Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-04T22:49:01.699Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

References

Hans-Rudolf Wenk
Affiliation:
University of California, Berkeley
Andrei Bulakh
Affiliation:
St Petersburg State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Minerals
Their Constitution and Origin
, pp. 626 - 634
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, T. J. (ed.) (1995). Mineral Physics and Crystallography. A Handbook of Physical Constants. American Geophysical Union, Washington, DC, 354pp
Aines, R. D., Kirby, S. H. and Rossman, G. R. (1984). Hydrogen speciation in synthetic quartz. Phys. Chem. Mineral., 11, 204–212CrossRefGoogle Scholar
Anderson, D. L. and Hart, R. S. (1976). An earth model based on free oscillations and body waves. J. Geophys. Res., 81, 1461–1475CrossRefGoogle Scholar
Arnoth, J. (1986). Achate, Bilder im Stein. Birkhäuser, Basel, Switzerland, 103pp
Bacon, G. E. (1975). Neutron Diffraction. Oxford Univ. Press, Oxford, 436pp
Baikow, V. E. (1967). Manufacture and Refining of Raw Cane Sugar. Elsevier, Amsterdam, 453pp
Banfield, J. F. and Nealson, K. H. (eds.) (1997). Geomicrobiology. Interactions between Microbes and Minerals. Rev. Mineral., vol. 35, Mineralogical Society of America, Washington, DC, 448pp
Barber, D. J. and Wenk, H.-R. (1979). On geological aspects of calcite microstructure. Tectonophysics, 54, 45–60CrossRefGoogle Scholar
Barber, D. J., Heard, H. C. and Wenk, H.-R. (1981). Deformation of dolomite single crystals from 20–800 ℃. Phys. Chem. Miner., 7, 271–286CrossRefGoogle Scholar
Barlow, W. (1897). A mechanical cause of homogeneity of structure and symmetry. Proc. Roy. Dublin Soc, n.s., 8, 527–690Google Scholar
Barron, L. M. (1972). Thermodynamic multicomponent silicate equilibrium phase calculations. Am. Mineral., 57, 809–823Google Scholar
Bartholinus, E. (1669). Experimenta crystalli Islandici disdiaclastici quibus mira et insolita refraction detegitur. Hafniae sumpt. Dan. Paulli Reg. Bibl. (English version, 1670: Experiments made on a crystal-like body sent from Iceland. Phil. Trans. Roy. Soc. Lond., 5, 2039–2048.)Google Scholar
Batty, M. H. and Pring, A. (1997). Mineralogy for Students, 3rd edn. Longman, London, 363pp
Bauer, G. (Agricola) (1556). De Re Metallica. (English translation: Hoover, H. C. and Hoover, L. H. (1950), Dover Publ., New York, 638pp.)
Beck, A., Darbha, D. M., and Schloessin, H. H. (1978). Lattice conductivities of single-crystal and polycrystalline materials at mantle pressure and temperatures. Phys. Earth Planet. Int., 17, 35–53CrossRefGoogle Scholar
Beck, R. (1909). Lehre von den Erzlagerstätten, 3rd edn. Bornträger, Berlin, 540pp
Becke, F. (1903). Über Mineralbestand und Struktur der kristallinen Schiefer. Denkschr. Akad. Wiss., Vienna, 75, 1–53Google Scholar
Bedogné F., Maurizio, R., Montrasio, A. and Sciesa, E. (1995). I Minerali della Provincia di Sondrio e della Bregaglia Grigionese. Bettini, Sondrio, 300 pp
Bentley, W. A. and Humphreys, W. J. (1962). Snow Crystals, paperback edition, Dover Publ., New York, 226pp. (Originally published by McGraw-Hill, 1931.)
Bergmann, T. (1773). Variae crystallorum formae a spata ortae. Nov. Acta Reg. Soc. Sci. Upsala 1Google Scholar
Birch, F. (1952). Elasticity and constitution of the earth's interior. J. Geophys. Res., 57, 227–286CrossRefGoogle Scholar
Bird, J. M. and Weathers, M. S. (1975). Josephinite: specimens from the earth's core?Earth Planet. Sci. Lett., 28, 51–64CrossRefGoogle Scholar
Bischoff, W. D., Sharma, S. K. and MacKenzie, F. T. (1985). Carbonate ion disorder in synthetic and biogenic magnesian calcites: a Raman spectral study. Am. Mineral., 70, 581–589Google Scholar
Blackburn, W. H. and Dennen, W. H. (1994). Principles of Mineralogy, 2nd edn. Brown Publ., Dubuque, IA, 413pp
Bowen, N. L. (1913). The melting phenomena of the plagioclase feldspars. Am. J. Sci., 35, 577–599CrossRefGoogle Scholar
Bowen, N. L. (1928). The Evolution of the Igneous Rocks. Princeton Univ. Press, Princeton, NJ, 336pp
Bowen, N. L. and Tuttle, O. F. (1950). The system NaAlSi3O8–KAlSi3O8–H2O. J. Geol., 58, 498–511Google Scholar
Boyarko, G. Y. (2000). Economics of Mineral Raw Materials. (In Russian.) Tomsk Polytechnical University, Audit-Inform Press, Tomsk, 365pp
Bragg, W. H. and Bragg, W. L. (1913). The reflection of X-rays by crystals. Proc. Roy. Soc. Lond., ser. A, 88, 428–438CrossRefGoogle Scholar
Bragg, W. L. (1914). The structure of some crystals as indicated by their diffraction of X-rays. Proc. Roy. Soc. Lond., ser. A, 89, 277–291CrossRefGoogle Scholar
Bragg, W. L. (1930). The structure of silicates. Z. Kristallogr., 74, 237–305Google Scholar
Bravais, A. (1850). Les systèmes formés par des pointes distribués regulièrement sur un plan ou dans l'espace. J. École Polytech., 19, 1–128Google Scholar
Breithaupt, A. (1849). Die Paragenesis der Mineralien, mineralogisch, geognostisch und chemisch beleuchtet: mit besonderer Rücksicht auf Bergbau. Engelhardt, Freiberg, 276pp
Brody, J. J. (1980). Mimbres Painted Pottery, 2nd edn. Univ. New Mexico Press, Albuquerque, NM, 253pp
Buerger M. J. (1951). Crystallographic aspects of phase transformations. In Phase Transformations in Solids, ed. R. Smoluchowski, J. E. Mayer and W. A. Weyls, pp. 183–221. Wiley, New York
Buerger, M. J. (1978). Elementary Crystallography. An Introduction to the Fundamental Geometric Features of Crystals, revised edn. MIT Press, Cambridge, MA, 528pp
Bulakh, A. G. (1996) Summary mineral composition of the earth's crust. (In Russian.)Proc. Russ. Mineral. Soc., 4, 23–28Google Scholar
Bulakh, A. G. (2002). General Mineralogy. Textbook for Students, 3rd edn. (In Russian.) St Petersburg Univ. Press, 354pp
Bulakh, A. G. and Zolotarev, A. A. (2000). Composition of monoclinic Ca–Mg–Fe–Na pyroxenes of the C2/c space group and the 50% rule. Proc. Russ. Mineral. Soc., 6, 69–79Google Scholar
Bulakh, A. G. and Zussman, J. (1994). Structural formulae. In Advanced Mineralogy Vol. 1, Composition, Structure and Properties of Mineral Matter, ed. A. S. Marfunin, pp. 12–18. Springer Verlag, Berlin
Burke, J. R. (1966). Origins of the Science of Crystals. Univ. California Press, Berkeley, CA, 198pp
Burri, C., Parker, R. L. and Wenk, E. (1967). Die Optische Orientierung der Plagioklase. Birkhäuser, Basel, 334pp
Buseck, P. R. (ed.) (1992). Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy. Rev. Mineral., vol. 27, Mineralogical Society of America, Washington, DC, 516pp
Caley, E. R. and Richards, J. F. C. (1956). Theophrastus on Stones. Introduction, Greek Text, English Translation, and Commentary. Ohio State Univ. Press, Columbus, OH, 238pp
Cameron, E. N., Jahns, R. H., McNair, A. H. and Page, L. R. (1949). The Internal Structure of Granitic Pegmatites. Econ. Geol. Monogr., no 2, American Geophysical Union, Washington, DC, 115pp
Cann, J. R., Strens, M. R. and Rice, A. (1985). A simple magma-driven thermal balance model for the formation of volcanogenic massive sulfides. Earth Planet. Sci. Lett., 76, 123–134CrossRefGoogle Scholar
Cappeller, M. A. (1723). Prodromus Crystallographiae de Crystallis Improprie Sic Dictis Commentarium. Wyssing, Lucerne. Transl. by K. Mieleitner (1922). Piloty and Loehle, Munich, 47pp
Carr, H. W., Groves, D. I. and Cawthorne, R. G. (1994). The importance of synmagmatic deformation in the formation of Merensky Reef potholes in the Bushveld complex. Econ. Geol., 89, 1398–1410CrossRefGoogle Scholar
Chai, M., Brown, J. M. and Slutsky, L. J. (1996). Thermal diffusivity of mantle minerals. Phys. Chem. Mineral., 23, 470–475CrossRefGoogle Scholar
Champness, P. and Lorimer, G. (1971). An electron microscopy study of lunar pyroxene. Contrib. Mineral. Petrol., 33, 171–183CrossRefGoogle Scholar
Champness, P. E. and Lorimer, G. W. (1976). Exsolution in silicates. In Electron Microscopy in Mineralogy, ed. H.-R. Wenk, pp. 174–204. Springer-Verlag, BerlinCrossRef
Chelishchev, N., Ph., Volodin, V. F., and Krjukin, V. L. (1988). Ion Exchange Properties of Natural High-silica Zeolites. (In Russian.) Nauka Publ. Co., Moscow, 128pp
Christiansen, E. H. (2001). Petroglyph 1.0. CD. Blackwell Science, Malden, MA
Christensen, J. N., Rosenfeld, J. L. and DePaolo, D. J. (1989). Rates of tectonometamorphic processes from rubidium and strontium isotopes in garnet. Science, 244, 1465–1469CrossRefGoogle Scholar
Clark, S. P. (1966). Handbook of Physical Constants. Geol. Soc. Am. Mem., no. 97, American Geophysical Union, Washington, DC, 587pp
, Curie J. and Curie, P. (1880). Sur l'électricité polaire dans les cristaux hémidièdres à faces inclinés. Comp. R. Acad. Sci., 91, 383–389Google Scholar
Dana, J. D. (1837). System of Mineralogy, including extended Treatise on Crystallography: with an Appendix, containing the Application of Mathematics to Crystallographic investigation, and a Mineralogical Bibliography. Durrie and Peck, New Haven, CT, 452pp
Dana, J. D. (1868). A System of Mineralogy. Descriptive Mineralogy, Comprising the most Recent Discoveries, 5th edn. Wiley, New York, 827pp
Davies, T. A. and Gorsline, D. S. (1976). Oceanic sediments and sedimentary processes. Chem. Oceanogr., 5, 1–80Google Scholar
Daulton, T. L., Eisenhour, D. D., Bernatowicz, T. J., Lewis, R. S. and Buseck, P. R. (1996). Genesis of presolar diamonds: comparative high-resolution transmission electron microscope study of meteoritic and terrestrial nano-diamonds. Geochim. Cosmochim. Acta, 60, 4853–4872CrossRefGoogle Scholar
Debye, P. P. and Scherrer, P. (1916). Interferenzen an regellos orientierten Teilchen im Röntgenlicht. I. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math. Physik. Klasse, 1–15Google Scholar
Devouard, B., Posfai, M., Hua, X., Bazylinski, D. A., Frankel, R. B. and Buseck, P. R. (1998). Magnetite from magnetotactic bacteria: size distributions and twinning. Am. Mineral., 83, 1387–1398CrossRefGoogle Scholar
Dillon, F. J. (1963). Domains and domain walls. In Magnetism, vol. 3, ed. G. T. Rado and H. Suhl, pp. 415–464. Academic Press, New YorkCrossRef
Donnay, J. D. H. (1947). Hexagonal four-index symbols. Am. Mineral., 32, 52–58Google Scholar
Dove, H. W. (1860). Optische Notizen. Ann. Phys., 110, 286–290CrossRefGoogle Scholar
Downing, K. H., Meisheng, H., Wenk, H.-R. and O'Keefe, A. O. (1990). Resolution of oxygen atoms in staurolite by three-dimensional transmission electron microscopy. Nature, 348, 525–528CrossRefGoogle Scholar
Droop, G. T. R. (1987). A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria. Mineral. Mag., 51, 431–435CrossRefGoogle Scholar
