Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T00:28:33.773Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

S. A. Thorpe
Affiliation:
University of Wales, Bangor
Get access
Type
Chapter
Information
The Turbulent Ocean , pp. 380 - 423
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C. E. and Weatherley, G. L. (1981). Some effects of suspended sediment stratification on an oceanic bottom boundary layer. J. Geophys. Res., 86, 4161–4172. [216, 280]CrossRefGoogle Scholar
Adrian, R. J., Meinhart, C. D. and Tomkins, C. D. (2000). Vortex organisation in the outer region of the turbulent boundary layer. J. Fluid Mech., 422, 1–54. [219]CrossRefGoogle Scholar
Agrawal, Y. C., Terray, E. A., Donelan, M. A., Huang, P. A., Williams, A. J. III, Drennan, W. M., Kahma, K. K. and Kitagorodski, S. A. (1992). Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219–220. [230, 237, 241]CrossRefGoogle Scholar
Alford, M. H. and Gregg, M. C. (2001). Near-inertial mixing: modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106, 16947–16968. [8, 19, 149, 188]CrossRefGoogle Scholar
Alford, M. and Pinkel, R. (2000a). Observations of overturning in the thermocline: the context of ocean mixing. J. Phys. Oceanogr., 30, 805–832. [11, 20, 199, 200]2.0.CO;2>CrossRefGoogle Scholar
Alford, M. and Pinkel, R. (2000b). Patterns of turbulent and double-diffusive phenomena: observations from a rapid profiling microconductivity probe. J. Phys. Oceanogr., 30, 833–854. [210]2.0.CO;2>CrossRefGoogle Scholar
Allen, J. S., Newberger, P. A. and Holman, R. A. (1996). Nonlinear shear instabilities of alongshore currents on plane beaches. J. Fluid Mech., 310, 181–213. [298]CrossRefGoogle Scholar
Amen, R. and Maxworthy, T. (1980). The gravitational collapse of a mixed region into a linearly stratified fluid. J. Fluid Mech., 96, 65–80. [76]CrossRefGoogle Scholar
Andreassen, Ø., Hvidsten, P. Ø., Fritts, D. C. and Arendt, S. (1998). Vorticity dynamics in a breaking internal gravity wave. Part 1. Initial instability evolution. J. Fluid Mech., 367, 27–46. [10, 164]CrossRefGoogle Scholar
Anis, A. and Moum, J. N. (1992). The superadiabatic surface layer of the ocean during convection. J. Phys. Oceanogr., 22, 1221–1227. [248]2.0.CO;2>CrossRefGoogle Scholar
Apel, J., Kravtsov, Yu., Lavrova, O., Litovchenko, K., Mityagina, M. and Sabinin, K. (1999). Observations of unstable MBL conditions using radar imagery. In The Wind-Driven Air–sea Interface, ed. , M. L. Banner. Sydney, Australia: Publ. School of Mathematics, University of New South Wales, pp. 361–368. [349]Google Scholar
Armi, L. (1978). Some evidence for boundary mixing in the deep ocean. J. Geophys. Res., 83, 1971–1979. [292]CrossRefGoogle Scholar
Armi, L. and D' Asaro, E. (1980). Flow structures in the benthic ocean. J. Geophys. Res., 85, 469–484. [221, 223, 225]CrossRefGoogle Scholar
Armi, L. and Farmer, D. (1985). The internal hydraulics of the Strait of Gibraltar and associated sills and narrows. Oceanologica Acta, 8, 37–46. [326]Google Scholar
Armi, L. and Farmer, D. (1988). The flow of Mediterranean water through the Strait of Gibraltar. Progress in Oceanogr., 21, 1–105. [328, 329, 331]Google Scholar
Armi, L. and Farmer, D. (2002). Stratified flow over topography: bifurcation fronts and transitions to the uncontrolled state. Proc. R. Soc. Lond., A458, 513–538. [21, 334]CrossRefGoogle Scholar
