Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-29T18:23:15.551Z Has data issue: false hasContentIssue false

Chapter 9 - Animals and volcanoes: survival and revival

Published online by Cambridge University Press:  14 November 2009

John S. Edwards
Affiliation:
Department of Zoology, University of Washington, Seattle WA, USA
Joan Marti
Affiliation:
Institut de Ciències de la Terra 'Jaume Almera', Barcelona
Gerald G. J. Ernst
Affiliation:
Universiteit Gent, Belgium
Get access

Summary

Let's take a positive view. The mountain is an emblem of all the forms of wholesale death: the deluge, the great conflagration (sterminator Vesevo, as the great poet was to say), but also of survival, of human persistence. In this instance, nature run amok also makes culture, makes artifacts by murdering, petrifying history. In such disasters there is much to appreciate.

Susan Sontag, The Volcano Lover

Introduction

The vivid memory of a photograph in my grammar-school Latin textbook that showed the body of a dog, cast in a convulsed pose since the Plinian eruption of Vesuvius in antiquity, serves always to remind me that volcanic eruptions can be harmful to the health of animals, ourselves included. It is stating the obvious to allude to the lethal hazards of catastrophic vulcanicity, be they lava, mud or pyroclastic flows, or deep tephra, for living systems. The broader biological interest of vulcanicity is not so much in its lethality as in the statistics of survival and the modes of recolonization in devastated areas. Thus my focus in what follows is on survival and revival of animal communities; survival as a facet of the perennial debate concerning the role of refugia, and revival as part of the little-understood process of primary colonization by animals.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M. F., Crisafulli, C., Friese, C. F., et al. 1992. Re-formation of mycorrhizal symbioses on Mount St. Helens 1980–1990: interactions of rodents and mycorrhizal fungi. Mycological Research, 96, 447–453CrossRefGoogle Scholar
Anderson, D. C. 1982. Observations on Thomomys talpoides in the region affected by the eruption of Mount St. Helens. Journal of Mammalogy, 63, 652–655CrossRefGoogle Scholar
Anderson, D. C. and MacMahon, J. A. 1985. Plant succession following the Mount St. Helens volcanic eruption: facilitation by a burrowing rodentThomomys talpoides. American Midland Naturalist, 114, 62–69CrossRefGoogle Scholar
Anderson, N. H. 1992. Influence of disturbance on insect communities in Pacific Northwest streams. Hydrobiologia, 248, 79–92CrossRefGoogle Scholar
Ashmole, N. P. and Ashmole, M. J. 1987. Arthropod communities supported by biological fallout on recent lava flows in the Canary Islands. Entomologica Scandinarica (Suppl.), 32, 67–88Google Scholar
Ashmole, N. P., Ashmole, M. J., and Oromi, P. 1990. Arthropods of recent flows on Lanzarote. Vieraea, 18, 171–187Google Scholar
Backer, C. A. 1929. The Problem of Krakatao as Seen by a Botanist. Surabaya, WeltvredenGoogle Scholar
Ball, E. and Glucksman, J. 1975. Biological colonization of Motmot, a recently created tropical island. Proceedings of the Royal Society of London, Series B, 190, 421–442CrossRefGoogle Scholar
Banks, N. G. and Hoblitt, R. P. 1981. In P. W. Lipman and D. R. Mullineaux (eds.) The 1980 Eruption of Mount St. Helens, Washington, US Geological Survey Professional Paper no. 1250. Washington, DC, US Government Printing Office
Baross, J. A., Dahm, C. N., Ward, A. K., et al. 1982. Initial microbiological response in lakes to the Mt. St. Helens eruption. Nature, 296, 49–52CrossRefGoogle Scholar
Burt, W. H. 1961. Some effects of Volcan Paricutin on vertebrates. Occasional Papers of the Museum of Zoology, University of Michigan, 620, 1–24Google Scholar
Cook, R. J., , Barron J. C., , Papendick R. I., et al. 1981. Impact on agriculture of the Mount St. Helens eruption. Science, 211, 16–22CrossRefGoogle Scholar
Crandall, D. R. and Mullineaux, D. R. 1978. Potential Hazards from Future Eruptions of Mount St. Helens Volcano. US Geological Survey Bulletin no. 1383-C. Washington, DC, US Government Printing Office