Dunn, M. D. (1983). Fundamentals of Nutrition. CBI Publ., Boston, MA, 581pp
Evans, A. M. (1993). Ore Geology and Industrial Minerals. An Introduction, 3rd edn. Blackwell, Oxford, 390pp
Evzikova, N. Z. (1984). Prospecting Crystallomorphology of Minerals. (In Russian.) Nedra, Moscow, 143pp
Ewald, P. P. (ed.) (1962). Fifty Years of X-ray Diffraction. International Union of Crystallographers and Oosthoek's, Utrecht, 720pp
Fedorow, E. S. (1885). Elements of the rules of figures. (In Russian.)Trans. Royal Russ. Mineral. Soc. St Petersburg, 21, 1–279. [See also 1890 German review by G. Wulff in Z. Kristallogr. 17, 610–611.]Google Scholar
Fedorow, E. S. (1892). Zusammenstellung der krystallographischen Resultate des Herrn Schoenflies und der meinigen. Z. Kristallogr., 20, 25–75Google Scholar
Filippenko, A. V. (1997). Optical spectra of supernovae. Annu. Rev. Astron. Astrophys., 35, 309–355CrossRefGoogle Scholar
Fournier, R. O. (1985). The behavior of silica in hydrothermal solutions. In Geology and Geochemistry of Epithermal Systems, ed. B. R. Berger and P. M. Bethke. Rev. Geol., vol. 2, pp. 63–79. Society of Economists and Geologists, Chelsea, MI
Frank, F. C. (1949). The influence of dislocations on crystal growth. Disc. Faraday Soc., 5, 48–54CrossRefGoogle Scholar
Friedman, G. M. (1959). Identification of carbonate minerals by staining methods. J. Sedim. Petr., 29, 87–97Google Scholar
Friedrich, W., Knipping, P. and Laue, M. (1912). Interferenz-Erscheinungen bei Röntgenstrahlen. Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse der Königlich Bayerischen Akademie der Wissenschaften zu München, pp. 363–373Google Scholar
Frondel, J. W. (1975). Lunar Mineralogy. Wiley, New York, 323pp
Gao Zhen-xi (1980). Minerals in China. Museum of Geology, Ministry of Geology, Beijing, 164pp
Garrels, R. M. and Christ, C. L. (1990). Solutions, Minerals and Equilibria, 2nd edn. Jones and Bartlett, Boston, MA, 450pp
Garrels, R. M., Thompson, M. E. and Siever, R. (1960). Stability of some carbonates at 25 ℃ and one atmosphere total pressure. Am. J. Sci., 258, 402–418CrossRefGoogle Scholar
Goldschmidt, V. M. (1911). Die Gesetze der Mineralassoziationen vom Standpunkt der Phasenregel. Z. Anorgan. Chem., 71, 313–322CrossRefGoogle Scholar
Goldschmidt, V. M. (1923–1927). Geochemische Verteilungsgesetze der Elemente. Norsk Videnskaps-akademi i Oslo. Skrifter. I. Mathematisk-naturvidenskabelik Klasse. 1923, no. 3; 1924, nos. 4–5; 1925, nos. 5 and 7; 1926, nos. 1, 2 and 8; 1927, no. 4
Goldsmith, J. R. and Heard, H. C. (1961). Subsolidus phase relations in the system CaCO3–MgCO3. J. Geol., 69, 45–74CrossRefGoogle Scholar
Goreva, J. S., Ma, Chi and Rossman, G. R. (2001). Fibrous nanoinclusions in massive rose quartz: the origin of rose coloration. Am. Mineral., 86, 466–472CrossRefGoogle Scholar
Gottardi, G. and Galli, E. (1985). Natural Zeolites. Springer-Verlag, Berlin, 409pp
Grady, M. M. (2000). Catalogue of Meteorites, 5th edn. Cambridge Univ. Press, Cambridge, 696pp
Greenwood, H. J. (1967). Wollastonite: stability in H2O–CO2 mixtures and occurrence in a contact-metamorphic aureole near Salmo, British Columbia, Canada. Am. Mineral., 52, 1669–1680Google Scholar
Grigor'ev, D. P. (1965). Ontogeny of Minerals. Israel Program for Scientific Translations, Jerusalem, 250pp
Grigoriev, I. S. and Meilikhov, E. Z. (eds.) (1997). Handbook of Physical Quantities. CRC Press, Boca Raton, FL, 1548pp
Grossman, L. (1972). Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 597–619CrossRefGoogle Scholar
Groth, P. H. (1904). Einleitung in die Chemische Krystallographie. Engelmann, Leipzig, 80pp
Groth, P. H. (1926). Entwicklungsgeschichte der mineralogischen Wissenschaften. Springer-Verlag, Berlin, 261pp
Guthrie, G. D. and Mossman, B. T. (1993). Health Effects of Mineral Dust. Rev. Mineral. vol. 28. Mineralogical Society of America, Washington, DC, 484pp
Haeckel, E. (1904). Kunstformen der Natur. Bibliographische Institut, Leipzig, 204pp. (English Translation, 1974: Art Forms in Nature, Dover Publ., New York.)
Hahn, T. (ed.) (1987). International Tables for Crystallography, vol. A, Space Group Symmetry, 2nd edn. Reidel, Dordrecht, 878pp
Hahn, T. (ed.) (1988). International Tables for Crystallography, vol. A, Space Group Symmetry. Brief Teaching Edition, 2nd edn. Reidel, Dordrecht, 120pp
Haüy, R. J. (1784). Essay d'une Théorie sur la Structure des Crystaux. Gogué and Née de la Rochelle, Paris, 236pp
Haüy, R. J. (1801). Traité de Minéralogie, 4 vols. and atlas of 86 plates. Chez Louis, Paris, vol. 1, 494pp., vol. 2, 617pp., vol. 3, 598pp., vol. 4, 592pp
Hemley, R. J. (ed.) (1998). Ultra-High Pressure Mineralogy: Physics and Chemistry of the Earth's Deep Interior. Rev. Mineral., vol. 37. Mineralogical Society of America, Washington, DC, 671pp
Hessell, J. F. C. (1830). Kristallonometrie oder Krystallometrie und Krystallographie. In J. S. T. Gehler's Physikalisches Wörterbuch, vol. 8, 346pp. (Separate printing Leipzig, 1931.)
Hibbard, M. J. (2002). Mineralogy. A Geologist's Point of View. Wiley, New York, 562pp
Hoefs, J. (1987). Stable Isotope Geochemistry, 3rd edn. Springer-Verlag, Berlin, 241pp
Hofmann, F. and Massanek, A. (1998). Die Mineralogische Sammlung der Bergakademie Freiberg. Christian Weise Verlag, München, 72pp
Horai, K. (1971). Thermal conductivity of rock-forming minerals. J. Geophys. Res., 76, 1278–1308CrossRefGoogle Scholar
Hosking, K. F. G. (1951). Primary ore deposition in Cornwall. Trans. Roy. Geol. Soc. Cornwall, 18, 309–356Google Scholar
Hoszowska, J., Freund, A. K., Boller, E., Sellschop, J. P. F., Level, G., Hartwig, J., Burns, R. C., Rebak, M. and Baruchel, J. (2001). Characterization of synthetic diamond crystals by spatially resolved rocking curve measurements. J. Phys. D 34, A47–A51Google Scholar
Hu, M., Wenk, H.-R. and Sinitsina, D. (1992). Microstructures in natural perovskites. Am. Mineral., 77, 359–373Google Scholar
Huebner, J. S. (1980). Pyroxene phase equilibria at low pressure. In Pyroxenes, ed. C. T. Prewitt, pp. 213–288. Rev. Mineral., vol. 7, Mineralogical Society of America, Washington, DC
Ito, E. M. and Takahashi, E. (1989). Postspinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications. J. Geophys. Res., 94, 10637–10646CrossRefGoogle Scholar
Ivanova, T. I., Frank-Kamenetskaya, O. V., Kol'tsov, A. B. and Ugolkov, V. L. (2001). Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J. Solid State Chem., 160, 340–349CrossRefGoogle Scholar
Jahns, R. H. and Burnham, C. W. (1969). Experimental studies of pegmatite genesis. I. A model for the derivation and crystallization of granitic pegmatites. Econ. Geol., 64, 843–864CrossRefGoogle Scholar
Joesten, R. (1986). The role of magmatic reaction, diffusion and annealing in the evolution of coronitic microstructure in troctolitic gabbro from Risör, Norway. Mineral. Mag., 50, 441–467CrossRefGoogle Scholar
Kanamori, H., Fujii, N. and Mizutani, H. (1968). Thermal diffusivity measurement of rock-forming minerals from 400 to 1100 K. J. Geophys. Res., 73, 595–605CrossRefGoogle Scholar
Katkova, V. I. (1996). Urinary Stones: Mineralogy and Origin. (In Russian.) Russian Academy of Sciences, Syktyvkar, 87pp
Keller, P. C. (1990). Gemstones and their Origins. Van Nostrand Reinhold, New York, 144pp
Kelley, D. S., Delaney, J. R. and Yoerger, D. R. (2001). Geology and venting characteristics of the Mothra hydrothermal field, Endeavour segment, Juan de Fuca Ridge. Geology, 29, 959–9622.0.CO;2>CrossRefGoogle Scholar
Kellogg, L. H., Hager, B. H. and Hilst, R. D. (1999). Compositional stratification in the deep mantle. Science, 283, 1881–1884CrossRefGoogle ScholarPubMed
Kelly, M. G. (1999). Effects of heavy metals on the aquatic biota. In The Environmental Geochemistry of Mineral Deposits, vol. A, ed. G. S. Plumlee and M. J. Logsdon, pp. 363–371
Kesler, S. E. (1994). Mineral Resources, Economics and the Environment. Macmillan, New York, 391pp
Kirkpatrick, R. J., Smith, K. A., Schramm, S., Turner, G. and Yang, W.-H. (1985). Solid state NMR spectroscopy of minerals. Annu. Rev. Earth. Planet. Sci., 13, 29–47CrossRefGoogle Scholar
Klein, C. (2002). Manual of Mineral Science, 22nd edn. Wiley, New York, 641pp
Klein, C. and Hurlbut, C. S. (1993). Manual of Mineralogy, 21st edn. Wiley, New York, 681pp
Klockmann, F. (1895). Lehrbuch der Mineralogie. Enke Verlag, Stuttgart, 588pp
Kocks, U. F., Tomé, C. N. and Wenk, H.-R. (2000). Texture and Anisotropy. Preferred Orientation in Polycrystals and their Effect on Materials Properties, paperback edn. Cambridge Univ. Press, Cambridge, 676pp
Kopylova, M. G., Gurney, J. J. and Daniels, L. R. M. (1997). Mineral inclusions in diamonds from the River Ranch kimberlite, Zimbabwe. Contrib. Mineral. Petrol., 129, 366–384CrossRefGoogle Scholar
Korago, A. A. (1992). Introduction into Biomineralogy. (In Russian.) Nedra, Leningrad, 280pp
Korzhinskii, D. S. (1959). Physicochemical Basis of the Analysis of the Paragenesis of Minerals. (English translation.) Consultants' Bureau, New York, 142pp
Kretz, R. (1994). Metamorphic Crystallization. Wiley, New York, 507pp
Kundt, A. (1883). Über eine einfache Methode zur Untersuchung der Thermo-, Actino- und Piezoelektrizität der Krystalle. Annal. Physik, 20, 592–601CrossRefGoogle Scholar
Kurilenko, V. V. (1997). Modern Basins of Evaporite Sedimentation. (In Russian.) St Petersburg Univ. Press, St Petersburg, 252pp
Lally, J. S., Heuer, A. H. and Nord, G. L. (1976). Precipitation in the ilmenite–hematite system. In Electron Microscopy in Mineralogy, ed. H.-R. Wenk, pp. 214–219. Springer-Verlag, BerlinCrossRef
Landis, W. J., Hodgens, K. J., Arena, J., Song, M. J. and Ewen, B. F. (1996). Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc. Res. Techn., 33, 192–2023.0.CO;2-V>CrossRefGoogle ScholarPubMed
Laves, F. (1962). The growing field of mineral structures. In Fifty Years of X-Ray Diffraction, ed. P. P. Ewald, pp. 174–189. International Union of Crystallographers and Oosthoek's, Utrecht
Laves, F. and Goldsmith, J. R. (1961). Polymorphism, order, disorder, diffusion and confusion in the feldspars. Cursillos y Conferencias, Instituto di Lucas Mallado, C. S. I. C., Spain, vol. 7, pp. 71–80
Lee, R. W. (1964). On the role of hydroxyl in the diffusion of hydrogen in fused silica. Phys. Chem. Glasses, 5, 35–43Google Scholar
Lenz, H. O. (1861). Mineralogie der alten Griechen und Römer. Thienemann, Gotha, 194pp. (Reprinted Sandig Verlag, Wiesbaden, 1966.)
