Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-09T07:26:10.313Z Has data issue: false hasContentIssue false

3 - Physiological correlates of lizard foraging mode

Published online by Cambridge University Press:  04 August 2010

Kevin E. Bonine
Affiliation:
Department of Ecology and Evolutionary Biology University of Arizona
Stephen M. Reilly
Affiliation:
Ohio University
Lance B. McBrayer
Affiliation:
Georgia Southern University
Donald B. Miles
Affiliation:
Ohio University
Get access

Summary

Introduction

Everything that an animal does, from feeding to escaping predation, is influenced by underlying physiological traits. In this chapter, I focus on the insights gained by examining physiology in the context of lizard foraging mode. I will discuss apparent relationships between physiological traits and foraging mode and identify areas where we might expect to uncover explanatory correlates in the future. Understanding these relationships allows us to learn more about the evolution of lizard foraging and the related evolutionary processes and selective factors that act on underlying physiological components.

Many biologists have addressed the importance of evolutionary and comparative physiology (see, for example, Prosser, 1950; Diamond, 1993; Garland and Carter, 1994; Natochin and Chernigovskaya, 1997; Feder et al., 2000). Physiology can be rather broadly defined to include many integrated and hierarchical suborganismal traits that manifest in organismal function. An incomplete list of these traits and processes includes enzyme activity, membrane selectivity, establishment of ion gradients, ATP production, cellular respiration, lung ventilation, aerobic capacity, Q10 effects, lactate buffering, pH balance, sprint speed, digestive efficiency, and many other processes involved in homeostasis that ultimately contribute to the survival and reproduction (Darwinian fitness) of organisms (see Table 3.1 for a list of physiology-related traits likely to inform the study of foraging modes). Importantly, these myriad suborganismal traits do not work in isolation, nor are they typically involved in only one aspect of organismal function (see, for example, Bennett, 1989; Garland and Losos, 1994; Rose and Lauder, 1996b).

Type
Chapter
Information
Lizard Ecology , pp. 94 - 119
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Ghamdi, M. S., Jones, J. F. and Taylor, E. W. (2001). Evidence of a functional role in lung inflation for the buccal pump in the agamid lizard Uromastyx aegyptius microlepis. J. Exp. Biol. 204, 521–31.Google ScholarPubMed
Amo, L., Lopez, P. and Martin, J. (2003). Risk level and thermal costs affect the choice of escape strategy and refuge use in the Wall Lizard, Podarcis muralis. Copeia 2003, 899–905.CrossRefGoogle Scholar
Anderson, R. A. and Karasov, W. H. (1981). Contrasts in energy intake and expenditure in sit-and-wait and widely foraging lizards. Oecologia 49, 67–72.CrossRefGoogle ScholarPubMed
Andrews, R. M. (1984). Energetics of sit-and-wait and widely-searching lizard predators. In Vertebrate Ecology and Systematics: A Tribute to Henry S. Fitch, ed. Seigel, R. A., Hunt, L. E., Knight, J. L., Malaret, L., and Zuschlag, N. L., pp. 137–45. Lawrence, Kansas: Univ. Kans. Mus. Nat. Hist.Google Scholar
Angilletta, M. J. Jr. (2001). Variation in metabolic rate between populations of a geographically widespread lizard. Physiol. Biochem. Zool. 74, 11–21.CrossRefGoogle ScholarPubMed
Arnold, S. J. (1983). Morphology, performance and fitness. Am. Zool. 23, 347–61.CrossRefGoogle Scholar
Autumn, K., Jindrich, D., DeNardo, D. and Mueller, R. (1999). Locomotor performance at low temperature and the evolution of nocturnality in geckos. Evolution 53, 580–99.CrossRefGoogle ScholarPubMed