Crawford, B. A. 1986. The recovery of surviving fish populations within the Mount St. Helens National Volcanic Monument and adjacent area. In , S. A. C. Keller (ed.) Mount St. Helens: Five Years Later. Chiney, WA, Eastern Washington University Press, pp. 293–296Google Scholar
Crawford, R. L., Sugg, P. R., and Edwards, J. S. 1995. Spider arrival and primary establishment on terrain depopulated by volcanic eruption at Mount St. Helens, Washington. American Midland Naturalist, 133, 60–75CrossRefGoogle Scholar
Dale, V. H. 1989. Wind dispersed seeds and plant recovery on the Mount St. Helens debris avalanche. Canadian Journal of Botany, 67, 1434–1441CrossRefGoogle Scholar
Dale, V. H. 1991. Revegetation of Mount St. Helens debris avalanche ten years post-eruptive. National Geographic Research and Exploration, 7, 328–341Google Scholar
Dammerman, K. W. 1929. Krakatau's new fauna. Proceedings of the 4th Pan-Pacific Scientific Congress, Java, 37, 83–118Google Scholar
Dammerman, K. W. 1948. The fauna of Krakatau 1883–1933. Verhandelingen Koniklijke Nederlansche Akademie van Wetenschappen, Afdeling Natuurkunde II, 44, 1–594Google Scholar
Darwin, C. 1839. Journal of Researches into the Geology and Natural History of the Various Countries Visited by H.M.S.Beagle. London, ColburnGoogle Scholar
Decae, A. E. 1987. Dispersal: ballooning and other mechanisms. In Nentwig, W. (ed.) Ecophysiology of Spiders. Berlin, Springer-Verlag, pp. 348–356CrossRefGoogle Scholar
Dickson, B. A. and Crocker, R. L. 1953. A chronosequence of soils and vegetation near Mt Shasta, California. II. The development of the forest floor and carbon and nitrogen profiles of the soils. Journal of Soil Science, 4, 142–156CrossRefGoogle Scholar
Edwards, J. S. 1986. Derelicts of dispersal: arthropod fallout on Pacific Northwest volcanoes. In , W. Danthanarayana (ed.) Insect Flight: Dispersal and Migration. New York, Springer-Verlag, pp. 196–203Google Scholar
Edwards, J. S. 1987. Arthropods of aeolian ecosystems. Annual Review of Entomology, 32, 163–179CrossRefGoogle Scholar
Edwards, J. S. 1988. Life in the allobiosphere. Trends in Ecology and Evolution, 3, 111–114CrossRefGoogle ScholarPubMed
Edwards, J. S. and Schwartz, L. M. 1981. Mount St. Helens ash: a natural insecticide. Canadian Journal of Zoology, 59, 714–715CrossRefGoogle Scholar
Edwards, J. S. and Sugg, P. R. 1993. Arthropod fallout as a resource in the recolonization of Mount St. Helens. Ecology, 74, 954–958CrossRefGoogle Scholar
Edwards, J. S. and Thornton, I. W. B. 2001. Colonization of an island volcano, Long Island, Papua New Guinea, and an emergent island, Motmot, in its caldera lake. VI. The pioneer arthropod community of Motmot. Journal of Biogeography, 28, 1379–1388CrossRefGoogle Scholar
Engle, M. S. 1983. Carbon, nitrogen, and microbial colonization of volcanic debris on Mount St. Helens. Thesis, Washington State University, Pullman Washington, USA
Franklin, J. F., Frenzen, P. M., and Swanson, F. J. 1995. Re-creation of ecosystems at Mount St. Helens: contrasts in artificial and natural approaches. In Cairns, J. (ed.) Rehabilitating Damaged Ecosystems. Boca Raton, FL, Lewis Publishers, pp. 287–333Google Scholar
Fridricksson, S. 1975. Surtsey: Evolution of Life on a Volcanic Island. London, ButterworthsGoogle Scholar
Fye, R. E. 1983. Impact of volcanic ash on pear psylla (Homoptera: Psyllidae) and associated predators. Environmental Entomology, 12, 222–226CrossRefGoogle Scholar
Gersich, F. M. and Brusven, A. M. 1982. Volcanic ash accumulation and ash-voiding mechanisms of aquatic insects. Journal of the Kansas Entomological Society, 55, 290–296Google Scholar
Griggs, R. F. 1933. The colonization of Katmai ash, a new and “inorganic” soil. American Journal of Botany, 20, 92–113CrossRefGoogle Scholar
Hadley, N. F. 1994. Water Relations of Terrestrial Invertebrates. San Diego, CA, Academic PressGoogle Scholar
Halvorsen, J. H., Smith, J. L., and Franz, E. H. 1991. Lupine influence on soil carbon, nitrogen, and bacterial activity in developing ecosystems at Mount St. Helens. Oecologia, 87, 162–170CrossRefGoogle Scholar
