Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-06T09:32:44.012Z Has data issue: false hasContentIssue false

7 - Tutorials: How to handle 3D spectroscopy data

Published online by Cambridge University Press:  06 August 2010

Evencio Mediavilla
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Santiago Arribas
Affiliation:
Space Telescope Science Institute, Baltimore
Martin Roth
Affiliation:
Astrophysikalisches Institut Potsdam
Jordi Cepa-Nogué
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Francisco Sánchez
Affiliation:
Centro Astronónomico Hispano-Alemán de Calar, Alto, Spain
Get access

Summary

Introduction

Integral field spectroscopy (IFS) is a technique to obtain both spatial (x,y) and spectral (λ) information of a more or less continuous area of the sky simultaneously on the detector. Only a few instrumental concepts allow 3D information on 2D detectors to be obtained, and all of these are based on field splitters such as fibre bundles, lens array, or image slicers (see Figure 7.1) to sample the field of view. Each sampled element is then dispersed using a classic spectrograph and produces a spectrum on the detector. Depending on the field splitter used, the geometry of the spectra on the detectors may be very different. This diversity leads to the creation of very specific reduction techniques and/or packages, i.e. one per instrument built (e.g. P3d, Becker, 2001). Combined with the inherent complexity of 3D techniques, such software diversity has reduced the use of IFS for decades to a handful of specialists, mainly those involved in the teams building such instruments.

Conscious that this would be a handicap IFS specialists Walsh and Roth (2002) have started to standardize techniques and tools for integral field units (IFU). Recently, the Euro3D Research Training Network (RTN), whose aim was to promote 3D spectroscopy all over Europe (Walsh and Roth, 2002), made a great effort to create a standard data format (Kissler-Patig et al., 2004) for storing and exchanging 3D data, developing an application programming interface, API (Pécontal-Rousset et al., 2004), to ease the use of such a data format and creating a visualization tool (Sánchez, 2004) usable by any existing IFU.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×