Avery, R. A. (1982). Field studies of body temperatures and thermoregulation. In Biology of the Reptilia, vol. 12, ed. Gans, C. and Pough, F. H., pp. 93–166. New York: Academic Press.Google Scholar
Bauwens, D., Garland, T. Jr., Castilla, A. M. and Damme, R. (1995). Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution 49, 848–63.Google ScholarPubMed
Beck, D. D. and Lowe, C. H. (1994). Resting metabolism of helodermatid lizards: allometric and ecological relationships. J. Comp. Physiol. B164, 124–9.CrossRefGoogle Scholar
Beck, D. D., Dohm, M. R., Garland, T. Jr., Ramirez-Bautista, A. and Lowe, C. H. (1995). Locomotor performance and activity energetics of helodermatid lizards. Copeia 1995, 586–607.CrossRefGoogle Scholar
Bennett, A. F. (1978). Activity metabolism of the lower vertebrates. Ann. Rev. Physiol. 40, 447–69.CrossRefGoogle ScholarPubMed
Bennett, A. F. (1980). The thermal dependence of lizard behaviour. Anim. Behav. 28, 752–62.CrossRefGoogle Scholar
Bennett, A. F. (1982). The energetics of reptilian activity. In Biology of the Reptilia, vol. 13, ed. Gans, C. and Pough, F. H., pp. 155–99. London: Academic Press.Google Scholar
Bennett, A. F. (1985). Temperature and muscle. J. Exp. Biol. 115, 333–44.Google Scholar
Bennett, A. F. (1989). Integrated studies of locomotor performance. In Complex Organismal Functions: Integration and Evolution in Vertebrates, ed. Wake, D. B. and Roth, G., pp. 191–202. Chichester: John Wiley and Sons.Google Scholar
Bennett, A. F. (1991). The evolution of activity capacity. J. Exp. Biol. 160, 1–23.Google ScholarPubMed
Bennett, A. F., Huey, R. B. and John-Alder, H. B. (1984). Physiological correlates of natural activity and locomotor capacity in two species of lacertid lizards. J. Comp. Physiol. B154, 113–18.CrossRefGoogle Scholar
Blomberg, S. P., Garland, T. Jr. and Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–45.CrossRefGoogle ScholarPubMed
Boggs, D. (2002). Interactions between locomotion and ventilation in tetrapods. Comp. Biochem. Physiol. 133A, 269–88.CrossRefGoogle Scholar
Bonine, K. E. (2001). Morphological and physiological predictors of lizard locomotor performance: a phylogenetic analysis of trade-offs. Ph.D. dissertation, University of Wisconsin, Madison.
Bonine, K. E. and Garland, T. Jr. (1999). Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length. J. Zool. Lond. 248, 255–65.CrossRefGoogle Scholar
Bonine, K. E., Gleeson, T. T. and Garland, T. Jr. (2001). Comparative analysis of fiber-type composition in the iliofibularis muscle of phrynosomatid lizards (Squamata). J. Morphol. 250, 265–80.CrossRefGoogle Scholar
Bulova, S. J. (1994). Ecological correlates of population and individual variation in antipredator behavior of two species of desert lizards. Copeia 1994, 980–92.CrossRefGoogle Scholar
Burke, R. L., Hussain, A. A., Storey, J. M. and Storey, K. B. (2002). Freeze tolerance and supercooling ability in the Italian wall lizard, Podarcis sicula, introduced to Long Island, New York. Copeia 2002, 836–42.CrossRefGoogle Scholar
Buttemer, W. A. (1990). Effect of temperature on evaporative water loss of the Australian tree frogs Litoria caerulea and Litoria chloris. Physiol. Zool. 63, 1043–57.CrossRefGoogle Scholar
Calder, W. A. (1984). Size, Function, and Life History. Cambridge, MA: Harvard University Press.Google Scholar
Carpenter, C. C. (1967). Aggression and social structure in iguanid lizards. In Lizard Ecology: A Symposium, ed. Milstead, W. W., pp. 87–105. Columbia: University of Missouri Press.Google Scholar
Carrier, D. R. (1989). Ventilatory action of the hypaxial muscles of the lizard Iguana iguana: a function of slow muscle. J. Exp. Biol. 143, 435–57.Google ScholarPubMed
