Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T05:33:46.348Z Has data issue: false hasContentIssue false

PART III - Three-View Geometry

Published online by Cambridge University Press:  25 January 2011

Richard Hartley
Affiliation:
Australian National University, Canberra
Andrew Zisserman
Affiliation:
University of Oxford
Get access

Summary

Outline

This part contains two chapters on the geometry of three-views. The scene is imaged with three cameras perhaps simultaneously in a trinocular rig, or sequentially from a moving camera.

Chapter 15 introduces a new multiple view object – the trifocal tensor. This has analogous properties to the fundamental matrix of two-view geometry: it is independent of scene structure depending only on the (projective) relations between the cameras. The camera matrices may be retrieved from the trifocal tensor up to a common projective transformation of 3-space, and the fundamental matrices for view-pairs may be retrieved uniquely.

The new geometry compared with the two-view case is the ability to transfer from two views to a third: given a point correspondence over two views the position of the point in the third view is determined; and similarly, given a line correspondence over two views the position of the line in the third view is determined. This transfer property is of great benefit when establishing correspondences over multiple views.

If the essence of the epipolar constraint over two views is that rays back-projected from corresponding points are coplanar, then the essence of the trifocal constraint over three views is the geometry of a point–line–line correspondence arising from the image of a point on a line in 3-space: corresponding image lines in two views back-project to planes which intersect in a line in 3-space, and the ray back-projected from a corresponding image point in a third view must intersect this line.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Three-View Geometry
  • Richard Hartley, Australian National University, Canberra, Andrew Zisserman, University of Oxford
  • Book: Multiple View Geometry in Computer Vision
  • Online publication: 25 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511811685.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Three-View Geometry
  • Richard Hartley, Australian National University, Canberra, Andrew Zisserman, University of Oxford
  • Book: Multiple View Geometry in Computer Vision
  • Online publication: 25 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511811685.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Three-View Geometry
  • Richard Hartley, Australian National University, Canberra, Andrew Zisserman, University of Oxford
  • Book: Multiple View Geometry in Computer Vision
  • Online publication: 25 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511811685.020
Available formats
×