Hawkins, C. P., Gottschalk, L. J., and Brown, S. S. 1988. Densities and habitat of tailed frog tadpoles in small streams near Mount St. Helens following the 1980 eruption. Journal of the North American Benthological Society, 7, 246–252CrossRefGoogle Scholar
Heatwole, H. 1971. Marine-dependent terrestrial biotic communities on some cays in the Coral Sea. Ecology, 52, 363–366CrossRefGoogle Scholar
Heiniger, P. H. 1989. Arthropoden auf Schneefelden und in schneefreien Habitaten im Jungfraugebiet (Berner Oberland, Schweiz). MitteilungenSchweizes Entomologische Gesellshaft, 62, 375–386Google Scholar
Hendrix, L. B. 1981. Post-eruption succession on Isla Fernadina, Galapagos. Madrono, 28, 242–254Google Scholar
Howarth, F. G. 1979. Neogeoaeolian habitats on new lava flows on Hawaii Island: an ecosystem supported by windborne debris. Pacific Insect, 20, 133–144Google Scholar
Howarth, F. G. 1987. Evolutionary ecology of aeolian and subterranean habitats in Hawaii. Trends in Ecology and Evolution, 2, 220–223CrossRefGoogle ScholarPubMed
Humboldt, A. 1808. Ansichten der Natur mit Wissenschaftlichen Elauterungen. Stuttgart, Germany, Cotta VerlagGoogle Scholar
Hutchinson, G. E. 1951. Copepodology for the ornithologist. Ecology, 32, 571–577CrossRefGoogle Scholar
Hutchinson, G. E. 1965. The Ecological Theater and the Evolutionary Play. New Haven, CT, Yale University PressGoogle Scholar
Jagger, T. A. 1945. Volcanoes Declare war: Logistics and Strategy of Pacific Volcano Science. Honolulu, HI, Paradise Pacific Ltd.Google Scholar
Johansen, C. A., Eves, J. D., Mayer, D. F., et al. 1981. Effects of ash from Mt St. Helens on bees. Melanderia, 37, 20–29Google Scholar
Kuwayama, S. 1929. Eruption of Mt. Komagatake and insects. Kontyu, 3, 271–273Google Scholar
Larson, D. 1993. The recovery of Spirit Lake. American Scientist, 81, 166–177Google Scholar
Lindroth, C. H. 1970. Survival of animals and plants in ice-free refugia during the Pleistocene glaciation. Endeavour, 29, 129–134Google Scholar
Lindroth, C. H., Andersson, H., Bodvarsson, H., et al. 1973. Surtsey, Iceland: the development of a new fauna 1963–1970. Terrestrial invertebrates. Entomologia Scandinavica (Suppl.), 5, 1–280Google Scholar
Lloyd Praeger, R. 1915. Clare Island survey. Part X. Proceedings of the Royal Irish Academy, 31, 92–94Google Scholar
Lotsy, J. P. 1908. Vorlesungen ueber Deszendenztheorien vol. 2. Jena
MacArthur, R. H. and Wilson, E. O. 1967. The Theory of Island Biogeography. New York, John WileyGoogle Scholar
MacMahon, J. A. 1982. Mount St. Helens revisited. Natural History, 91, 19–23Google Scholar
MacMahon, J. A. and Warner, N. A. 1984. Dispersal of mycorrhizal fungi: process and agents. In Williams, S. and Allen, M. (eds.) VA Mycorrhizae and Reclamation of Arid and Semiarid Lands. Laramie, WY, University of Wyoming Press, pp. 28–41Google Scholar
MacMahon, J. A., Parmentier, R. R., Johnson, K. A., et al. 1989. Small mammal recolonization on the Mount St. Helens Volcano: 1980–1987. American Midland Naturalist, 122, 365–387CrossRefGoogle Scholar
Manuwal, D. A., Huff, M. H., Bauer, M. R., et al. 1987. Summer birds of the upper subalpine zone of Mount Adams, Mount Rainier and Mount St. Helens, Washington. Northwest Science, 61, 82–92Google Scholar
Martin, D. J., Wasserman, L. J., Dale, L. J., et al. 1986. Influence of riparian vegetation on posteruption survival of coho salman fingerlings in the westside streams of Mount St. Helens, Washington. North American Journal of Fisheries Management, 6, 1–82.0.CO;2>CrossRefGoogle Scholar
Matthews, J. A. 1992. The Ecology of Recently Deglaciated Terrain. Cambridge, UK, Cambridge University PressGoogle Scholar
Merrill, E. M., Raedeke, K. J., Knutson, K. L., et al. 1986. Elk recolonization and population dynamics in the northwest portion of the Mount St. Helens blast zone. In Keller, S. A. C. (ed.) Mount St. Helens: Five Years Later. Cheney, WA, Eastern Washington University Press, pp. 359–368Google Scholar
Michaelsen, W. 1924. Oligochaeten von Niederlandisch-Indien. Treubia, 5, 379–401Google Scholar
Mohlenbrock, R. H. 1990. Mount St. Helens. Natural History, 99, 27–29Google Scholar