Liebau, F. (1962). Die Systematik der Silikate. Naturwissenschaften, 49, 481–491CrossRefGoogle Scholar
Liebau, F. (1985). Structural Chemistry of Silicates. Structure, Bonding, Classification. Springer-Verlag, Berlin, 347ppCrossRef
Lindgren, W. (1933). Mineral Deposits, 4th edn. McGraw Hill, New York, 930pp
Loewenstein, W. (1954). The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral., 39, 92–96Google Scholar
Logvinenko, N. V. and Orlova, L. V. (1987). Formation and Transformation of Sedimentary Rocks on Continents and in Oceans. (In Russian.) Nedra, Leningrad, 235pp
London, D. (1987). Internal differentiation of rare-element pegmatites: effects of boron, phosphorus, and fluorine. Geochim. Cosmochim. Acta, 51, 403–420CrossRefGoogle Scholar
Lopez, R. M. C., Kamp, L. W., Doute, S., Smythe, W. D., Carlson, R. W., McEwen, A. S., Geissler, P. E., Kieffer, S. W., Leader, F. E., Davies, A. G., Barbinis, E., Mehlman, R., Segura, M., Shirley, J. and Soderblom, L. A. (2001). Io in the near infrared: near-infrared mapping spectrometer (NIMS) results from the Galileo flybys in 1999 and 2000. J. Geophys. Res., 106, 33053–33078CrossRefGoogle Scholar
MacGillavry, C. H. (1976). Symmetry Aspects of M. C. Escher's Periodic Drawings, 2nd edn. International Union of Crystallography and Bohn, Scheltma and Holkema, Utrecht, 84pp
Mallowan, M. E. L. and Cruikshank, R. J. (1933). Excavations at Tel Arpachiyah. Iraq, 2, 1–178Google Scholar
Manghnani, M. H. and Syono, Y. (eds.) (1987). High Pressure Research in Mineral Physics. Geophys. Monogr., 39, 486pp. American Geophysical Union, Washington, DC
Mason, B. (1962). Meteorites. Wiley, New York, 274pp
Matthes, S. (1987). Mineralogie. Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde, 2nd edn. Springer-Verlag, Berlin, 444ppCrossRef
Maucher, W. (1914). Leitfaden für den Geologie-Unterricht, 2nd edn. Craz und Gerlach, Freiberg, 203pp
McCammon, C. A. (1995). Mössbauer spectroscopy of minerals. In Mineral Physics and Crystallography. A Handbook of Physical Constants, pp. 332–347. American Geophysical Union, Washington, DCCrossRef
McCammon, C. A. (2000). Insights into phase transformations from Mössbauer spectroscopy. In Transformation Processes in Minerals, ed. S. A. T. Redfern and M. A. Carpenter, pp. 241–257. Rev. Mineral., vol. 39, Mineralogical Society of America, Washington, DC
McCammon, C. A. (2001). Deep diamond mysteries. Science, 293, 813–814CrossRefGoogle ScholarPubMed
McKeown, D. A. and Post, D. A. (2001). Characterization of manganese oxide mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy. Am. Mineral., 86, 701–713CrossRefGoogle Scholar
McLaren, A. C. (1991). Transmission Electron Microscopy of Minerals and Rocks. Cambridge University Press, Cambridge, 387pp
Medenbach, O. and Medenbach U. (2001). Mineralien, Erkennen und Bestimmen. Steinbach's Naturführer, Mosaik Verlag, Niedernhausen, Germany, 191pp
Medenbach, O. and Wilk, H. (1986). The Magic of Minerals. Springer Verlag, Berlin, 204pp
Mehta, P. K. and Monteiro, P. J. M. (1993). Concrete. Structure, Properties, and Materials. Prentice-Hall, Upper Saddle River, NJ, 548pp
Meisheng, H., Wenk, H.-R. and Sinitsyna, D. (1992). Microstructures in natural perovskites. Am. Mineral., 77, 359–373Google Scholar
Metzger, H. (1918). La genèse de la science des cristaux. Alcan, Paris, 248pp
Meyer, C. (1988). Ore deposits as guides to geologic history. Annu. Rev. Earth Planet. Sci., 16, 147–171CrossRefGoogle Scholar
Miller, W. H. (1839). A Treatise on Crystallography. Pitt Press, Cambridge, 139pp
Mitchell, R. H. (1986). Kimberlites. Mineralogy, Geochemistry and Petrology. Plenum Press, New York, 442ppCrossRef
Mitscherlich, E. (1820). Sur la relation que existe entre la forme cristalline et les proportions chimiques. Ann. Chimie Phys., 14, 172–190Google Scholar
Mitscherlich, E. (1821). Sur la relation que existe entre la forme cristalline et les proportions chimiques. IIme. mémoire sur les arséniates et les phosphates. Ann. Chimie Phys., 19, 350–419Google Scholar
Morris, G. B., Raitt, R. W. and Shor, G. G. (1969). Velocity anisotropy and delay time maps of the mantle near Hawaii. J. Geophys. Res., 74, 4300-4316CrossRefGoogle Scholar
Mullis, J. (1991). Bergkristall. Schweizer Strahler, 9, 127–161Google Scholar
Mullis, J., Dubessy, J., Poty, B. and O'Neil, J. (1994). Fluid regimes during late stages of a continental collision: physical, chemical, and stable isotope measurements of fluid inclusions in fissure quartz from a geotraverse through the Central Alps, Switzerland. Geochim. Cosmochim. Acta, 58, 2239–2263CrossRefGoogle Scholar
Nakamoto, K. (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A Theory and Applications in Inorganic Chemistry, 5th edn. Wiley, New York, 387pp
Nakaya, U. (1954). Formation of snow crystals. Snow, Ice and Permafrost Research Establishment, Research Paper 3, 12pp. Corps of Engineers, US Army, Wilmette, IL
Neev, D. and Emery, K. O. (1967). The Dead Sea. Depositional Processes and Environments of Evaporites. Israel Geol. Survey Bull., vol. 41, 147pp
Nesse, W. D. (2000). Introduction to Mineralogy. Oxford Univ. Press, New York, 442pp
Neumann, F. E. (1885). Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers, gehalten an der Universität Königsberg, ed. O. E. Meyer. B. G. Teubner, Leipzig, 374pp
Niggli, P. (1920). Lehrbuch der Mineralogie. Borntraeger, Berlin, 694pp
Nye, J. F. (1957). Physical Properties of Crystals, Oxford Univ. Press, London 329pp. (Reprinted 1998.)
O'Keefe, M. and Hyde, B. G. (1985). An alternative approach to non-molecular crystal structures with emphasis on the arrangement of cations. Struct. Bond., 61, 77–144CrossRefGoogle Scholar
Orowan, E. (1934). Plasticity of crystals. Z. Physik, 89, 605–659CrossRefGoogle Scholar
Page, R. H. and Wenk, H.-R. (1979). Phyllosilicate alteration of plagioclase studied by transmission electron microscopy. Geology, 7, 393–3972.0.CO;2>CrossRefGoogle Scholar
Parsons, I. (ed.) (1994). Feldspars and Their Reactions. Kluwer Academic Publishers, Dordrecht, Netherlands, 650pp
Pauling, L. (1929). The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc., 51, 1010–1026CrossRefGoogle Scholar
Pédro, G. (1997). Clay minerals in weathered rock materials and in soils. In Soils and Sediments. Mineralogy and Geochemistry, ed. H. Paquet and N. Clauer, pp. 1–20. Springer-Verlag, BerlinCrossRef
Perkins, D. (1998). Mineralogy. Prentice-Hall, Upper Saddle River, NJ, 484pp
Petrov, T. G.Lyapichev, I. G., Suslov, G. I. and Knizel, A. A. (1993). Intergranular substance within the spinel lherzolite xenolith. (In Russian.)Proc Russ. Mineral. Soc., 2, 138–144Google Scholar
Phillips, B. L. (2000). NMR spectroscopy of phase transitions in minerals. In Transformation Processes in Minerals, ed. S. A. T. Redfern and M. A. Carpenter, pp. 203–240. Rev. Mineral., vol. 39, Mineralogical Society of America, Washington, DC
Phillips, R. M. (1971). Mineral Optics. Principles and Techniques. W. H. Freeman and Co., San Francisco, 249pp
Polanyi, M. (1934). Lattice distortion which originates plastic flow. Z. Physik, 89, 660–604CrossRefGoogle Scholar
Pough, F. H. (1986). A Field Guide to Rocks and Minerals, 5th edn. Houghton Mifflin, New York, 396pp
Prechtl, J. J. (1810). Théorie de la cristallisation. J. Mines, 28, 261–312Google Scholar
Putnis, A. (1992). Introduction to Mineral Sciences. Cambridge Univ. Press, Cambridge, 457ppCrossRef
Ramsdell, L. S. (1947). Studies on silicon carbide. Am. Mineral., 32, 64–82Google Scholar
Reinhard, M. (1931). Universal Drehtischmethoden. Wepf, Basel, 117pp
Rieder, R., Economou, T., Wänke, H., Turkevich, A., Crisp, J., Brückner, J.Dreibus, G., McSween, H. Y. (1997). The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. Science, 278, 1771–1774CrossRefGoogle ScholarPubMed
Ringwood, A. E. (1975). Composition and Petrology of the Earth's Mantle. McGraw-Hill, New York, 618pp
Ringwood, A. E. (1979). Origin of the Earth and Moon. Springer-Verlag, Berlin, 292pp
Robie, R. A. and Hemingway, B. S. (1995). Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105Pascals) Pressure and at Higher Temperatures. US Geolog. Surv. Bull., vol. 2131, 461pp
Rock, N. M. S. and Carroll, G. W. (1990). MINTAB: A general-purpose mineral recalculation and tabulation program for Macintosh microcomputers. Am. Mineral., 75, 424–430Google Scholar
Rogers, J. (1957). The distribution of marine carbonate sediments: a review. In Regional Aspects of Carbonate Deposition, ed. R. J. Le Blanc and J. G. Breeding, pp. 2–14. Soc. Econ. Paleontol. Mineral., Spec. Publ., no. 5, Tula, OKCrossRef
Ronov, A. B. and Yaroshevsky, A. A. (1969). Chemical composition of the Earth's crust. In The Earth's Crust and Upper Mantle, ed. P. J. Hart, pp. 37–57. Geophys. Monogr. no. 13. American Geophysical Union, Washington, DCCrossRef
Ronov, A. B., Yaroshevsky, A. A. and Migdisov, A. A. (1991). Chemical composition of the earth's crust and geochemical balance of elements. Int. Geol. Rev., 17, 941–1047CrossRefGoogle Scholar
Rosbaud, P. and Schmid, E. (1925). über die Verfestigung von Einkristallen durch Legierung und Kaltreckung. Z. Physik, 32, 197–225CrossRefGoogle Scholar
Rousseau, D. L., Bauman, R. P. and Porto, S. P. S. (1981). Normal mode determination in crystals. J. Raman Spectr., 10, 253–290CrossRefGoogle Scholar
Scheetz, B. E. and White, W. B. (1977). Vibrational spectra of the alkaline earth double carbonates. Am. Mineral., 62, 36–50Google Scholar
Schmid, E. (1924). Zn-normal stress law. In Proceedings of the International Congress of Applied Mechanics, Delft, p. 342
Schneiderhöhn, H. (1941). Lehrbuch der Erzlagerstättenkunde. Volume 1, Fischer Verlag, Jena, 858pp
Schoenflies, A. (1891). Krystallsysteme und Krystallstructur. B. G. Teubner, Leipzig, 638pp
Scovil, J. A. (1996). Photographing Minerals, Fossils and Lapiday Materials. Geoscience Press, Missoula, MT, 224 pp
Seeber, L. A. (1824). Versuch einer Erklärung des inneren Baues der festen Körper. Gilbert's Annal. Physik, 76, 229–248CrossRefGoogle Scholar
Seifert, F. (1990). Phase transitions in minerals studied by 57 Fe Mössbauer spectroscopy. In Absorption Spectroscopy in Mineralogy, ed. A. Mottana and F. Burregato, pp. 145–170. Elsevier, Amsterdam
Semkin, R. G. and Kramer, J. R. (1976). Sediment geochemistry of Sudbury area lakes. Can. Mineral., 14, 73–90Google Scholar
Shannon, R. D. and Prewitt, C. T. (1969). Effective ionic radii in oxides and fluorides. Acta Crystallogr., 25, 925–946CrossRefGoogle Scholar
Shearer, P. M. (1999). Introduction to Seismology. Cambridge University Press, Cambridge, 260pp
Shen, G., Mao, H.-K., Hemley, R. J., Duffy, T. S. and Rivers, M. L. (1998). Melting and crystal structures of iron at high pressures and temperatures. Geophys. Res. Lett., 25, 373–376CrossRefGoogle Scholar
Sillitoe, R. H. (1973). The tops and bottoms of porphyry copper deposits. Econ. Geol., 68, 799–815CrossRefGoogle Scholar
Silver, P. G. (1996). Seismic anisotropy beneath the continents: probing the depths of geology. Annu. Rev. Earth Planet. Sci., 24, 385–432CrossRefGoogle Scholar
Simmons, G. and Wang, H. (1971). Single Crystal Elastic Constants and Calculated Aggregate Average Properties – A Handbook. MIT Press, Cambridge, MA, 370pp
Singer, M. J. and Munns, D. N. (2002). Soils, an Introduction, 5th edn. Prentice-Hall, Upper Saddle River, NJ, 429pp
Sinyakov, V. I. (1987). Basis for the theory of the origin of ores. (In Russian.) Nedra, Leningrad, 191pp