Armi, L. and Millard, R. C. (1976). The bottom boundary layer of the deep ocean. J. Geophys. Res., 81, 4983–4990. [215, 221, 222]CrossRefGoogle Scholar
Armi, L., Hebert, D., Oakey, N., Price, J., Richardson, P. L., Rossby, T. and Ruddick, B. (1988). The history and decay of a Mediterranean salt lens. Nature, 333, 649–651. [352]CrossRefGoogle Scholar
Armi, L., Hebert, D., Oakey, N., Price, J. F., Richardson, P. L. and Rossby, H. T. (1989). Two years in the life of a Mediterranean salt lens. J. Phys. Oceanogr., 19, 354–370. [352]2.0.CO;2>CrossRefGoogle Scholar
Ashford, O. M. (1985). Prophet or Professor? The Life and Work of Lewis Fry Richardson. Bristol: Adam Hilger Ltd. [33]Google Scholar
Atsavapranee, P. and Gharib, M. (1997). Structures in stratified plane mixing layers and the effects of cross-shear. J. Fluid Mech., 342, 53–86. [93, 94, 99, 286]CrossRefGoogle Scholar
Bagnold, R. A. (1946). Motion of waves in shallow water. Interaction of waves and sand bottoms. Proc. R. Soc. Lond., A187, 1–15. [273]CrossRefGoogle Scholar
Bainbridge, R. (1957). The size, shape and density of marine phytoplankton concentrations. Cambridge Philos. Soc. Biol. Rev., 32, 91–115. [267]CrossRefGoogle Scholar
Baines, P. G. (1982). On internal tidal generation models. Deep-Sea Res., 29, 307–338. [41, 74, 75]CrossRefGoogle Scholar
Baines, P. G. (1995). Topographic Effects in Stratified Flows. Cambridge: Cambridge University Press. [323, 325, 330]Google Scholar
Baines, P. G. (2001). Mixing in flows down gentle slopes into stratified environments. J. Fluid Mech., 443, 237–270. [318]CrossRefGoogle Scholar
Baines, P. G. and Gill, A. E. (1969). On thermohaline convection with linear gradients. J. Fluid Mech., 37, 289–306. [132, 134]CrossRefGoogle Scholar
Baker, E. T. and Massoth, G. J. (1987). Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean. Earth and Planetary Sci. Letts., 85, 59–73. [126]CrossRefGoogle Scholar
Baker, E. T., Lavelle, J. W., Feely, R. A., Massoth, G. T. and Walker, S. L. (1989). Episodic venting of hydrothermal fluids from Juan de Fuca Ridge. J. Geophys. Res., 94, 9237–9250. [126]CrossRefGoogle Scholar
Balmforth, N., Smith, S. L. and Young, W. (1998). Dynamics of interfaces and layers in a stratified turbulent fluid. J. Fluid Mech., 355, 329–358. [193]CrossRefGoogle Scholar
Banks, W. H. H., Drazin, P. G. and Zaturska, M. B. (1976). On the normal modes of parallel flow of inviscid stratified fluid. J. Fluid Mech., 75, 149–171. [89]CrossRefGoogle Scholar
Barry, M. E., Ivey, G. N., Winters, K. B. and Imberger, J. (2001). Laboratory experiments on diapycnal mixing in stratified fluids. In ‘Aha Huliko'a Proceeds of Hawaiian Winter Workshop, Jan. 16–19, 2001, SOEST Special Publication, pp. 145–151. [182]Google Scholar
Batchelor, G. (1996). The Life and Legacy of G. I. Taylor. Cambridge: Cambridge University Press. [10, 123]Google Scholar
Batchelor, G. K. (1959). Small scale variations in convected quantities like temperature in a turbulent fluid. Part I. General discussion and the case of small conductivity. J. Fluid Mech., 5, 113–139CrossRefGoogle Scholar
Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press. [83, 274]Google Scholar
Belkin, I. M., Levitus, S., Antonov, J. and Malmberg, S.-A. (1998). Great salinity anomalies in the North Atlantic. Prog. Oceanogr., 41, 1–68. [367]CrossRefGoogle Scholar
