar
Derry, L. A. and Jacobsen, S. B. 1990. The chemical evolution of Precambrian seawater: evidence from REEs in banded iron formations. Geochimica et Cosmochimica Acta, 54, 2965–2977CrossRefGoogle Scholar
Dewey, J. and Bird, J. M. 1971. Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. Journal of Geophysical Research, 76, 3179–3206CrossRefGoogle Scholar
Wit, M. J. 1998. On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict?Precambrian Geology, 91, 181–226CrossRefGoogle Scholar
Wit, M. J. and Ashwal, L. D. (eds.) 1997. Greenstone Belts. Oxford, UK, Clarendon PressGoogle Scholar
Eaton, G. P. 1982. The Basin and Range Province: origin and tectonic significance. Annual Reviews of Earth and Planetary Sciences, 10, 409–440CrossRefGoogle Scholar
Eriksson, K. A. 1995. Crustal growth, surface processes, and atmospheric evolution on the early Earth. Geological Society of London Special Publication, 95, 11–25CrossRefGoogle Scholar
Eriksson, K. A., Krapez, B., and Fralic, P. W. 1997. Sedimentological aspects. In , M. J. de Wit and , L. D. Ashwal (eds.) Greenstone Belts. Oxford, UK, Clarendon Press, pp. 33–54Google Scholar
Eriksson, P. G., Condie, K. C., Tirsgaard, H., et al. 1998a. Precambrian clastic sedimentation systems. Sedimentary Geology, 120, 5–54CrossRefGoogle Scholar
Eriksson, P. G., Tirsgaard, H., and Mueller, W. U. (eds.) 1998b. Precambrian clastic sedimentary systems. Sedimentary Geology (Special Issue), 120, 1–343Google Scholar
Etheridge, M. A., Rutland, R. W. R., and Wyborn, L. A. 1987. Orogenesis and tectonic processes in the early to middle Proterozoic of northern Australia. American Geophysical Union, Geodynamics Series, 17, 131–147CrossRefGoogle Scholar
Frakes, L. A. 1979. Climates throughout Geological Time. Amsterdam, ElsevierGoogle Scholar
Frakes, L. A., Francis, J. E., and Syktus, J. I. 1992. Climate modes of the Phanerozoic. Cambridge, UK, Cambridge University PressCrossRefGoogle Scholar
Frankel, C. 1996. Volcanoes of the Solar System. Cambridge, UK, Cambridge University PressGoogle Scholar
Gray, D. R. 1997. Tectonics of southeastern Australian Lachlan Fold belt: structural and thermal aspects. Geological Society of London Special Publication, 121, 149–177CrossRefGoogle Scholar
Green, J. C. 1992. Proterozoic rifts. In , K. C. Condie (ed.) Developments in Precambrian Geology, vol. 10, Proterozoic Crustal Evolution. Amsterdam, Elsevier, pp. 97–136
Hamilton, W. B. 1998. Archean magmatism and deformation were not products of plate tectonics. Precambrian Geology, 91, 143–180CrossRefGoogle Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., et al. 1990. A Geologic Time Scale 1989. Cambridge, UK, Cambridge University PressGoogle Scholar
Head, J. W. 1976. Lunar volcanism in time and space. Reviews of Geophysics and Space Physics, 14, 265–300CrossRefGoogle Scholar
Helmstaedt, H. H. and Scott, D. J. 1992. The Proterozoic ophiolite problem. In , K. C. Condie (ed.) Developments in Precambrian Geology, vol. 10, Proterozoic Crustal Evolution. Amsterdam, Elsevier, pp. 55–95
Henriquez, H. and Martin, R. F. 1978. Crystal growth textures in magnetite flows and feeder dykes, El Laco, Chile. Canadian Mineralogist, 16, 581–589Google Scholar
Huppert, H. E., Sparks, R. S. J., Turner, J. S., et al. 1984. Emplacement and cooling of komatiite lavas. Nature, 309, 19–22CrossRefGoogle Scholar
Hutchinson, R. W. 1973. Volcanogenic sulphide deposits and their metallogenic significance. Economic Geology, 68, 1223–1245CrossRefGoogle Scholar
Johnson, R. W. (ed.) 1989. Intraplate Volcanism in Australia and New Zealand. Cambridge, UK, Cambridge University PressGoogle Scholar
Karig, D. E. 1974. Evolution of arc systems in the Western Pacific. Annual Reviews of Earth and Planetary Sciences, 2, 51–75CrossRefGoogle Scholar