Conley, K. E., Christian, K. A., Hoppeler, H. and Weibel, E. R. (1995). Heart mitochondrial properties and aerobic capacity are similarly related in a mammal and a reptile. J. Exp. Biol. 198, 739–46.Google Scholar
Cooper, W. E. Jr. (1995). Prey chemical discrimination and foraging mode in gekkonoid lizards. Herp. Monogr. 9, 120–9.CrossRefGoogle Scholar
Cooper, W. E. Jr. (2000). Effect of temperature on escape behaviour by an ectothermic vertebrate, the keeled earless lizard (Holbrookia propinqua). Behaviour 137, 1299–315.CrossRefGoogle Scholar
Cooper, W. E. Jr. (2003). Risk factors affecting escape behavior by the desert iguana, Dipsosaurus dorsalis: speed and directness of predator approach, degree of cover, direction of turning by a predator, and temperature. Can. J. Zool. 81, 979–84.CrossRefGoogle Scholar
Cullum, A. (1997). Comparisons of physiological performance in sexual and asexual whiptail lizards (genus Cnemidophorus): implications for the role of heterozygosity. Am. Nat. 150, 24–47.CrossRefGoogle Scholar
Cullum, A. (1998). Sexual dimorphism in physiological performance of whiptail lizards (genus Cnemidophorus). Physiol. Zool. 71, 541–52.CrossRefGoogle Scholar
Dawson, W. R. (1967). Interspecific variation in physiological responses of lizards to temperature. In Lizard Ecology: A Symposium, ed. Milstead, W. W., pp. 230–257. Columbia: University of Missouri Press.Google Scholar
Dial, B. E. and Grismer, L. L. (1992). A phylogenetic analysis of physiological-ecological character evolution in the lizard genus Coleonyx and its implications for historical biogeographic reconstruction. Syst. Biol. 41, 178–95.CrossRefGoogle Scholar
Diamond, J. M. (1993). Evolutionary physiology. In The Logic of Life: The Challenge of Integrative Physiology, ed. Boyd, C. A. R. and Noble, D., pp. 89–111. Oxford: Oxford University Press.Google Scholar
Dmi'el, R. (2001). Skin resistance to evaporative water loss in reptiles: a physiological adaptive mechanism to environmental stress or a phyletically dictated trait? Israel J. Zool. 47, 55–67.Google Scholar
Donovan, E. R. and Gleeson, T. T. (2001). Evidence for facilitated lactate uptake in lizard skeletal muscle. J. Exp. Biol. 204, 4099–106.Google ScholarPubMed
Downes, S. and Shine, R. (1999). Do incubation-induced changes in a lizard's phenotype influence its vulnerability to predators? Oecologia 120, 9–18.CrossRefGoogle Scholar
Downes, S. and Shine, R. (2001). Why does tail loss increase a lizard's later vulnerability to snake predators? Ecology 82, 1293–303.CrossRefGoogle Scholar
Feder, M. E., Bennett, A. F. and Huey, R. B. (2000). Evolutionary physiology. Ann. Rev. Ecol. Syst. 31, 315–41.CrossRefGoogle Scholar
Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat. 125, 1–15.CrossRefGoogle Scholar
Frappell, P. B., Schultz, T. J. and Christian, K. A. (2002). The respiratory system in varanid lizards: determinants of O2 transfer. Comp. Biochem. Physiol. 133A, 239–58.CrossRefGoogle Scholar
Garland, T. Jr. (1984). Physiological correlates of locomotory performance in a lizard: an allometric approach. Am. J. Physiol. 247, R806–15.Google Scholar
Garland, T. Jr. (1993). Locomotor performance and activity metabolism of Cnemidophorus tigris in relation to natural behaviors. In Biology of Whiptail Lizards (Genus Cnemidophorus), ed. Wright, J. W. and Vitt, L. J., pp. 163–210. Norman, OK: Oklahoma Museum of Natural History.Google Scholar
Garland, T. Jr. (1994). Phylogenetic analyses of lizard endurance capacity in relation to body size and body temperature. In Lizard Ecology: Historical and Experimental Perspectives, ed. Vitt, L. J. and Pianka, E. R., pp. 237–59. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Garland, T. Jr. (1999). Laboratory endurance capacity predicts variation in field locomotor behaviour among lizard species. Anim. Behav. 57, 77–83.CrossRefGoogle Scholar