Bell, T. H. (1975). Topographically generated internal waves in the open sea. J. Geophys. Res., 80, 320–327. [41, 74, 325]CrossRefGoogle Scholar
Bénard, H. (1900). Les tourbillons cellulaires dans une nappe liquide. Revue Gén. Sci. Pur. Appl., 11, 1261–1271 and 1309–1328. [115]Google Scholar
Benielli, D. and Sommeria, J. (1998). Excitation and breaking of internal gravity waves by parametric instability. J. Fluid Mech., 374, 117–144. [154, 156]CrossRefGoogle Scholar
Bernal, L. P. and Roshko, A. (1986). Streamwise vortex structure in plane mixing layers. J. Fluid Mech., 170, 499–525. [105]CrossRefGoogle Scholar
Bidokhti, A. A. and Tritton, D. J. (1992). The structure of a turbulent free shear layer in a rotating fluid. J. Fluid Mech., 241, 469–502. [113]CrossRefGoogle Scholar
Booker, J. R. and Bretherton, F. P. (1967). The critical layer for internal waves in a shear flow. J. Fluid Mech., 27, 513–539. [161]CrossRefGoogle Scholar
Bormans, M. and Garrett, C. (1989). A simple criterion for gyre formation by the surface outflow from a strait, with application to the Alboran Sea. J. Geophys. Res., 94, 12637–12644. [321]CrossRefGoogle Scholar
Bouruet-Aubertot, P. and Thorpe, S. A. (1999). Numerical experiments on internal gravity waves in an accelerating shear flow. Dyn. Atmosph. Oceans, 29, 41–63. [160]CrossRefGoogle Scholar
Bowden, K. F. (1965). Horizontal mixing in the sea due to a shearing current. J. Fluid Mech., 21, 83–95. [287, 288]CrossRefGoogle Scholar
Bowden, K. F. and Fairbairn, L. A. (1956). Measurements of turbulent fluctuations and Reynolds stresses in a tidal current. Proc. R. Soc. Lond., A237, 422–438. [270]CrossRefGoogle Scholar
Bowen, A. J. and Holman, R. A. (1989). Shear instabilities of the mean longslope current 1: Theory. J. Geophys. Res., 94, 18023–18030. [298]CrossRefGoogle Scholar
Boyer, D. L. and Zhang, X. (1990). Motion of oscillatory currents past topography. J. Phys. Oceanogr. 20, 1425–1448. [325]2.0.CO;2>CrossRefGoogle Scholar
Breeding, R. J. (1971). A non-linear investigation of critical levels for internal atmospheric gravity waves. J. Fluid Mech., 50, 545–563. [162]CrossRefGoogle Scholar
Bretherton, F. P. (1966). The propagation of groups of internal gravity waves in a shear flow. Quart. J. R. Meteorol. Soc., 92, 466–480. [161]CrossRefGoogle Scholar
Bretherton, F. P. and Garrett, C. J. R. (1968). Wavetrains in inhomogeneous moving media. Proc. R. Soc. Lond., A302, 529–554. [63]CrossRefGoogle Scholar
Brighton, P. M. M. (1978). Strongly stratified flow past three-dimensional obstacles. Quart. J. R. Meteorol. Soc., 104, 289–307. [324, 337]CrossRefGoogle Scholar
Briscoe, M. G. (1999). Short-term directional variability of the continuum range in the deep-ocean wave field. In Dynamics of oceanic internal gravity waves, II, Proceedings of Hawaiian Winter Workshop, ed. , P. Müller and , D. HendersonSOEST Special Publication, pp. 169–172. [67]Google Scholar
Brocchini, M. and Peregrine, D. H. (2001). The dynamics of strong turbulence at a free surface. Part 1. Description. J. Fluid Mech., 449, 225–254. [232]CrossRefGoogle Scholar
Broecker, W. (1991). The great ocean conveyer. Oceanography, 4, 79–89. [370]CrossRefGoogle Scholar
Broutman, D. (1986). On internal wave caustics. J. Phys. Oceanogr., 16, 1625–1635. [151]2.0.CO;2>CrossRefGoogle Scholar