Slemmons, D. B. (1962). Determination of volcanic and plutonic plagioclases using a three- or four-axis universal stage. Geol. Soc. Am. Spec. Paper, 69, 64ppGoogle Scholar
Smith, G. I. (1979). Subsurface stratigraphy and geochemistry of late Quaternary evaporates, Searles Lake, California. US Geol. Survey Prof. Paper, no. 1043, 103pp
Smith, J. V. and Brown, W. L. (1988). Feldspar Mineralogy. Springer-Verlag, Berlin, 828pp
Smith, J. V. and Yoder, H. S. (1956). Experimental and theoretical studies of the mica polymorphs. Mineral. Mag., 31, 209–235Google Scholar
Smith, K. S. and Huyck, H. L. O. (1999). An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. In The Environmental Geochemistry of Mineral Deposits, vol. A, ed. G. S. Plumlee and M. J. Logsdon, pp. 29–70. Society of Economic Geologists, Littleton, CO
Sofianides, A. S. and Harlow, G. E. (1990). Gems and Crystals from the American Museum of Natural History. Simon and Schuster, New York, 208pp
Speiser, A. (1980). Theorie der Gruppen von endlicher Ordnung: Mit Anwendungen auf algebraische Zahlen und Gleichungen sowie auf die Kristallographie, 5th edn. Birkhäuser, Basel, 271pp
Spry, A. (1969). Metamorphic Textures. Pergamon Press, Oxford, 350pp
Sriramadas, A. (1957). Diagrams for the correlation of unit cell edges and refractive indices with the chemical composition of garnets. Am. Mineral., 42, 294–298Google Scholar
Stalder, H. A., de Quervain, F., Niggli, E. and Graeser, S. (1973). Die Mineralfunde der Schweiz. Wepf, Basel, 433pp
Stanton, M. F., Layard, M., Tegeris, A., Miller, E., May, M., Morgan, E. and Smith, A. (1981). Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous materials. J. Natl. Cancer Inst. 67, 965–975Google Scholar
Stebbins, J. F. and Farnan, I. (1989). NMR spectroscopy in the earth sciences. Science, 245, 257–263CrossRefGoogle ScholarPubMed
Steiger, R. H. and Hart, S. R. (1967). The microcline–orthoclase transition within a contact aureole. Am. Mineral., 52, 87–116Google Scholar
Steno, N. (1669). Nicolai Stenonis de solido intra solidum naturaliter contento dissertationis prodromus ad serenissium Ferdinandum II. Ex typographia sub signo Stellae, Florentiae, 78pp
Stolz, J. F. (1992). Magnetotactic bacteria: biomineralization, ecology, sediment magnetism, environmental indicator. In Biomineralization Processes of Iron and Manganese. Modern and Ancient Environments, ed. H. C. W. Skinner and R. W. Fitzpatrick, pp. 133–145. Catena Suppl. no. 21. Catena Verlag, Cremlingen
Stout, G. H. and Jensen L. H. (1989). X-ray Structure Determination. Wiley, New York, 467pp
Strakhov, N. M. (1967). Principles of Lithogenesis, vol. 1. Oliver and Boyd, London, 245pp
Streckeisen, A. (1976). To each plutonic rock its proper name. Earth Sci. Rev., 12, 1–33CrossRefGoogle Scholar
Tabor, D. (1954). Mohs's hardness scale – a physical interpretation. Proc. Phys. Soc., B67, 249-257CrossRefGoogle Scholar
Takakura, M., Natoya, S. and , Takahashi H. (2001). Application of cathodoluminescence to EPMA. JEOL News, 36E, 35–39Google Scholar
Taylor, G. I. (1934). The mechanism of plastic deformation of crystals. Proc. Roy. Soc. London ser. A, 145, 362–387CrossRefGoogle Scholar
Taylor, S. R. (2001). Solar System Evolution. A New Perspective, 2nd edn. Cambridge Univ. Press, Cambridge, 460ppCrossRef
Taylor, W. H. (1933). The structure of sanidine and other feldspars. Z. Kristallogr., 85, 425–442Google Scholar
Thompson, J. B. Jr. (1978). Biopyriboles and polysomatic series. Am. Mineral., 63, 239–249Google Scholar
Trommsdorff, V. (1966). Progressive Metamorphose kieseliger Karbonatgesteine in den Zentralalpen zwischen Bernina und Simplon. Schweiz. Mineral. Petrog. Mitt., 46, 431–460Google Scholar
Turner, F. J. (1981). Metamorphic Petrology. Mineralogical, Field and Tectonic Aspects, 2nd edn. McGraw-Hill, New York, 524pp
Turner, S. and Buseck, P. R. (1979). Manganese oxide tunnel structures and their intergrowths. Science, 203, 143–146CrossRefGoogle ScholarPubMed
Valyashko, M. G. (1962). Geochemical Regularities of Formation of Deposits of Potassium Salts. (In Russian.) Moscow Univ. Press, Moscow, 235pp
Van't Hoff, J. H. (1912). Untersuchungen über die Bildungsverhältnisse der Ozeanischen Salzablagerungen insbesondere des Stassfurter Salzlagers. Akademische Verlagsgesellschaft, Leipzig, 374pp
Van't Hoff, J. H. (1905, 1909), Zur Bildung der ozeanischen Salzablagerungen. Viehweg, Braunschweig, vol. 1, 85pp., and vol. 2, 90pp
Vaughan, P. J., Green, H. W. and Coe, R. S. (1982). Is the olivine–spinel phase transformation martensitic?Nature, 298, 357–358CrossRefGoogle Scholar
Veblen, D. R. and Buseck, P. (1980). Microstructures and reaction mechanisms in biopyriboles. Am. Mineral., 65, 599–623Google Scholar
Verma, A. R. (1953). Crystal Growth and Dislocations. Academic Press, New York, 182pp
Verzilin, N. N. and Utsalu, K. R. (1990). New data on mineral composition of modern sediments of Lake Balkhash. Dokl. Russ. Acad. Sci. USSR, Earth Sci., T314, 686–689Google Scholar
Virgo, D. and Hafner, S. (1970). Fe2+-Mg order–disorder in natural orthopyroxenes. Am. Mineral., 55, 201–223Google Scholar
Voigt, W. (1928). Lehrbuch der Kristallphysik. Teubner, Leipzig, 978pp
Laue, M. (1913). Röntgenstrahlinterferenzen. Physik. Z., 14, 1075–1079Google Scholar
Wagman, D. D., Evans, W. H., Parker, V. B., Schumms, R. H. and others (1982). The NBS Tables of Chemical Thermodynamic Properties. Selected Values for Inorganic and C1and C2Organic Substances in SI Units. Amer. Chem Soc. and J. Physical and Chemical Reference Data, vol. 11, Suppl. 2, 392pp
Wasastjerna, J. A. (1923). On the radii of ions. Soc. Sci. Fenn. 1, 37–00Google Scholar
Washburn, D. K. and Crowe, D. W. (1988). Symmetries of Culture. Theory and Practice of Plane Pattern Analysis. Univ. Washington Press, Seattle, WA, 299pp
Weibel, M. (1973). Die Mineralien der Schweiz, ein mineralogischer Führer, 3rd edn. Birkhäuser, Basel, Switzerland, 175pp
Weiss, C. S. (1819). Über eine verbesserte Methode für die Bezeichnung der verschiedenen Flächen eines Krystallisationssystems nebst Bemerkungen über den Zustand von Polarisierung der Seiten in den Linien der krystallinischen Struktur. Abhandl. Königl. Akad. D. Wiss. Berlin (1816–1817), 287–336
Wenk, E. (1970). Zur Regionalmetamorphose und Ultrametamorphose im Lepontin. Fortschr. Mineral., 47, 34–51Google Scholar
Wenk, H.-R. (ed.) (1976). Electron Microscopy in Mineralogy. Springer-Verlag, Berlin, 564pp
Wenk, H.-R. and Zenger, D. H. (1983). Sequential basal faults in Devonian dolomite, Nopah Range, Death Valley area, California. Science, 222, 502–504CrossRefGoogle ScholarPubMed
Wenk, H.-R., Ulbrich, M. and Müller, W. F. (1972). Lunar plagioclase: a mineralogical study. Proceedings of the 3rd Lunar Science Conference, suppl. 3. Geochim. Cosmochim. Acta, 1, 569–579Google Scholar
Wenk, H.-R., Wenk, E. and Wallace, J. H. (1974). Metamorphic mineral assemblages in pelitic rocks of the Bergell Alps. Schweiz. Mineral. Petrog. Mitt., 54, 507–554Google Scholar
Wenk, H.-R., Meisheng, H., Lindsey, T. and Morris, W. (1991). Superstructures in ankerite and calcite. Phys. Chem. Mineral., 17, 527–539CrossRefGoogle Scholar
Werner, A. G. (1774). Von den äusserlichen Kennzeichen der Fossilien. Crusius, Leipzig, 302pp. (Engl. transl. by A. V. Carozzi 1962, Univ. Illinois Press, Urbana, IL, 118pp.)
Westmacott, K. H., Barnes, R. S. and Smallman, R. E. (1962). The observation of dislocation “climb” source. Phil. Mag., 7 (ser. 8), 1585–1613CrossRefGoogle Scholar
Weyl, H. (1989). Symmetry. Princeton Univ. Press, Princeton, NJ, 168pp
Whitton, B. A. and Diaz, B. M. (1980). Chemistry and plants of streams and rivers with elevated Zn. In Trace Substances in Environmental Health – XIV, pp. 457-463. Univ. Missouri Press, Columbia, MO
Wicks, F. J., Kjoller, K. and Henderson, G. S. (1992). Imaging the hydroxyl surface of lizardite at atomic resolution with the atomic force microscope. Can. Mineral., 30, 83–91Google Scholar
Wilkinson, G. R. (1973). Raman spectra of ionic, covalent, and metallic crystals. In The Raman Effect, vol. 2, Applications, ed. A. Anderson, pp. 812–983. M. Decker, New York
Winchell, A. N. (1929). Dispersion of minerals. Am. Mineral., 14, 125–149Google Scholar
Winkler, H. G. F. (1979). Petrogenesis of Metamorphic Rocks. 5th edn. Springer-Verlag, Berlin, 348pp
Wollaston, W. H. (1813). On the elementary particles of certain crystals. Phil. Trans. Roy. Soc. Lond., 51–63CrossRefGoogle Scholar
Wood, J. A. and Hashimoto, A. (1993). Mineral equilibrium in fractionated nebular systems. Geochim. Cosmochim. Acta, 57, 2377–2388CrossRefGoogle Scholar
Wulff, G. (1913). Über die Kristallröntgenogramme. Physik. Z., 14, 217–220Google Scholar
Yada, K. (1971). Study of the microstructure of chrysotile asbestos by high resolution electron microscopy. Acta Crystallogr. ser. A, 27, 659-664CrossRefGoogle Scholar
Yaroschevsky, A. A. and Bulakh, A. G. (1994). The mineral composition of the Earth's crust, mantle, meteories, moon, planets. In Advanced Mineralogy, ed. A. Marfunin, vol. 1, p. 27–36. Springer-Verlag, BerlinCrossRef
Yoder, H. S., Stewart, D. B. and Smith, J. R. (1956). Ternary feldspars. In Annual Report of the Geophysics Laboratory, Carnegie Institute, Washington, DC, pp. 206–214
Young, R. A. (1993). The Rietveld Method. Oxford Univ. Press, Oxford, 298pp
Yushkin, N. P. (1968). Mineralogy and Paragenesis of Native Sulfur in Exogenic Deposits. (In Russian.) Nauka, Leningrad, 186pp
Ahrens, T. J. (ed.) (1995). Mineral Physics and Crystallography. A Handbook of Physical Constants. American Geophysical Union, Washington, DC, 354pp
Aines, R. D., Kirby, S. H. and Rossman, G. R. (1984). Hydrogen speciation in synthetic quartz. Phys. Chem. Mineral., 11, 204–212CrossRefGoogle Scholar
Anderson, D. L. and Hart, R. S. (1976). An earth model based on free oscillations and body waves. J. Geophys. Res., 81, 1461–1475CrossRefGoogle Scholar
Arnoth, J. (1986). Achate, Bilder im Stein. Birkhäuser, Basel, Switzerland, 103pp
Bacon, G. E. (1975). Neutron Diffraction. Oxford Univ. Press, Oxford, 436pp
Baikow, V. E. (1967). Manufacture and Refining of Raw Cane Sugar. Elsevier, Amsterdam, 453pp
Banfield, J. F. and Nealson, K. H. (eds.) (1997). Geomicrobiology. Interactions between Microbes and Minerals. Rev. Mineral., vol. 35, Mineralogical Society of America, Washington, DC, 448pp
Barber, D. J. and Wenk, H.-R. (1979). On geological aspects of calcite microstructure. Tectonophysics, 54, 45–60CrossRefGoogle Scholar
Barber, D. J., Heard, H. C. and Wenk, H.-R. (1981). Deformation of dolomite single crystals from 20–800 ℃. Phys. Chem. Miner., 7, 271–286CrossRefGoogle Scholar
Barlow, W. (1897). A mechanical cause of homogeneity of structure and symmetry. Proc. Roy. Dublin Soc, n.s., 8, 527–690Google Scholar
Barron, L. M. (1972). Thermodynamic multicomponent silicate equilibrium phase calculations. Am. Mineral., 57, 809–823Google Scholar
Bartholinus, E. (1669). Experimenta crystalli Islandici disdiaclastici quibus mira et insolita refraction detegitur. Hafniae sumpt. Dan. Paulli Reg. Bibl. (English version, 1670: Experiments made on a crystal-like body sent from Iceland. Phil. Trans. Roy. Soc. Lond., 5, 2039–2048.)Google Scholar
Batty, M. H. and Pring, A. (1997). Mineralogy for Students, 3rd edn. Longman, London, 363pp
Bauer, G. (Agricola) (1556). De Re Metallica. (English translation: Hoover, H. C. and Hoover, L. H. (1950), Dover Publ., New York, 638pp.)