New, T. R. and Thornton, I. W. B. 1988. A prevegetation population of crickets subsisting on allochthonous aeolian debris on Anak Krakatau. Philosophical Transactions of the Royal Society of London, Series B, 322, 481–485CrossRefGoogle Scholar
New, T. R., Bush, M. B., Thornton, I. W. B., et al. 1988. The butterfly fauna of the Krakatau Islands after a century of colonization. Philosophical Transactions of the Royal Society of London, Series B, 322, 445–457CrossRefGoogle Scholar
Nuhn, W. W. 1987. Soil genesis on the 1980 pyroclastic flow of Mount St. Helens. Thesis, University of Washington, Seattle, WA, USA
Osborne, P. L. and Murphey, R. 1989. Botanical colonization of Motmot island, Lake Wisdom, Madang Province. Science in New Guinea, 15, 57–63Google Scholar
Pyle, R. M. 1984. The impact of recent vulcanism on Lepidoptera. In , R. I. Vane-Wright and , P. R. Ackery (eds.) The Biology of Butterflies. London, Academic Press, pp. 323–336Google Scholar
Scharff, R. E. 1925. Sur la problème de l'Ǐle de Krakatau. Comptes Rendus du Congrès de l'Association française pour l'Avancement des Sciences, 49, 746–750Google Scholar
Sontag, S. 1992. The Volcano Lover. New York, Farrar Straus GirouxGoogle Scholar
Sugg, P. M. 1989. Arthropod populations at Mount St. Helens: survival and revival. Ph.D. thesis, University of Washington, Seattle, WA, USA
Sugg, P. M. and Edwards, J. S. 1998. Pioneer aeolian community development on pyroclastic flows after the eruption of Mount St. Helens. Arctic and Alpine Research, 30, 400–407
Sugg, P. M., Greve, L., and Edwards, J. S. 1994. Neuropteroidea from Mount St. Helens and Mount Rainier: dispersal and immigration in volcanic landscapes. PanPacific Entomologist, 70, 212–221Google Scholar
Swan, L. W. 1967. Aeolian zone. Science, 140, 77–78CrossRefGoogle Scholar
Thornton, I. W. B. 1996. Krakatau: The Destruction and Reassembly of an Island Ecosystem. Cambridge, MA, Harvard University PressGoogle Scholar
Thornton, I. W. B. 2001. Colonization of an island volcano, Long Island, Papua New Guinea, and an emergent island, Motmot, in its caldera lake. I. General introduction. Journal of Biogeography, 28, 1299–1310CrossRefGoogle Scholar
Thornton, I. W. B. and New, T. R. 1988. Krakatau invertebrates: the 1980s fauna in the context of a century of recolonization. Philosophical Transactions of the Royal Society of London, Series B, 322, 493–522CrossRefGoogle Scholar
Thornton, I. W. B., New, T. R., McLaren, D. A., et al. 1988. Air-borne arthropod fallout on Anak Krakatau and a possible pre-vegetation pioneer community. PhilosophicalTransactions of the Royal Society of London, Series B, 322, 481–485Google Scholar
Treub, M. 1888. Notice sur la nouvelle flore de Krakatau. Annales du Jardin Botanique de Buitenzorg, 7, 213–223Google Scholar
Turner, M. G., Dale, V. H., and Everham, E. H. 1997. Fires, hurricanes, and volcanoes: comparing large disturbances. BioScience, 47, 758–768CrossRefGoogle Scholar
Whittaker, R. J., Partomihardjo, T., and Riswan, S. 1995. Surface and buried seed banks from Krakatau, Indonesia: implications for the sterilization hypothesis. Biotropica, 27, 345–354CrossRefGoogle Scholar
Whymper, E. 1892. Travels amongst the Great Andes of the Equator. 1987 reprint: Salt Lake City, UT, Gibbs M. Smith Inc.CrossRefGoogle Scholar
Winoto Suatmaji, R. A., Coomans, A., Rashid, F., et al. 1988. Nematodes of the Krakatau archipelago, Indonesia: a preliminary overview. Philosophical Transactions of the Royal Society of London, Series B, 322, 369–378CrossRefGoogle Scholar
Wise, D. H. 1993. Spiders in Ecological Webs. Cambridge, UK, Cambridge University PressCrossRefGoogle Scholar
Wurmli, M. 1971. Zur pflanzlichen und tierischen Besaidlung der rezenten Laven und Tephrata des Aetna, unter besonderer Berucksichtigung der Makrofauna und Struktureller Aspekte. Thesis, University of Vienna
Wurmli, M. 1974. Biocenoses and their successions on the lava and ash of Mount Etna. Image Roche, 59, 32–40; 60, 2–7Google Scholar
Zalisko, E. J. and Sites, R. W. 1989. Salamander occurrences within Mount St. Helens blast zone. Herpetological Review, 20, 84–85Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×