Garland, T. Jr. and Adolph, S. C. (1994). Why not to do two-species comparative studies: limitations on inferring adaptation. Physiol. Zool. 67, 797–828.CrossRefGoogle Scholar
Garland, T. Jr. and Carter, P. A. (1994). Evolutionary physiology. Ann. Rev. Physiol. 56, 579–621.CrossRefGoogle ScholarPubMed
Garland, T. Jr. and Else, P. L. (1987). Seasonal, sexual, and individual variation in endurance and activity metabolism in lizards. Am. J. Physiol. 252, R439–49.Google ScholarPubMed
Garland, T. Jr. and Losos, J. B. (1994). Ecological morphology of locomotor performance in squamate reptiles. In Ecological Morphology: Integrative Organismal Biology, ed. Wainwright, P. C. and Reilly, S. M., pp. 240–302. Chicago, IL: University of Chicago Press.Google Scholar
Garland, T. Jr., Bennett, A. F. and Daniels, C. B. (1990a). Heritability of locomotor performance and its correlates in a natural population. Experientia 46, 530–3.CrossRef
Garland, T. Jr., Dickerman, A. W., Janis, C. M. and Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42, 265–92.CrossRefGoogle Scholar
Garland, T. Jr., Else, P. L., Hulbert, A. J. and Tap, P. (1987). Effects of endurance training and captivity on activity metabolism of lizards. Am. J. Physiol. 252, R450–6.Google ScholarPubMed
Garland, T. Jr., Hankins, E. and Huey, R. B. (1990b). Locomotor capacity and social dominance in male lizards. Funct. Ecol. 4, 243–50.CrossRefGoogle Scholar
Garland, T. Jr., Harvey, P. H. and Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18–32.CrossRefGoogle Scholar
Garland, T. Jr., Midford, P. E. and Ives, A. R. (1999). An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. Am. Zool. 39, 374–88.CrossRefGoogle Scholar
Gleeson, T. T. (1979). The effects of training and captivity on the metabolic capacity of the lizard Sceloporus occidentalis. J. Comp. Physiol. 129, 123–8.CrossRefGoogle Scholar
Gleeson, T. T. (1996). Post-exercise lactate metabolism: a comparative review of sites, pathways, and regulation. Ann. Rev. Physiol. 58, 565–81.CrossRefGoogle ScholarPubMed
Gleeson, T. T. and Dalessio, P. M. (1989). Lactate: a substrate for reptilian muscle gluconeogenesis following exhaustive exercise. J. Comp. Physiol. 160, 331–8.CrossRefGoogle Scholar
Gleeson, T. T. and Hancock, T. V. (2002). Metabolic implications of a ‘run now, pay later’ strategy in lizards: an analysis of post-exercise oxygen consumption. Comp. Biochem. Physiol. 133A(2), 259–67.CrossRefGoogle Scholar
Gleeson, T. T. and Harrison, J. M. (1986). Reptilian skeletal muscle: fiber-type composition and enzymatic profile in the lizard, Iguana iguana. Copeia 1986, 324–32.CrossRefGoogle Scholar
Gleeson, T. T. and Harrison, J. M. (1988). Muscle composition and its relationship to sprint running in the lizard Dipsosaurus dorsalis. Am. J. Physiol. 255, R470–7.Google ScholarPubMed
Gleeson, T. T. and Johnston, I. A. (1987). Reptilian skeletal muscle: contractile properties of identified, single fast-twitch and slow fibers from the lizard Dipsosaurus dorsalis. J. Exp. Zool. 242, 283–90.CrossRefGoogle ScholarPubMed
Gleeson, T. T., Mitchell, G. S. and Bennett, A. F. (1980a). Cardiovascular responses to graded activity in the lizards Varanus and Iguana. Am. J. Physiol. 239, R174–9.Google Scholar
Gleeson, T. T., Putnam, R. W. and Bennett, A. F. (1980b). Histochemical, enzymatic, and contractile properties of skeletal muscle fibers in the lizard Dipsosaurus dorsalis. J. Exp. Zool. 214, 293–302.CrossRefGoogle Scholar
Gould, S. J. and Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B205, 581–98.CrossRefGoogle Scholar
Greene, H. W. (1997). Snakes: the Evolution of Mystery in Nature. Berkeley, CA: University of California Press.