Beck, A., Darbha, D. M., and Schloessin, H. H. (1978). Lattice conductivities of single-crystal and polycrystalline materials at mantle pressure and temperatures. Phys. Earth Planet. Int., 17, 35–53CrossRefGoogle Scholar
Beck, R. (1909). Lehre von den Erzlagerstätten, 3rd edn. Bornträger, Berlin, 540pp
Becke, F. (1903). Über Mineralbestand und Struktur der kristallinen Schiefer. Denkschr. Akad. Wiss., Vienna, 75, 1–53Google Scholar
Bedogné F., Maurizio, R., Montrasio, A. and Sciesa, E. (1995). I Minerali della Provincia di Sondrio e della Bregaglia Grigionese. Bettini, Sondrio, 300 pp
Bentley, W. A. and Humphreys, W. J. (1962). Snow Crystals, paperback edition, Dover Publ., New York, 226pp. (Originally published by McGraw-Hill, 1931.)
Bergmann, T. (1773). Variae crystallorum formae a spata ortae. Nov. Acta Reg. Soc. Sci. Upsala 1Google Scholar
Birch, F. (1952). Elasticity and constitution of the earth's interior. J. Geophys. Res., 57, 227–286CrossRefGoogle Scholar
Bird, J. M. and Weathers, M. S. (1975). Josephinite: specimens from the earth's core?Earth Planet. Sci. Lett., 28, 51–64CrossRefGoogle Scholar
Bischoff, W. D., Sharma, S. K. and MacKenzie, F. T. (1985). Carbonate ion disorder in synthetic and biogenic magnesian calcites: a Raman spectral study. Am. Mineral., 70, 581–589Google Scholar
Blackburn, W. H. and Dennen, W. H. (1994). Principles of Mineralogy, 2nd edn. Brown Publ., Dubuque, IA, 413pp
Bowen, N. L. (1913). The melting phenomena of the plagioclase feldspars. Am. J. Sci., 35, 577–599CrossRefGoogle Scholar
Bowen, N. L. (1928). The Evolution of the Igneous Rocks. Princeton Univ. Press, Princeton, NJ, 336pp
Bowen, N. L. and Tuttle, O. F. (1950). The system NaAlSi3O8–KAlSi3O8–H2O. J. Geol., 58, 498–511Google Scholar
Boyarko, G. Y. (2000). Economics of Mineral Raw Materials. (In Russian.) Tomsk Polytechnical University, Audit-Inform Press, Tomsk, 365pp
Bragg, W. H. and Bragg, W. L. (1913). The reflection of X-rays by crystals. Proc. Roy. Soc. Lond., ser. A, 88, 428–438CrossRefGoogle Scholar
Bragg, W. L. (1914). The structure of some crystals as indicated by their diffraction of X-rays. Proc. Roy. Soc. Lond., ser. A, 89, 277–291CrossRefGoogle Scholar
Bragg, W. L. (1930). The structure of silicates. Z. Kristallogr., 74, 237–305Google Scholar
Bravais, A. (1850). Les systèmes formés par des pointes distribués regulièrement sur un plan ou dans l'espace. J. École Polytech., 19, 1–128Google Scholar
Breithaupt, A. (1849). Die Paragenesis der Mineralien, mineralogisch, geognostisch und chemisch beleuchtet: mit besonderer Rücksicht auf Bergbau. Engelhardt, Freiberg, 276pp
Brody, J. J. (1980). Mimbres Painted Pottery, 2nd edn. Univ. New Mexico Press, Albuquerque, NM, 253pp
Buerger M. J. (1951). Crystallographic aspects of phase transformations. In Phase Transformations in Solids, ed. R. Smoluchowski, J. E. Mayer and W. A. Weyls, pp. 183–221. Wiley, New York
Buerger, M. J. (1978). Elementary Crystallography. An Introduction to the Fundamental Geometric Features of Crystals, revised edn. MIT Press, Cambridge, MA, 528pp
Bulakh, A. G. (1996) Summary mineral composition of the earth's crust. (In Russian.)Proc. Russ. Mineral. Soc., 4, 23–28Google Scholar
Bulakh, A. G. (2002). General Mineralogy. Textbook for Students, 3rd edn. (In Russian.) St Petersburg Univ. Press, 354pp
Bulakh, A. G. and Zolotarev, A. A. (2000). Composition of monoclinic Ca–Mg–Fe–Na pyroxenes of the C2/c space group and the 50% rule. Proc. Russ. Mineral. Soc., 6, 69–79Google Scholar
Bulakh, A. G. and Zussman, J. (1994). Structural formulae. In Advanced Mineralogy Vol. 1, Composition, Structure and Properties of Mineral Matter, ed. A. S. Marfunin, pp. 12–18. Springer Verlag, Berlin
Burke, J. R. (1966). Origins of the Science of Crystals. Univ. California Press, Berkeley, CA, 198pp
Burri, C., Parker, R. L. and Wenk, E. (1967). Die Optische Orientierung der Plagioklase. Birkhäuser, Basel, 334pp
Buseck, P. R. (ed.) (1992). Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy. Rev. Mineral., vol. 27, Mineralogical Society of America, Washington, DC, 516pp
Caley, E. R. and Richards, J. F. C. (1956). Theophrastus on Stones. Introduction, Greek Text, English Translation, and Commentary. Ohio State Univ. Press, Columbus, OH, 238pp
Cameron, E. N., Jahns, R. H., McNair, A. H. and Page, L. R. (1949). The Internal Structure of Granitic Pegmatites. Econ. Geol. Monogr., no 2, American Geophysical Union, Washington, DC, 115pp
Cann, J. R., Strens, M. R. and Rice, A. (1985). A simple magma-driven thermal balance model for the formation of volcanogenic massive sulfides. Earth Planet. Sci. Lett., 76, 123–134CrossRefGoogle Scholar
Cappeller, M. A. (1723). Prodromus Crystallographiae de Crystallis Improprie Sic Dictis Commentarium. Wyssing, Lucerne. Transl. by K. Mieleitner (1922). Piloty and Loehle, Munich, 47pp
Carr, H. W., Groves, D. I. and Cawthorne, R. G. (1994). The importance of synmagmatic deformation in the formation of Merensky Reef potholes in the Bushveld complex. Econ. Geol., 89, 1398–1410CrossRefGoogle Scholar
Chai, M., Brown, J. M. and Slutsky, L. J. (1996). Thermal diffusivity of mantle minerals. Phys. Chem. Mineral., 23, 470–475CrossRefGoogle Scholar
Champness, P. and Lorimer, G. (1971). An electron microscopy study of lunar pyroxene. Contrib. Mineral. Petrol., 33, 171–183CrossRefGoogle Scholar
Champness, P. E. and Lorimer, G. W. (1976). Exsolution in silicates. In Electron Microscopy in Mineralogy, ed. H.-R. Wenk, pp. 174–204. Springer-Verlag, BerlinCrossRef
Chelishchev, N., Ph., Volodin, V. F., and Krjukin, V. L. (1988). Ion Exchange Properties of Natural High-silica Zeolites. (In Russian.) Nauka Publ. Co., Moscow, 128pp
Christiansen, E. H. (2001). Petroglyph 1.0. CD. Blackwell Science, Malden, MA
Christensen, J. N., Rosenfeld, J. L. and DePaolo, D. J. (1989). Rates of tectonometamorphic processes from rubidium and strontium isotopes in garnet. Science, 244, 1465–1469CrossRefGoogle Scholar
Clark, S. P. (1966). Handbook of Physical Constants. Geol. Soc. Am. Mem., no. 97, American Geophysical Union, Washington, DC, 587pp
, Curie J. and Curie, P. (1880). Sur l'électricité polaire dans les cristaux hémidièdres à faces inclinés. Comp. R. Acad. Sci., 91, 383–389Google Scholar
Dana, J. D. (1837). System of Mineralogy, including extended Treatise on Crystallography: with an Appendix, containing the Application of Mathematics to Crystallographic investigation, and a Mineralogical Bibliography. Durrie and Peck, New Haven, CT, 452pp
Dana, J. D. (1868). A System of Mineralogy. Descriptive Mineralogy, Comprising the most Recent Discoveries, 5th edn. Wiley, New York, 827pp
Davies, T. A. and Gorsline, D. S. (1976). Oceanic sediments and sedimentary processes. Chem. Oceanogr., 5, 1–80Google Scholar
Daulton, T. L., Eisenhour, D. D., Bernatowicz, T. J., Lewis, R. S. and Buseck, P. R. (1996). Genesis of presolar diamonds: comparative high-resolution transmission electron microscope study of meteoritic and terrestrial nano-diamonds. Geochim. Cosmochim. Acta, 60, 4853–4872CrossRefGoogle Scholar
Debye, P. P. and Scherrer, P. (1916). Interferenzen an regellos orientierten Teilchen im Röntgenlicht. I. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math. Physik. Klasse, 1–15Google Scholar
Devouard, B., Posfai, M., Hua, X., Bazylinski, D. A., Frankel, R. B. and Buseck, P. R. (1998). Magnetite from magnetotactic bacteria: size distributions and twinning. Am. Mineral., 83, 1387–1398CrossRefGoogle Scholar
Dillon, F. J. (1963). Domains and domain walls. In Magnetism, vol. 3, ed. G. T. Rado and H. Suhl, pp. 415–464. Academic Press, New YorkCrossRef
Donnay, J. D. H. (1947). Hexagonal four-index symbols. Am. Mineral., 32, 52–58Google Scholar
Dove, H. W. (1860). Optische Notizen. Ann. Phys., 110, 286–290CrossRefGoogle Scholar
Downing, K. H., Meisheng, H., Wenk, H.-R. and O'Keefe, A. O. (1990). Resolution of oxygen atoms in staurolite by three-dimensional transmission electron microscopy. Nature, 348, 525–528CrossRefGoogle Scholar
Droop, G. T. R. (1987). A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria. Mineral. Mag., 51, 431–435CrossRefGoogle Scholar
Dunn, M. D. (1983). Fundamentals of Nutrition. CBI Publ., Boston, MA, 581pp
Evans, A. M. (1993). Ore Geology and Industrial Minerals. An Introduction, 3rd edn. Blackwell, Oxford, 390pp
Evzikova, N. Z. (1984). Prospecting Crystallomorphology of Minerals. (In Russian.) Nedra, Moscow, 143pp
Ewald, P. P. (ed.) (1962). Fifty Years of X-ray Diffraction. International Union of Crystallographers and Oosthoek's, Utrecht, 720pp
Fedorow, E. S. (1885). Elements of the rules of figures. (In Russian.)Trans. Royal Russ. Mineral. Soc. St Petersburg, 21, 1–279. [See also 1890 German review by G. Wulff in Z. Kristallogr. 17, 610–611.]Google Scholar
Fedorow, E. S. (1892). Zusammenstellung der krystallographischen Resultate des Herrn Schoenflies und der meinigen. Z. Kristallogr., 20, 25–75Google Scholar
Filippenko, A. V. (1997). Optical spectra of supernovae. Annu. Rev. Astron. Astrophys., 35, 309–355CrossRefGoogle Scholar
Fournier, R. O. (1985). The behavior of silica in hydrothermal solutions. In Geology and Geochemistry of Epithermal Systems, ed. B. R. Berger and P. M. Bethke. Rev. Geol., vol. 2, pp. 63–79. Society of Economists and Geologists, Chelsea, MI