Karig, D. E. and Sharman, G. F. 1975. Subduction and accretion in trenches. Geological Society of America Bulletin, 86, 377–3892.0.CO;2>CrossRefGoogle Scholar
Kroner, A. (ed.) 1981. Precambrian Plate Tectonics. Amsterdam, ElsevierGoogle Scholar
Lamb, S., Hoke, L., Lorcan, K., et al. 1997. Cenozoic evolution of the Central Andes in Bolivia and northern Chile. Geological Society of London Special Publication, 121, 237–264CrossRefGoogle Scholar
Lowman, P. D. 1976. Crustal evolution in silicate planets: implications for the origin of continents. Journal of Geology, 84, 1–26CrossRefGoogle Scholar
Maas, R., Kinny, P. D., Williams, I. S., et al. 1992. The Earth's oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica Cosmochimica Acta, 56, 1281–1300CrossRefGoogle Scholar
McCormick, M. P., Thomason, L. W., and Trepte, C. R. 1995. Atmospheric effects of the Mt. Pinatubo eruption. Nature, 373, 399–404CrossRefGoogle Scholar
McLennan, S. M. and Taylor, S. R. 1982. Geochemical constraints on the growth of the continental crust. Journal of Geology, 90, 347–361CrossRefGoogle Scholar
Mills, A. A. 1984. Pillow lavas and the Leidenfrost effect. Journal of the Geological Society of London, 141, 183–186CrossRefGoogle Scholar
Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., et al. 1996. Evidence for life on Earth before 3,800 million years ago. Nature, 384, 55–59CrossRefGoogle ScholarPubMed
Moores, E. M. 1982. Origin and emplacement of ophiolites. Reviews of Geophysics and Space Physics, 20, 735–760CrossRefGoogle Scholar
Neil, E. and Houseman, G. H. 1999. Rayleigh–Taylor instability of the upper mantle and its role in intraplate orogeny. Geophysical Journal International, 138, 89–107CrossRefGoogle Scholar
Nisbet, E. G. 1995. Archaean ecology: a review of evidence for the early development of bacterial biomes, and speculations on the development of a global scale biosphere. Geological Society of London Special Publication, 95, 27–51CrossRefGoogle Scholar
O'Dea, M. G., Lister, G. S., Macready, T., et al. 1997. Geodynamic evolution of the Proterozoic Mount Isa terrain. Geological Society of London Special Publication, 121, 19–37Google Scholar
Olsen, K. H. (ed.) 1995. Continental Rifts: Evolution, Structure, Tectonics. Amsterdam, ElsevierGoogle Scholar
Park, R. G. and Jaroszewski, W. 1994. Craton tectonics, stress, and seismicity. In , P. L. Hancock (ed.) Continental Deformation. Tarrytown, NY, Pergamon Press, pp. 200–222
Pearce, J. A. and Cann, J. R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19, 290–300CrossRefGoogle Scholar
Percival, J. A. and Ludden, J. N. (eds.) 1998. The Earth's evolution through Precambrian time. Precambrian Geology (Special Issue), 91, 1–226Google Scholar
Rampino, M. R. 1987. Impact cratering and flood basalt volcanism. Nature, 327, 468CrossRefGoogle Scholar
Rampino, M. R. and Self, S. 1992. Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature, 359, 50–52CrossRefGoogle Scholar
Rampino, M. R. and Stothers, R. B. 1988. Flood basalt volcanism during the last 250 million years. Science, 241, 663–668CrossRefGoogle Scholar
Ranalli, G. 1997. Rheology of the lithosphere in space and time. Geological Society of London Special Publication, 121, 19–37CrossRefGoogle Scholar
Rice, A. 1990. The role of volcanism in K/T extinctions. Geological Society of America Special Paper, 244, 39–56CrossRefGoogle Scholar
Richards, M., Duncan, R., and Courtillot, V. 1989. Flood basalts and hotspot tracks: plume heads and tails. Science, 246, 103–107CrossRefGoogle Scholar
Rosing, M. T. 1999. 13C-depleted carbon micro-particles in ã3700 Ma sea floor sedimentary rocks from west Greenland. Science, 283, 674–676CrossRefGoogle Scholar
Sagan, C. 1979. Sulphur flows on Io. Nature, 280, 750–753CrossRefGoogle Scholar