Guthe, K. F. (1981). Reptilian muscle: fine structure and physiological parameters. In Biology of the Reptilia, vol. 11, ed. Gans, C. and Parsons, T. S., pp. 265–354. New York: Academic Press.Google Scholar
Holloszy, J. O. and Coyle, E. F. (1984). Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. Exercise Physiol. 56, 831–8.Google ScholarPubMed
Huey, R. B. and Pianka, E. R. (1981). Ecological consequences of foraging mode. Ecology 62, 991–9.CrossRefGoogle Scholar
Huey, R. B., Bennett, A. F., John-Alder, H. B. and Nagy, K. A. (1984). Locomotor capacity and foraging behaviour of Kalahari lacertid lizards. Anim. Behav. 32, 41–50.CrossRefGoogle Scholar
Huey, R. B., Pianka, E. R. and Schoener, T. W. ed. (1983). Lizard Ecology: Studies of a Model Organism. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Huey, R. B., Pianka, E. R. and Vitt, L. J. (2001). How often do lizards “run on empty”? Ecology 82, 1–7.Google Scholar
Irschick, D. J. (2000). Effects of behaviour and ontogeny on the locomotor performance of a West Indian lizard, Anolis lineatopus. Funct. Ecol. 14, 438–44.CrossRefGoogle Scholar
Irschick, D. J. and Garland, T. Jr. (2001). Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Ann. Rev. Ecol. Syst. 32, 367–96.CrossRefGoogle Scholar
Irschick, D. J. and Jayne, B. C. (2000). Size matters: ontogenetic differences in the three-dimensional kinematics of steady-speed locomotion in the lizard Dipsosaurus dorsalis. Exp. Biol. 203, 2133–48.Google ScholarPubMed
Irschick, D. J., Macrini, T. E., Koruba, S. and Forman, J. (2000). Ontogenetic differences in morphology, habitat use, behavior and sprinting capacity in two West Indian Anolis lizard species. J. Herp. 34, 444–51.CrossRefGoogle Scholar
Jayne, B. C., Bennett, A. F. and Lauder, G. V. (1990). Muscle recruitment during terrestrial locomotion: how speed and temperature affect fibre type used in a lizard. J. Exp. Biol. 152, 101–28.Google Scholar
John-Alder, H. B., Lowe, C. H. and Bennett, A. F. (1983). Thermal dependence of locomotory energetics and aerobic capacity of the gila monster (Heloderma suspectum). J. Comp. Physiol. B151, 119–26.CrossRefGoogle Scholar
Korzan, W. J. and Summers, C. H. (2004). Serotonergic response to social stress and artificial social sign stimuli during paired interactions between male Anolis carolinensis. Neuroscience 123, 835–45.CrossRefGoogle ScholarPubMed
Kramer, D. L. and McLaughlin, R. L. (2001). The behavioral ecology of intermittent locomotion. Amer. Zool. 41, 137–53.Google Scholar
Lailvaux, S. P., Alexander, G. J. and Whiting, M. J. (2003). Sex-based differences and similarities in locomotor performance, thermal preferences, and escape behaviour in the lizard Platysaurus intermedius wilhelmi. Physiol. Biochem. Zool. 76, 511–21.CrossRefGoogle ScholarPubMed
Losos, J. B., Creer, D. A. and Schulte, J. A. II. (2002). Cautionary comments on the measurement of maximum locomotor capabilities. J. Zool. Lond. 258, 57–61.CrossRefGoogle Scholar
Marler, C. A. and Moore, M. C. (1988). Evolutionary costs of aggression revealed by testosterone manipulations in free-living male lizards. Behav. Ecol. Sociobiol. 23, 21–6.CrossRefGoogle Scholar
Marler, C. A. and Moore, M. C. (1989). Time and energy costs of aggression in testosterone-implanted free-living male Mountain Spiny Lizards (Sceloporus jarrovi). Physiol. Zool. 62, 1334–50.CrossRefGoogle Scholar