Frank, F. C. (1949). The influence of dislocations on crystal growth. Disc. Faraday Soc., 5, 48–54CrossRefGoogle Scholar
Friedman, G. M. (1959). Identification of carbonate minerals by staining methods. J. Sedim. Petr., 29, 87–97Google Scholar
Friedrich, W., Knipping, P. and Laue, M. (1912). Interferenz-Erscheinungen bei Röntgenstrahlen. Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse der Königlich Bayerischen Akademie der Wissenschaften zu München, pp. 363–373Google Scholar
Frondel, J. W. (1975). Lunar Mineralogy. Wiley, New York, 323pp
Gao Zhen-xi (1980). Minerals in China. Museum of Geology, Ministry of Geology, Beijing, 164pp
Garrels, R. M. and Christ, C. L. (1990). Solutions, Minerals and Equilibria, 2nd edn. Jones and Bartlett, Boston, MA, 450pp
Garrels, R. M., Thompson, M. E. and Siever, R. (1960). Stability of some carbonates at 25 ℃ and one atmosphere total pressure. Am. J. Sci., 258, 402–418CrossRefGoogle Scholar
Goldschmidt, V. M. (1911). Die Gesetze der Mineralassoziationen vom Standpunkt der Phasenregel. Z. Anorgan. Chem., 71, 313–322CrossRefGoogle Scholar
Goldschmidt, V. M. (1923–1927). Geochemische Verteilungsgesetze der Elemente. Norsk Videnskaps-akademi i Oslo. Skrifter. I. Mathematisk-naturvidenskabelik Klasse. 1923, no. 3; 1924, nos. 4–5; 1925, nos. 5 and 7; 1926, nos. 1, 2 and 8; 1927, no. 4
Goldsmith, J. R. and Heard, H. C. (1961). Subsolidus phase relations in the system CaCO3–MgCO3. J. Geol., 69, 45–74CrossRefGoogle Scholar
Goreva, J. S., Ma, Chi and Rossman, G. R. (2001). Fibrous nanoinclusions in massive rose quartz: the origin of rose coloration. Am. Mineral., 86, 466–472CrossRefGoogle Scholar
Gottardi, G. and Galli, E. (1985). Natural Zeolites. Springer-Verlag, Berlin, 409pp
Grady, M. M. (2000). Catalogue of Meteorites, 5th edn. Cambridge Univ. Press, Cambridge, 696pp
Greenwood, H. J. (1967). Wollastonite: stability in H2O–CO2 mixtures and occurrence in a contact-metamorphic aureole near Salmo, British Columbia, Canada. Am. Mineral., 52, 1669–1680Google Scholar
Grigor'ev, D. P. (1965). Ontogeny of Minerals. Israel Program for Scientific Translations, Jerusalem, 250pp
Grigoriev, I. S. and Meilikhov, E. Z. (eds.) (1997). Handbook of Physical Quantities. CRC Press, Boca Raton, FL, 1548pp
Grossman, L. (1972). Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 597–619CrossRefGoogle Scholar
Groth, P. H. (1904). Einleitung in die Chemische Krystallographie. Engelmann, Leipzig, 80pp
Groth, P. H. (1926). Entwicklungsgeschichte der mineralogischen Wissenschaften. Springer-Verlag, Berlin, 261pp
Guthrie, G. D. and Mossman, B. T. (1993). Health Effects of Mineral Dust. Rev. Mineral. vol. 28. Mineralogical Society of America, Washington, DC, 484pp
Haeckel, E. (1904). Kunstformen der Natur. Bibliographische Institut, Leipzig, 204pp. (English Translation, 1974: Art Forms in Nature, Dover Publ., New York.)
Hahn, T. (ed.) (1987). International Tables for Crystallography, vol. A, Space Group Symmetry, 2nd edn. Reidel, Dordrecht, 878pp
Hahn, T. (ed.) (1988). International Tables for Crystallography, vol. A, Space Group Symmetry. Brief Teaching Edition, 2nd edn. Reidel, Dordrecht, 120pp
Haüy, R. J. (1784). Essay d'une Théorie sur la Structure des Crystaux. Gogué and Née de la Rochelle, Paris, 236pp
Haüy, R. J. (1801). Traité de Minéralogie, 4 vols. and atlas of 86 plates. Chez Louis, Paris, vol. 1, 494pp., vol. 2, 617pp., vol. 3, 598pp., vol. 4, 592pp
Hemley, R. J. (ed.) (1998). Ultra-High Pressure Mineralogy: Physics and Chemistry of the Earth's Deep Interior. Rev. Mineral., vol. 37. Mineralogical Society of America, Washington, DC, 671pp
Hessell, J. F. C. (1830). Kristallonometrie oder Krystallometrie und Krystallographie. In J. S. T. Gehler's Physikalisches Wörterbuch, vol. 8, 346pp. (Separate printing Leipzig, 1931.)
Hibbard, M. J. (2002). Mineralogy. A Geologist's Point of View. Wiley, New York, 562pp
Hoefs, J. (1987). Stable Isotope Geochemistry, 3rd edn. Springer-Verlag, Berlin, 241pp
Hofmann, F. and Massanek, A. (1998). Die Mineralogische Sammlung der Bergakademie Freiberg. Christian Weise Verlag, München, 72pp
Horai, K. (1971). Thermal conductivity of rock-forming minerals. J. Geophys. Res., 76, 1278–1308CrossRefGoogle Scholar
Hosking, K. F. G. (1951). Primary ore deposition in Cornwall. Trans. Roy. Geol. Soc. Cornwall, 18, 309–356Google Scholar
Hoszowska, J., Freund, A. K., Boller, E., Sellschop, J. P. F., Level, G., Hartwig, J., Burns, R. C., Rebak, M. and Baruchel, J. (2001). Characterization of synthetic diamond crystals by spatially resolved rocking curve measurements. J. Phys. D 34, A47–A51Google Scholar
Hu, M., Wenk, H.-R. and Sinitsina, D. (1992). Microstructures in natural perovskites. Am. Mineral., 77, 359–373Google Scholar
Huebner, J. S. (1980). Pyroxene phase equilibria at low pressure. In Pyroxenes, ed. C. T. Prewitt, pp. 213–288. Rev. Mineral., vol. 7, Mineralogical Society of America, Washington, DC
Ito, E. M. and Takahashi, E. (1989). Postspinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications. J. Geophys. Res., 94, 10637–10646CrossRefGoogle Scholar
Ivanova, T. I., Frank-Kamenetskaya, O. V., Kol'tsov, A. B. and Ugolkov, V. L. (2001). Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J. Solid State Chem., 160, 340–349CrossRefGoogle Scholar
Jahns, R. H. and Burnham, C. W. (1969). Experimental studies of pegmatite genesis. I. A model for the derivation and crystallization of granitic pegmatites. Econ. Geol., 64, 843–864CrossRefGoogle Scholar
Joesten, R. (1986). The role of magmatic reaction, diffusion and annealing in the evolution of coronitic microstructure in troctolitic gabbro from Risör, Norway. Mineral. Mag., 50, 441–467CrossRefGoogle Scholar
Kanamori, H., Fujii, N. and Mizutani, H. (1968). Thermal diffusivity measurement of rock-forming minerals from 400 to 1100 K. J. Geophys. Res., 73, 595–605CrossRefGoogle Scholar
Katkova, V. I. (1996). Urinary Stones: Mineralogy and Origin. (In Russian.) Russian Academy of Sciences, Syktyvkar, 87pp
Keller, P. C. (1990). Gemstones and their Origins. Van Nostrand Reinhold, New York, 144pp
Kelley, D. S., Delaney, J. R. and Yoerger, D. R. (2001). Geology and venting characteristics of the Mothra hydrothermal field, Endeavour segment, Juan de Fuca Ridge. Geology, 29, 959–9622.0.CO;2>CrossRefGoogle Scholar
Kellogg, L. H., Hager, B. H. and Hilst, R. D. (1999). Compositional stratification in the deep mantle. Science, 283, 1881–1884CrossRefGoogle ScholarPubMed
Kelly, M. G. (1999). Effects of heavy metals on the aquatic biota. In The Environmental Geochemistry of Mineral Deposits, vol. A, ed. G. S. Plumlee and M. J. Logsdon, pp. 363–371
Kesler, S. E. (1994). Mineral Resources, Economics and the Environment. Macmillan, New York, 391pp
Kirkpatrick, R. J., Smith, K. A., Schramm, S., Turner, G. and Yang, W.-H. (1985). Solid state NMR spectroscopy of minerals. Annu. Rev. Earth. Planet. Sci., 13, 29–47CrossRefGoogle Scholar
Klein, C. (2002). Manual of Mineral Science, 22nd edn. Wiley, New York, 641pp
Klein, C. and Hurlbut, C. S. (1993). Manual of Mineralogy, 21st edn. Wiley, New York, 681pp
Klockmann, F. (1895). Lehrbuch der Mineralogie. Enke Verlag, Stuttgart, 588pp
Kocks, U. F., Tomé, C. N. and Wenk, H.-R. (2000). Texture and Anisotropy. Preferred Orientation in Polycrystals and their Effect on Materials Properties, paperback edn. Cambridge Univ. Press, Cambridge, 676pp
Kopylova, M. G., Gurney, J. J. and Daniels, L. R. M. (1997). Mineral inclusions in diamonds from the River Ranch kimberlite, Zimbabwe. Contrib. Mineral. Petrol., 129, 366–384CrossRefGoogle Scholar
Korago, A. A. (1992). Introduction into Biomineralogy. (In Russian.) Nedra, Leningrad, 280pp
Korzhinskii, D. S. (1959). Physicochemical Basis of the Analysis of the Paragenesis of Minerals. (English translation.) Consultants' Bureau, New York, 142pp
Kretz, R. (1994). Metamorphic Crystallization. Wiley, New York, 507pp
Kundt, A. (1883). Über eine einfache Methode zur Untersuchung der Thermo-, Actino- und Piezoelektrizität der Krystalle. Annal. Physik, 20, 592–601CrossRefGoogle Scholar
Kurilenko, V. V. (1997). Modern Basins of Evaporite Sedimentation. (In Russian.) St Petersburg Univ. Press, St Petersburg, 252pp
Lally, J. S., Heuer, A. H. and Nord, G. L. (1976). Precipitation in the ilmenite–hematite system. In Electron Microscopy in Mineralogy, ed. H.-R. Wenk, pp. 214–219. Springer-Verlag, BerlinCrossRef
Landis, W. J., Hodgens, K. J., Arena, J., Song, M. J. and Ewen, B. F. (1996). Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc. Res. Techn., 33, 192–2023.0.CO;2-V>CrossRefGoogle ScholarPubMed
Laves, F. (1962). The growing field of mineral structures. In Fifty Years of X-Ray Diffraction, ed. P. P. Ewald, pp. 174–189. International Union of Crystallographers and Oosthoek's, Utrecht
Laves, F. and Goldsmith, J. R. (1961). Polymorphism, order, disorder, diffusion and confusion in the feldspars. Cursillos y Conferencias, Instituto di Lucas Mallado, C. S. I. C., Spain, vol. 7, pp. 71–80
Lee, R. W. (1964). On the role of hydroxyl in the diffusion of hydrogen in fused silica. Phys. Chem. Glasses, 5, 35–43Google Scholar
Lenz, H. O. (1861). Mineralogie der alten Griechen und Römer. Thienemann, Gotha, 194pp. (Reprinted Sandig Verlag, Wiesbaden, 1966.)