Schopf, J. W. (ed.) 1983. Earth's Earliest Biosphere: Its Origins and Evolution. Princeton,NJ, Princeton University PressGoogle Scholar
Schopf, J. W. 1993. Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of life. Science, 260, 640–646CrossRefGoogle ScholarPubMed
Sebrier, M. and Soler, P. 1991. Tectonics and magmatism in the Peruvian Andes from late Oligocene time to the present. Geological Society of America Special Paper, 265, 259–278CrossRefGoogle Scholar
Sigurdsson, H. (ed.), 2000. Encyclopedia of Volcanoes. San Diego, Cal, Academic PressGoogle Scholar
Sleep, N. H. 1994. Martian plate tectonics. Journal of Geophysical Research, 99, 5639–5655CrossRefGoogle Scholar
Squire, R. J., Cas, R. A. F., Clout, J. F., et al. 1998. Volcanology of the Archaean Lunnon Basalt and its relevance to nickel sulfide bearing trough structures at Kambalda, Western Australia. Australian Journal of Earth Science, 45, 695–715CrossRefGoogle Scholar
Schidlowski, M. 1988. A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature, 333, 313–318CrossRefGoogle Scholar
Sylvester, P. J., Harper, G. D., Byerly, G. R., et al. 1997. Volcanic aspects. In , M. J. de Wit and , L. D. Ashwal (eds.). Greenstone Belts. Oxford, UK, Clarendon Press, pp. 55–90Google Scholar
Taylor, B. (ed.) 1995. Backarc Basins:Tectonics and Magmatism. New York, Plenum PressCrossRefGoogle Scholar
Thomas, P. G., Allemand, P., and Mangold, N. 1997. Rheology of the planetary lithospheres: a review from impact cratering mechanics. Geological Society of London Special Publication, 121, 39–62CrossRefGoogle Scholar
Thurston, P. C. 1994. Archean volcanic patterns. In , K. C. Condie (ed.) Developments in Precambrian Geology Archean Crustal Evolution, vol. 11. Amsterdam, Elsevier, pp. 45–84
Underwood, M. B. 1984. A sedimentologic perspective on stratal disruption within sandstone-rich melange terranes. Journal of Geology, 92, 369–385CrossRefGoogle Scholar
Walter, M. R., Buick, R., and Dunlop, J. S. R. 1980. Stromatolites 3400–3500 Myr old from the North Pole area, Western Australia. Nature, 284, 443–445CrossRefGoogle Scholar
Wilde, S. A., Valley, J. W., Peck, W. H., and Graham, C. M., 2001, Earth's oldest mineral grains suggest an early start for life. Nature, 409, 175–178CrossRefGoogle Scholar
Wilson, M. 1989. Igneous Petrogenesis. London, Allen and UnwinCrossRefGoogle Scholar
Windley, B. F. (ed.) 1976. The Early History of the Earth. New York, John WileyGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Volcanoes and the geological cycle
    • By Ray A. F. Cas, School of Geosciences, Monash University, P.O. Box 28E, Victoria, 3800, Australia
  • Edited by Joan Marti, Institut de Ciències de la Terra 'Jaume Almera', Barcelona, Gerald G. J. Ernst, Universiteit Gent, Belgium
  • Book: Volcanoes and the Environment
  • Online publication: 14 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614767.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Volcanoes and the geological cycle
    • By Ray A. F. Cas, School of Geosciences, Monash University, P.O. Box 28E, Victoria, 3800, Australia
  • Edited by Joan Marti, Institut de Ciències de la Terra 'Jaume Almera', Barcelona, Gerald G. J. Ernst, Universiteit Gent, Belgium
  • Book: Volcanoes and the Environment
  • Online publication: 14 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614767.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Volcanoes and the geological cycle
    • By Ray A. F. Cas, School of Geosciences, Monash University, P.O. Box 28E, Victoria, 3800, Australia
  • Edited by Joan Marti, Institut de Ciències de la Terra 'Jaume Almera', Barcelona, Gerald G. J. Ernst, Universiteit Gent, Belgium
  • Book: Volcanoes and the Environment
  • Online publication: 14 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614767.005
Available formats
×