M'Closkey, R. T., Deslippe, R. J., Szpak, C. P. and Baia, K. A. (1990). Ecological correlates of the variable mating system of an iguanid lizard. Oikos 59, 63–9.CrossRefGoogle Scholar
Miles, D. B. (1994). Population differentiation in locomotor performance and the potential response of a terrestrial organism to global environmental change. Am. Zool. 34, 422–6.CrossRefGoogle Scholar
Miles, D. B., Fitzgerald, L. A. and Snell, H. L. (1995). Morphological correlates of locomotor performance in hatchling Amblyrhynchus cristatus. Oecologia 103, 261–4.CrossRefGoogle ScholarPubMed
Miller, K. and Camilliere, J. J. (1981). Physical training improves swimming performance of the African clawed frog Xenopus laevis. Herpetologica 37, 1–10.Google Scholar
Milstead, W. W., ed. (1967). Lizard Ecology: A Symposium. Columbia, MO: University of Missouri Press.Google Scholar
Mitchell, G. S. and Gleeson, T. T. (1985). Acid-base balance during lactic-acid infusion in the lizard Varanus salvator. Resp. Physiol. 60, 253–66.CrossRefGoogle ScholarPubMed
Montanucci, R. R. (1987). A Phylogenetic Study of the Horned Lizards, Genus Phrynosoma, Based on Skeletal and External Morphology. Contributions in Science 390. Los Angeles, CA: Natural History Museum.Google Scholar
Nagy, K. A. (1983). Ecological energetics. In Lizard Ecology: Studies of a Model Organism, ed. Huey, R. B., Pianka, E. R. and Schoener, T. W., pp. 24–54. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Nagy, K. A. and Shemanski, D. R. (2003). Locomotor activity costs in free-living animals. Comp. Biochem. Physiol. 134A(Suppl. 1), S36.Google Scholar
Nagy, K. A., Huey, R. B. and Bennett, A. F. (1984). Field energetics and foraging mode of Kalahari lacertid lizards. Ecology 65, 588–96.CrossRefGoogle Scholar
Nagy, K. A., Girard, I. A. and Brown, T. K. (1999). Energetics of free-ranging mammals, reptiles and birds. Ann. Rev. Nutr. 19, 247–77.CrossRefGoogle ScholarPubMed
Natochin, Y. V. and Chernigovskaya, T. V. (1997). Evolutionary physiology: history, principles. Comp. Biochem. Physiol. 118A, 63–79.CrossRefGoogle Scholar
Olsson, M., Shine, R. and Bak-Olsson, E. (2000). Locomotor impairment of gravid lizards: Is the burden physical or physiological? J. Evol. Biol. 13, 263–8.CrossRefGoogle Scholar
Peaker, M. and Linzell, J. L. (1975). Salt Glands in Birds and Reptiles. Monographs of the Physiological Society 32. Cambridge: Cambridge University Press.Google ScholarPubMed
Perry, S. F. (1998). Lungs: comparative anatomy, functional morphology, and evolution. In Biology of the Reptilia, vol. 19, ed. Gans, C. and Gaunt, A. S., pp. 1–80. Ithaca, NY: Society for the Study of Amphibians and Reptilians.Google Scholar
Perry, G. (1999). The evolution of search modes: ecological versus phylogenetic perspectives. Am. Nat. 153, 98–109.CrossRefGoogle ScholarPubMed
Perry, G., LeVering, K., Girard, I. and Garland, T. Jr. (2004). Locomotor performance and social dominance in male Anolis cristatellus. Anim. Behav. 67, 37–47.CrossRefGoogle Scholar
Peter, J. B., Barnard, R. J., Edgerton, V. R., Gillespie, C. A. and Stemple, K. E. (1972). Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry 11, 2627–33.CrossRefGoogle ScholarPubMed