Liebau, F. (1962). Die Systematik der Silikate. Naturwissenschaften, 49, 481–491CrossRefGoogle Scholar
Liebau, F. (1985). Structural Chemistry of Silicates. Structure, Bonding, Classification. Springer-Verlag, Berlin, 347ppCrossRef
Lindgren, W. (1933). Mineral Deposits, 4th edn. McGraw Hill, New York, 930pp
Loewenstein, W. (1954). The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral., 39, 92–96Google Scholar
Logvinenko, N. V. and Orlova, L. V. (1987). Formation and Transformation of Sedimentary Rocks on Continents and in Oceans. (In Russian.) Nedra, Leningrad, 235pp
London, D. (1987). Internal differentiation of rare-element pegmatites: effects of boron, phosphorus, and fluorine. Geochim. Cosmochim. Acta, 51, 403–420CrossRefGoogle Scholar
Lopez, R. M. C., Kamp, L. W., Doute, S., Smythe, W. D., Carlson, R. W., McEwen, A. S., Geissler, P. E., Kieffer, S. W., Leader, F. E., Davies, A. G., Barbinis, E., Mehlman, R., Segura, M., Shirley, J. and Soderblom, L. A. (2001). Io in the near infrared: near-infrared mapping spectrometer (NIMS) results from the Galileo flybys in 1999 and 2000. J. Geophys. Res., 106, 33053–33078CrossRefGoogle Scholar
MacGillavry, C. H. (1976). Symmetry Aspects of M. C. Escher's Periodic Drawings, 2nd edn. International Union of Crystallography and Bohn, Scheltma and Holkema, Utrecht, 84pp
Mallowan, M. E. L. and Cruikshank, R. J. (1933). Excavations at Tel Arpachiyah. Iraq, 2, 1–178Google Scholar
Manghnani, M. H. and Syono, Y. (eds.) (1987). High Pressure Research in Mineral Physics. Geophys. Monogr., 39, 486pp. American Geophysical Union, Washington, DC
Mason, B. (1962). Meteorites. Wiley, New York, 274pp
Matthes, S. (1987). Mineralogie. Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde, 2nd edn. Springer-Verlag, Berlin, 444ppCrossRef
Maucher, W. (1914). Leitfaden für den Geologie-Unterricht, 2nd edn. Craz und Gerlach, Freiberg, 203pp
McCammon, C. A. (1995). Mössbauer spectroscopy of minerals. In Mineral Physics and Crystallography. A Handbook of Physical Constants, pp. 332–347. American Geophysical Union, Washington, DCCrossRef
McCammon, C. A. (2000). Insights into phase transformations from Mössbauer spectroscopy. In Transformation Processes in Minerals, ed. S. A. T. Redfern and M. A. Carpenter, pp. 241–257. Rev. Mineral., vol. 39, Mineralogical Society of America, Washington, DC
McCammon, C. A. (2001). Deep diamond mysteries. Science, 293, 813–814CrossRefGoogle ScholarPubMed
McKeown, D. A. and Post, D. A. (2001). Characterization of manganese oxide mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy. Am. Mineral., 86, 701–713CrossRefGoogle Scholar
McLaren, A. C. (1991). Transmission Electron Microscopy of Minerals and Rocks. Cambridge University Press, Cambridge, 387pp
Medenbach, O. and Medenbach U. (2001). Mineralien, Erkennen und Bestimmen. Steinbach's Naturführer, Mosaik Verlag, Niedernhausen, Germany, 191pp
Medenbach, O. and Wilk, H. (1986). The Magic of Minerals. Springer Verlag, Berlin, 204pp
Mehta, P. K. and Monteiro, P. J. M. (1993). Concrete. Structure, Properties, and Materials. Prentice-Hall, Upper Saddle River, NJ, 548pp
Meisheng, H., Wenk, H.-R. and Sinitsyna, D. (1992). Microstructures in natural perovskites. Am. Mineral., 77, 359–373Google Scholar
Metzger, H. (1918). La genèse de la science des cristaux. Alcan, Paris, 248pp
Meyer, C. (1988). Ore deposits as guides to geologic history. Annu. Rev. Earth Planet. Sci., 16, 147–171CrossRefGoogle Scholar
Miller, W. H. (1839). A Treatise on Crystallography. Pitt Press, Cambridge, 139pp
Mitchell, R. H. (1986). Kimberlites. Mineralogy, Geochemistry and Petrology. Plenum Press, New York, 442ppCrossRef
Mitscherlich, E. (1820). Sur la relation que existe entre la forme cristalline et les proportions chimiques. Ann. Chimie Phys., 14, 172–190Google Scholar
Mitscherlich, E. (1821). Sur la relation que existe entre la forme cristalline et les proportions chimiques. IIme. mémoire sur les arséniates et les phosphates. Ann. Chimie Phys., 19, 350–419Google Scholar
Morris, G. B., Raitt, R. W. and Shor, G. G. (1969). Velocity anisotropy and delay time maps of the mantle near Hawaii. J. Geophys. Res., 74, 4300-4316CrossRefGoogle Scholar
Mullis, J. (1991). Bergkristall. Schweizer Strahler, 9, 127–161Google Scholar
Mullis, J., Dubessy, J., Poty, B. and O'Neil, J. (1994). Fluid regimes during late stages of a continental collision: physical, chemical, and stable isotope measurements of fluid inclusions in fissure quartz from a geotraverse through the Central Alps, Switzerland. Geochim. Cosmochim. Acta, 58, 2239–2263CrossRefGoogle Scholar
Nakamoto, K. (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A Theory and Applications in Inorganic Chemistry, 5th edn. Wiley, New York, 387pp
Nakaya, U. (1954). Formation of snow crystals. Snow, Ice and Permafrost Research Establishment, Research Paper 3, 12pp. Corps of Engineers, US Army, Wilmette, IL
Neev, D. and Emery, K. O. (1967). The Dead Sea. Depositional Processes and Environments of Evaporites. Israel Geol. Survey Bull., vol. 41, 147pp
Nesse, W. D. (2000). Introduction to Mineralogy. Oxford Univ. Press, New York, 442pp
Neumann, F. E. (1885). Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers, gehalten an der Universität Königsberg, ed. O. E. Meyer. B. G. Teubner, Leipzig, 374pp
Niggli, P. (1920). Lehrbuch der Mineralogie. Borntraeger, Berlin, 694pp
Nye, J. F. (1957). Physical Properties of Crystals, Oxford Univ. Press, London 329pp. (Reprinted 1998.)
O'Keefe, M. and Hyde, B. G. (1985). An alternative approach to non-molecular crystal structures with emphasis on the arrangement of cations. Struct. Bond., 61, 77–144CrossRefGoogle Scholar
Orowan, E. (1934). Plasticity of crystals. Z. Physik, 89, 605–659CrossRefGoogle Scholar
Page, R. H. and Wenk, H.-R. (1979). Phyllosilicate alteration of plagioclase studied by transmission electron microscopy. Geology, 7, 393–3972.0.CO;2>CrossRefGoogle Scholar
Parsons, I. (ed.) (1994). Feldspars and Their Reactions. Kluwer Academic Publishers, Dordrecht, Netherlands, 650pp
Pauling, L. (1929). The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc., 51, 1010–1026CrossRefGoogle Scholar
Pédro, G. (1997). Clay minerals in weathered rock materials and in soils. In Soils and Sediments. Mineralogy and Geochemistry, ed. H. Paquet and N. Clauer, pp. 1–20. Springer-Verlag, BerlinCrossRef
Perkins, D. (1998). Mineralogy. Prentice-Hall, Upper Saddle River, NJ, 484pp
Petrov, T. G.Lyapichev, I. G., Suslov, G. I. and Knizel, A. A. (1993). Intergranular substance within the spinel lherzolite xenolith. (In Russian.)Proc Russ. Mineral. Soc., 2, 138–144Google Scholar
Phillips, B. L. (2000). NMR spectroscopy of phase transitions in minerals. In Transformation Processes in Minerals, ed. S. A. T. Redfern and M. A. Carpenter, pp. 203–240. Rev. Mineral., vol. 39, Mineralogical Society of America, Washington, DC
Phillips, R. M. (1971). Mineral Optics. Principles and Techniques. W. H. Freeman and Co., San Francisco, 249pp
Polanyi, M. (1934). Lattice distortion which originates plastic flow. Z. Physik, 89, 660–604CrossRefGoogle Scholar
Pough, F. H. (1986). A Field Guide to Rocks and Minerals, 5th edn. Houghton Mifflin, New York, 396pp
Prechtl, J. J. (1810). Théorie de la cristallisation. J. Mines, 28, 261–312Google Scholar
Putnis, A. (1992). Introduction to Mineral Sciences. Cambridge Univ. Press, Cambridge, 457ppCrossRef
Ramsdell, L. S. (1947). Studies on silicon carbide. Am. Mineral., 32, 64–82Google Scholar
Reinhard, M. (1931). Universal Drehtischmethoden. Wepf, Basel, 117pp
Rieder, R., Economou, T., Wänke, H., Turkevich, A., Crisp, J., Brückner, J.Dreibus, G., McSween, H. Y. (1997). The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. Science, 278, 1771–1774CrossRefGoogle ScholarPubMed
Ringwood, A. E. (1975). Composition and Petrology of the Earth's Mantle. McGraw-Hill, New York, 618pp
Ringwood, A. E. (1979). Origin of the Earth and Moon. Springer-Verlag, Berlin, 292pp
Robie, R. A. and Hemingway, B. S. (1995). Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105Pascals) Pressure and at Higher Temperatures. US Geolog. Surv. Bull., vol. 2131, 461pp
Rock, N. M. S. and Carroll, G. W. (1990). MINTAB: A general-purpose mineral recalculation and tabulation program for Macintosh microcomputers. Am. Mineral., 75, 424–430Google Scholar
Rogers, J. (1957). The distribution of marine carbonate sediments: a review. In Regional Aspects of Carbonate Deposition, ed. R. J. Le Blanc and J. G. Breeding, pp. 2–14. Soc. Econ. Paleontol. Mineral., Spec. Publ., no. 5, Tula, OKCrossRef
Ronov, A. B. and Yaroshevsky, A. A. (1969). Chemical composition of the Earth's crust. In The Earth's Crust and Upper Mantle, ed. P. J. Hart, pp. 37–57. Geophys. Monogr. no. 13. American Geophysical Union, Washington, DCCrossRef
Ronov, A. B., Yaroshevsky, A. A. and Migdisov, A. A. (1991). Chemical composition of the earth's crust and geochemical balance of elements. Int. Geol. Rev., 17, 941–1047CrossRefGoogle Scholar
Rosbaud, P. and Schmid, E. (1925). über die Verfestigung von Einkristallen durch Legierung und Kaltreckung. Z. Physik, 32, 197–225CrossRefGoogle Scholar
Rousseau, D. L., Bauman, R. P. and Porto, S. P. S. (1981). Normal mode determination in crystals. J. Raman Spectr., 10, 253–290CrossRefGoogle Scholar
Scheetz, B. E. and White, W. B. (1977). Vibrational spectra of the alkaline earth double carbonates. Am. Mineral., 62, 36–50Google Scholar
Schmid, E. (1924). Zn-normal stress law. In Proceedings of the International Congress of Applied Mechanics, Delft, p. 342
Schneiderhöhn, H. (1941). Lehrbuch der Erzlagerstättenkunde. Volume 1, Fischer Verlag, Jena, 858pp
Schoenflies, A. (1891). Krystallsysteme und Krystallstructur. B. G. Teubner, Leipzig, 638pp
Scovil, J. A. (1996). Photographing Minerals, Fossils and Lapiday Materials. Geoscience Press, Missoula, MT, 224 pp
Seeber, L. A. (1824). Versuch einer Erklärung des inneren Baues der festen Körper. Gilbert's Annal. Physik, 76, 229–248CrossRefGoogle Scholar
Seifert, F. (1990). Phase transitions in minerals studied by 57 Fe Mössbauer spectroscopy. In Absorption Spectroscopy in Mineralogy, ed. A. Mottana and F. Burregato, pp. 145–170. Elsevier, Amsterdam
Semkin, R. G. and Kramer, J. R. (1976). Sediment geochemistry of Sudbury area lakes. Can. Mineral., 14, 73–90Google Scholar
Shannon, R. D. and Prewitt, C. T. (1969). Effective ionic radii in oxides and fluorides. Acta Crystallogr., 25, 925–946CrossRefGoogle Scholar
Shearer, P. M. (1999). Introduction to Seismology. Cambridge University Press, Cambridge, 260pp
Shen, G., Mao, H.-K., Hemley, R. J., Duffy, T. S. and Rivers, M. L. (1998). Melting and crystal structures of iron at high pressures and temperatures. Geophys. Res. Lett., 25, 373–376CrossRefGoogle Scholar
Sillitoe, R. H. (1973). The tops and bottoms of porphyry copper deposits. Econ. Geol., 68, 799–815CrossRefGoogle Scholar
