Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-07T03:40:47.381Z Has data issue: false hasContentIssue false

15 - ANALYSIS OF DISCRETE-TIME SYSTEMS

Published online by Cambridge University Press:  05 June 2012

Bohdan T. Kulakowski
Affiliation:
Pennsylvania State University
John F. Gardner
Affiliation:
Boise State University, Idaho
J. Lowen Shearer
Affiliation:
Pennsylvania State University
Get access

Summary

LEARNING OBJECTIVES FOR THIS CHAPTER

  1. 15–1 To use the finite-difference approximation of a derivative to develop an approximate discrete-time model corresponding to a continuous input–output model.

  2. 15–2 To derive discrete-time state models for linear dynamic systems.

  3. 15–3 To develop block diagrams of a digital control system including sampling and holding devices.

  4. 15–4 To use the z transform to develop pulse transfer functions of discrete-time systems.

INTRODUCTION

In almost all existing engineering systems, the system variables (input, output, state) are continuous functions of time. The first 14 chapters of this book deal with this category of systems, classified in Chap. 1 as continuous dynamic systems. The last two chapters are devoted to discrete-time systems in which, according to the definition given in Chap. 1, the system variables are defined only at distinct instants of time. It may seem that there are not many such systems, and, indeed, very few examples of intrinsically discrete engineering systems come to mind. There are, however, many systems involving continuous subsystems that are classified as discrete because of the discrete-time elements used to monitor and control the continuous processes. Any system in which a continuous process is measured and/or controlled by a digital computer is considered discrete. Although some variables in such systems are continuous functions of time, they are known only at distinct instants of time determined by the computer sampling frequency, and therefore they are treated as discrete-time variables.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×