Peterson, C. C. (1998). Rain-harvesting behavior by a free-ranging desert horned lizard (Phrynosoma platyrhinos). Southwest. Nat. 43, 391–4.Google Scholar
Pianka, E. R. and Vitt, L. J. (2003). Lizards: Windows to the Evolution of Diversity. Berkeley, CA: University of California Press.Google Scholar
Pinch, F. C. and Claussen, D. L. (2003). Effects of temperature and slope on the sprint speed and stamina of the Eastern Fence Lizard, Sceloporus undulatus. J. Herp. 37, 671–9.CrossRefGoogle Scholar
Porter, W. P., Sabo, J. L., Tracy, C. R., Reichman, O. J. and Ramankutty, N. (2002). Physiology on a landscape scale: plant-animal interactions. Integ. Comp. Biol. 42, 431–53.CrossRefGoogle ScholarPubMed
Pough, F. H. (1980). The advantages of ectothermy for tetrapods. Am. Nat. 115, 92–112.CrossRefGoogle Scholar
Pough, F. H., Andrews, R. M., Cadle, J. E.et al. (2004). Herpetology, 3rd edn. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Price, T. and Langen, T. (1992). Evolution of correlated characters. Trends Ecol. Evol. 7, 307–10.CrossRefGoogle ScholarPubMed
Prosser, C. L., ed. (1950). Comparative Animal Physiology. Philadelphia, PA: W. B. Saunders Co.Google Scholar
Putnam, R. W. and Bennett, A. F. (1982). Thermal dependence of isometric contractile properties of lizard muscle. J. Comp. Physiol. 147, 11–20.CrossRefGoogle Scholar
Putnam, R. W., Gleeson, T. T. and Bennett, A. F. (1980). Histochemical determination of the fiber composition of locomotory muscles in a lizard, Dipsosaurus dorsalis. J. Exp. Zool. 214, 303–9.CrossRefGoogle Scholar
Ribas, S. C., Rocha, C. F. D., Teixeira-Filho, P. F. and Vicente, J. J. (1998). Nematode infection in two sympatric lizards (Tropidurus torquatus and Ameiva ameiva) with different foraging tactics. Amph.-Rept. 19, 323–30.CrossRefGoogle Scholar
Rose, M. R. and Lauder, G. V., ed. (1996a). Adaptation. San Diego, CA: Academic Press.Google Scholar
Rose, M. R. and Lauder, G. V. (1996b). Post-spandrel adaptationism. In Adaptation, ed. Rose, M. R. and Lauder, G. V., pp. 1–8. San Diego, CA: Academic Press.Google Scholar
Savitzky, A. H. (1980). Role of venom delivery strategies in snake evolution. Evolution 34, 1194–204.CrossRefGoogle ScholarPubMed
Schall, J. J. (1983). Lizard malaria: parasite-host ecology. In Lizard Ecology: Studies of a Model Organism, ed. Huey, R. B., Pianka, E. R. and Schoener, T. W., pp. 84–100, 437–9, 488. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Schall, J. J., Bennett, A. F. and Putnam, R. W. (1982). Lizards (Sceloporus occidentalis) infected with malaria: physiological and behavioral consequences. Science 217, 1057–9.CrossRefGoogle ScholarPubMed
Schmidt, P. J., Sherbrooke, W. C. and Schmidt, J. O. (1989). The detoxification of ant (Pogonomyrmex) venom by a blood factor in horned lizards (Phrynosoma). Copeia 1989, 603–7.CrossRefGoogle Scholar
Schmidt-Nielsen, K. (1984). Scaling: Why Is Animal Size So Important? Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Shine, R. (2003). Effects of pregnancy on locomotor performance: an experimental study on lizards. Oecologia 136, 450–6.CrossRefGoogle ScholarPubMed
Sinervo, B. and Losos, J. B. (1991). Walking the tight rope: arboreal sprint performance among Sceloporus occidentalis lizard populations. Ecology 72, 1225–33.CrossRefGoogle Scholar