Silver, P. G. (1996). Seismic anisotropy beneath the continents: probing the depths of geology. Annu. Rev. Earth Planet. Sci., 24, 385–432CrossRefGoogle Scholar
Simmons, G. and Wang, H. (1971). Single Crystal Elastic Constants and Calculated Aggregate Average Properties – A Handbook. MIT Press, Cambridge, MA, 370pp
Singer, M. J. and Munns, D. N. (2002). Soils, an Introduction, 5th edn. Prentice-Hall, Upper Saddle River, NJ, 429pp
Sinyakov, V. I. (1987). Basis for the theory of the origin of ores. (In Russian.) Nedra, Leningrad, 191pp
Slemmons, D. B. (1962). Determination of volcanic and plutonic plagioclases using a three- or four-axis universal stage. Geol. Soc. Am. Spec. Paper, 69, 64ppGoogle Scholar
Smith, G. I. (1979). Subsurface stratigraphy and geochemistry of late Quaternary evaporates, Searles Lake, California. US Geol. Survey Prof. Paper, no. 1043, 103pp
Smith, J. V. and Brown, W. L. (1988). Feldspar Mineralogy. Springer-Verlag, Berlin, 828pp
Smith, J. V. and Yoder, H. S. (1956). Experimental and theoretical studies of the mica polymorphs. Mineral. Mag., 31, 209–235Google Scholar
Smith, K. S. and Huyck, H. L. O. (1999). An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. In The Environmental Geochemistry of Mineral Deposits, vol. A, ed. G. S. Plumlee and M. J. Logsdon, pp. 29–70. Society of Economic Geologists, Littleton, CO
Sofianides, A. S. and Harlow, G. E. (1990). Gems and Crystals from the American Museum of Natural History. Simon and Schuster, New York, 208pp
Speiser, A. (1980). Theorie der Gruppen von endlicher Ordnung: Mit Anwendungen auf algebraische Zahlen und Gleichungen sowie auf die Kristallographie, 5th edn. Birkhäuser, Basel, 271pp
Spry, A. (1969). Metamorphic Textures. Pergamon Press, Oxford, 350pp
Sriramadas, A. (1957). Diagrams for the correlation of unit cell edges and refractive indices with the chemical composition of garnets. Am. Mineral., 42, 294–298Google Scholar
Stalder, H. A., de Quervain, F., Niggli, E. and Graeser, S. (1973). Die Mineralfunde der Schweiz. Wepf, Basel, 433pp
Stanton, M. F., Layard, M., Tegeris, A., Miller, E., May, M., Morgan, E. and Smith, A. (1981). Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous materials. J. Natl. Cancer Inst. 67, 965–975Google Scholar
Stebbins, J. F. and Farnan, I. (1989). NMR spectroscopy in the earth sciences. Science, 245, 257–263CrossRefGoogle ScholarPubMed
Steiger, R. H. and Hart, S. R. (1967). The microcline–orthoclase transition within a contact aureole. Am. Mineral., 52, 87–116Google Scholar
Steno, N. (1669). Nicolai Stenonis de solido intra solidum naturaliter contento dissertationis prodromus ad serenissium Ferdinandum II. Ex typographia sub signo Stellae, Florentiae, 78pp
Stolz, J. F. (1992). Magnetotactic bacteria: biomineralization, ecology, sediment magnetism, environmental indicator. In Biomineralization Processes of Iron and Manganese. Modern and Ancient Environments, ed. H. C. W. Skinner and R. W. Fitzpatrick, pp. 133–145. Catena Suppl. no. 21. Catena Verlag, Cremlingen
Stout, G. H. and Jensen L. H. (1989). X-ray Structure Determination. Wiley, New York, 467pp
Strakhov, N. M. (1967). Principles of Lithogenesis, vol. 1. Oliver and Boyd, London, 245pp
Streckeisen, A. (1976). To each plutonic rock its proper name. Earth Sci. Rev., 12, 1–33CrossRefGoogle Scholar
Tabor, D. (1954). Mohs's hardness scale – a physical interpretation. Proc. Phys. Soc., B67, 249-257CrossRefGoogle Scholar
Takakura, M., Natoya, S. and , Takahashi H. (2001). Application of cathodoluminescence to EPMA. JEOL News, 36E, 35–39Google Scholar
Taylor, G. I. (1934). The mechanism of plastic deformation of crystals. Proc. Roy. Soc. London ser. A, 145, 362–387CrossRefGoogle Scholar
Taylor, S. R. (2001). Solar System Evolution. A New Perspective, 2nd edn. Cambridge Univ. Press, Cambridge, 460ppCrossRef
Taylor, W. H. (1933). The structure of sanidine and other feldspars. Z. Kristallogr., 85, 425–442Google Scholar
Thompson, J. B. Jr. (1978). Biopyriboles and polysomatic series. Am. Mineral., 63, 239–249Google Scholar
Trommsdorff, V. (1966). Progressive Metamorphose kieseliger Karbonatgesteine in den Zentralalpen zwischen Bernina und Simplon. Schweiz. Mineral. Petrog. Mitt., 46, 431–460Google Scholar
Turner, F. J. (1981). Metamorphic Petrology. Mineralogical, Field and Tectonic Aspects, 2nd edn. McGraw-Hill, New York, 524pp
Turner, S. and Buseck, P. R. (1979). Manganese oxide tunnel structures and their intergrowths. Science, 203, 143–146CrossRefGoogle ScholarPubMed
Valyashko, M. G. (1962). Geochemical Regularities of Formation of Deposits of Potassium Salts. (In Russian.) Moscow Univ. Press, Moscow, 235pp
Van't Hoff, J. H. (1912). Untersuchungen über die Bildungsverhältnisse der Ozeanischen Salzablagerungen insbesondere des Stassfurter Salzlagers. Akademische Verlagsgesellschaft, Leipzig, 374pp
Van't Hoff, J. H. (1905, 1909), Zur Bildung der ozeanischen Salzablagerungen. Viehweg, Braunschweig, vol. 1, 85pp., and vol. 2, 90pp
Vaughan, P. J., Green, H. W. and Coe, R. S. (1982). Is the olivine–spinel phase transformation martensitic?Nature, 298, 357–358CrossRefGoogle Scholar
Veblen, D. R. and Buseck, P. (1980). Microstructures and reaction mechanisms in biopyriboles. Am. Mineral., 65, 599–623Google Scholar
Verma, A. R. (1953). Crystal Growth and Dislocations. Academic Press, New York, 182pp
Verzilin, N. N. and Utsalu, K. R. (1990). New data on mineral composition of modern sediments of Lake Balkhash. Dokl. Russ. Acad. Sci. USSR, Earth Sci., T314, 686–689Google Scholar
Virgo, D. and Hafner, S. (1970). Fe2+-Mg order–disorder in natural orthopyroxenes. Am. Mineral., 55, 201–223Google Scholar
Voigt, W. (1928). Lehrbuch der Kristallphysik. Teubner, Leipzig, 978pp
Laue, M. (1913). Röntgenstrahlinterferenzen. Physik. Z., 14, 1075–1079Google Scholar
Wagman, D. D., Evans, W. H., Parker, V. B., Schumms, R. H. and others (1982). The NBS Tables of Chemical Thermodynamic Properties. Selected Values for Inorganic and C1and C2Organic Substances in SI Units. Amer. Chem Soc. and J. Physical and Chemical Reference Data, vol. 11, Suppl. 2, 392pp
Wasastjerna, J. A. (1923). On the radii of ions. Soc. Sci. Fenn. 1, 37–00Google Scholar
Washburn, D. K. and Crowe, D. W. (1988). Symmetries of Culture. Theory and Practice of Plane Pattern Analysis. Univ. Washington Press, Seattle, WA, 299pp
Weibel, M. (1973). Die Mineralien der Schweiz, ein mineralogischer Führer, 3rd edn. Birkhäuser, Basel, Switzerland, 175pp
Weiss, C. S. (1819). Über eine verbesserte Methode für die Bezeichnung der verschiedenen Flächen eines Krystallisationssystems nebst Bemerkungen über den Zustand von Polarisierung der Seiten in den Linien der krystallinischen Struktur. Abhandl. Königl. Akad. D. Wiss. Berlin (1816–1817), 287–336
Wenk, E. (1970). Zur Regionalmetamorphose und Ultrametamorphose im Lepontin. Fortschr. Mineral., 47, 34–51Google Scholar
Wenk, H.-R. (ed.) (1976). Electron Microscopy in Mineralogy. Springer-Verlag, Berlin, 564pp
Wenk, H.-R. and Zenger, D. H. (1983). Sequential basal faults in Devonian dolomite, Nopah Range, Death Valley area, California. Science, 222, 502–504CrossRefGoogle ScholarPubMed
Wenk, H.-R., Ulbrich, M. and Müller, W. F. (1972). Lunar plagioclase: a mineralogical study. Proceedings of the 3rd Lunar Science Conference, suppl. 3. Geochim. Cosmochim. Acta, 1, 569–579Google Scholar
Wenk, H.-R., Wenk, E. and Wallace, J. H. (1974). Metamorphic mineral assemblages in pelitic rocks of the Bergell Alps. Schweiz. Mineral. Petrog. Mitt., 54, 507–554Google Scholar
Wenk, H.-R., Meisheng, H., Lindsey, T. and Morris, W. (1991). Superstructures in ankerite and calcite. Phys. Chem. Mineral., 17, 527–539CrossRefGoogle Scholar
Werner, A. G. (1774). Von den äusserlichen Kennzeichen der Fossilien. Crusius, Leipzig, 302pp. (Engl. transl. by A. V. Carozzi 1962, Univ. Illinois Press, Urbana, IL, 118pp.)
Westmacott, K. H., Barnes, R. S. and Smallman, R. E. (1962). The observation of dislocation “climb” source. Phil. Mag., 7 (ser. 8), 1585–1613CrossRefGoogle Scholar
Weyl, H. (1989). Symmetry. Princeton Univ. Press, Princeton, NJ, 168pp
Whitton, B. A. and Diaz, B. M. (1980). Chemistry and plants of streams and rivers with elevated Zn. In Trace Substances in Environmental Health – XIV, pp. 457-463. Univ. Missouri Press, Columbia, MO
Wicks, F. J., Kjoller, K. and Henderson, G. S. (1992). Imaging the hydroxyl surface of lizardite at atomic resolution with the atomic force microscope. Can. Mineral., 30, 83–91Google Scholar
Wilkinson, G. R. (1973). Raman spectra of ionic, covalent, and metallic crystals. In The Raman Effect, vol. 2, Applications, ed. A. Anderson, pp. 812–983. M. Decker, New York
Winchell, A. N. (1929). Dispersion of minerals. Am. Mineral., 14, 125–149Google Scholar
Winkler, H. G. F. (1979). Petrogenesis of Metamorphic Rocks. 5th edn. Springer-Verlag, Berlin, 348pp
Wollaston, W. H. (1813). On the elementary particles of certain crystals. Phil. Trans. Roy. Soc. Lond., 51–63CrossRefGoogle Scholar
Wood, J. A. and Hashimoto, A. (1993). Mineral equilibrium in fractionated nebular systems. Geochim. Cosmochim. Acta, 57, 2377–2388CrossRefGoogle Scholar
Wulff, G. (1913). Über die Kristallröntgenogramme. Physik. Z., 14, 217–220Google Scholar
Yada, K. (1971). Study of the microstructure of chrysotile asbestos by high resolution electron microscopy. Acta Crystallogr. ser. A, 27, 659-664CrossRefGoogle Scholar
Yaroschevsky, A. A. and Bulakh, A. G. (1994). The mineral composition of the Earth's crust, mantle, meteories, moon, planets. In Advanced Mineralogy, ed. A. Marfunin, vol. 1, p. 27–36. Springer-Verlag, BerlinCrossRef
Yoder, H. S., Stewart, D. B. and Smith, J. R. (1956). Ternary feldspars. In Annual Report of the Geophysics Laboratory, Carnegie Institute, Washington, DC, pp. 206–214
Young, R. A. (1993). The Rietveld Method. Oxford Univ. Press, Oxford, 298pp
Yushkin, N. P. (1968). Mineralogy and Paragenesis of Native Sulfur in Exogenic Deposits. (In Russian.) Nauka, Leningrad, 186pp

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Hans-Rudolf Wenk, University of California, Berkeley, Andrei Bulakh, St Petersburg State University
  • Book: Minerals
  • Online publication: 05 August 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511811296.040
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Hans-Rudolf Wenk, University of California, Berkeley, Andrei Bulakh, St Petersburg State University
  • Book: Minerals
  • Online publication: 05 August 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511811296.040
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Hans-Rudolf Wenk, University of California, Berkeley, Andrei Bulakh, St Petersburg State University
  • Book: Minerals
  • Online publication: 05 August 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511811296.040
Available formats
×