Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T19:40:31.149Z Has data issue: false hasContentIssue false

5 - Games with Sequential Actions: Reasoning and Computing with the Extensive Form

Published online by Cambridge University Press:  05 June 2012

Yoav Shoham
Affiliation:
Stanford University, California
Kevin Leyton-Brown
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

In Chapter 3 we assumed that a game is represented in normal form: effectively, as a big table. In some sense, this is reasonable. The normal form is conceptually straightforward, and most see it as fundamental. While many other representations exist to describe finite games, we will see in this chapter and in Chapter 6 that each of them has an “induced normal form”: a corresponding normal-form representation that preserves game-theoretic properties such as Nash equilibria. Thus the results given in Chapter 3 hold for all finite games, no matter how they are represented; in that sense the normal-form representation is universal.

In this chapter we will look at extensive-form games, a finite representation that does not always assume that players act simultaneously. This representation is in general exponentially smaller than its induced normal form, and furthermore can be much more natural to reason about. While the Nash equilibria of an extensiveform game can be found through its induced normal form, computational benefit can be had by working with the extensive form directly. Furthermore, there are other solution concepts, such as subgame-perfect equilibrium (see Section 5.1.3), which explicitly refer to the sequence in which players act and which are therefore not meaningful when applied to normal-form games.

Perfect-information extensive-form games

The normal-form game representation does not incorporate any notion of sequence, or time, of the actions of the players.

Type
Chapter
Information
Multiagent Systems
Algorithmic, Game-Theoretic, and Logical Foundations
, pp. 113 - 140
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×