Sinervo, B., Hedges, R. and Adolph, S. C. (1991). Decreased sprint speed as a cost of reproduction in the lizard Sceloporus occidentalis: variation among populations. J. Exp. Biol. 155, 323–36.Google Scholar
Snyder, G. K., Nestler, J. R., Shapiro, J. I. and Huntley, J. (1995). Intracellular pH in lizards after hypercapnia. Am. J. Physiol. 268, R889–95.Google ScholarPubMed
Thompson, G. G. and Withers, P. C. (1997). Standard and maximal metabolic rates of goannas (Squamata: Varanidae). Physiol. Zool. 70, 307–23.CrossRefGoogle Scholar
Trigosso-Venario, R., Labra, A. and Niemeyer, H. (2002). Interactions between males of the lizard Liolaemus tenuis: roles of familiarity and memory. Ethology 108, 1057–64.CrossRefGoogle Scholar
Berkum, F. H., Huey, R. B., Tsuji, J. S. and Garland, T. Jr. (1989). Repeatability of individual differences in locomotor performance and body size during early ontogeny of the lizard Sceloporus occidentalis (Baird & Girard). Funct. Ecol. 3, 97–105.CrossRefGoogle Scholar
Damme, R. and Vanhooydonck, B. (2001). Origins of interspecific variation in lizard sprint capacity. Funct. Ecol. 15, 186–202.CrossRefGoogle Scholar
Damme, R., Aerts, P. and Vanhooydonck, B. (1998). Variation in morphology, gait characteristics and speed of locomotion in two populations of lizards. Biol. J. Linn. Soc. 63, 409–27.CrossRefGoogle Scholar
Van Damme, R., Vanhooydonck, B., Aerts, P. and De Vree, F. (2003). Evolution of lizard locomotion: context and constraint. In Vertebrate Biomechanics and Evolution, ed. Bels, V. L., Gasc, J. P. and Casinos, A., pp. 267–82. Oxford: BIOS Scientific Publishers.Google Scholar
Vitt, L. J. and Pianka, E. R., ed. (1994). Lizard Ecology: Historical and Experimental Perspectives. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Wang, T., Carrier, D. R. and Hicks, J. W. (1997). Ventilation and gas exchange in lizards during treadmill exercise. J. Exp. Biol. 200, 2629–39.Google ScholarPubMed
Wang, T., Smits, A. W. and Burggren, W. W. (1998). Pulmonary function in reptiles. In Biology of the Reptilia, vol. 19, ed. Gans, C. and Gaunt, A. S., pp. 297–374. Ithaca, NY: Society for the Study of Amphibians and Reptiles.Google Scholar
Weinstein, R. B. (2001). Terrestrial intermittent exercise: common issues for human athletics and comparative animal locomotion. Am. Zool. 41, 219–28.Google Scholar
Weinstein, R. B. and Full, R. J. (1999). Intermittent locomotion increases endurance in a gecko. Physiol. Biochem. Zool. 72, 732–9.CrossRefGoogle Scholar
Wickler, S. J. and Gleeson, T. T. (1993). Lactate and glucose metabolism in mouse (Mus musculus) and reptile (Anolis carolinensis) skeletal muscle. Am. J. Physiol. 264, R487–91.Google ScholarPubMed
Wiens, J. J. and Slingluff, J. L. (2001). How lizards turn into snakes: a phylogenetic analysis of body-form evolution in anguid lizards. Evolution 55, 2303–18.CrossRefGoogle ScholarPubMed
Yang, E. J. and Wilczynski, W. (2002). Relationships between hormones and aggressive behavior in green anole lizards: an analysis using structural equation modeling. Horm. Behav. 42, 192–205.CrossRefGoogle ScholarPubMed
Zani, P. A. (1996). Patterns of caudal-autotomy evolution in lizards. J. Zool. Lond. 240, 201–20.CrossRefGoogle Scholar
Zera, A. J. and Harshman, L. G. (2001). The physiology of life history trade-offs in animals. Ann. Rev. Ecol. Syst. 32, 95–126.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×