Broutman, D. and Grimshaw, R. (1988). The energetics of the interaction between short small-amplitude internal waves and near inertial waves. J. Fluid Mech., 196, 93–106. [151]CrossRefGoogle Scholar
Broutman, D. and Young, W. R. (1986). On the interaction of small-scale oceanic internal waves with near-inertial waves. J. Fluid Mech., 166, 341–358. [69, 151, 165]CrossRefGoogle Scholar
Browand, F. K. and Winant, C. D. (1973). Laboratory observations of shear-layer instability in a stratified fluid. Boundary Layer Meteorol., 5, 67–77. [109]CrossRefGoogle Scholar
Brown, G. L. and Roshko, A. (1974). On the density effects and large structure in turbulent mixing layers, J. Fluid Mech., 64, 775–816. [24, 98, 105]CrossRefGoogle Scholar
Brown, S. N. and Stewartson, K. (1980). On the algebraic decay of disturbances in a stratified linear shear flow. J. Fluid Mech., 100, 811–816. [90]CrossRefGoogle Scholar
Browning, K. A. (1971). Structure of the atmosphere in the vicinity of large-amplitude Kelvin–Helmholtz billows. Quart. J. R. Meteorol. Soc., 97, 283–299. [83]CrossRefGoogle Scholar
Browning, K. A. and Watkins, C. D. (1970). Observations of clear-air turbulence by high powered radar. Nature, 227, 260–263. [103]CrossRefGoogle Scholar
Browning, K. A., Bryant, G. W., Starr, J. R. and Axford, D. N. (1973). Air motion within Kelvin–Helmholtz billows determined from simultaneous Doppler radar and aircraft measurements. Quart. J. R. Meteorol. Soc., 99, 619–638. [83]CrossRefGoogle Scholar
Brügge, B. (1995). Near-surface mean circulation and kinetic energy in the central North Atlantic from drifter data. J. Geophys. Res., 100, 20543–20554. [344]CrossRefGoogle Scholar
Brumley, B. H. and Jirka, G. H. (1987). Near surface turbulence in a grid stirred tank. J. Fluid Mech., 183, 235–263. [230]CrossRefGoogle Scholar
Brumley, B. H. and Jirka, G. H. (1988). Air–sea transfer of slightly soluble gases: turbulence, interfacial processes and conceptual models. Physico-chemical Hyrdodynamics, 10, 295–319. [230]Google Scholar
Bryden, H. L. (1983). The Southern Ocean. In Eddies in Marine Science, ed. , A. R. Robinson. Berlin: Springer-Verlag, pp. 265–277. [353]Google Scholar
Bryden, H. L. and Imawaki, S. (2001). Ocean heat transport. In Ocean Circulation and Climate, ed. , G. Siedler, , J. Church and , J. Gould, chapter 6.1. London: Academic Press. [19]Google Scholar
Bryden, H. and Nurser, A. J. G. (2003). Effects of strait mixing on ocean stratification. J. Phys. Oceanogr., 33, 1870–1872. [42, 332]2.0.CO;2>CrossRefGoogle Scholar
Burrows, M. and Thorpe, S. A. (1999). Drifter observations of the Hebrides slope current and nearby circulation patterns. Ann. Geophysicae, 17, 280–302CrossRefGoogle Scholar
Caldwell, D. R. and Chriss, T. M. (1979). The viscous boundary layer at the sea floor. Science, 205, 1131–1132. [270]CrossRefGoogle Scholar
Caldwell, D. R. and Elliott, W. P. (1971). Surface stresses produced by rainfall. J. Phys. Oceanogr., 1, 145–148. [244]2.0.CO;2>CrossRefGoogle Scholar
Cardwell, D. S. L. (1989). James Joule, a Biography. Manchester: Manchester University Press. [4]Google Scholar
Carnevale, G. F., Orlandi, P., Briscolini, M. and Kloosterziel, R. C. (2001). Simulations of internal-wave breaking and wave-packet propagation in the thermocline. In ‘Aha Huliko'a Proceedings of the Hawaiian Winter Workshop, ed. , P. Müller and , D. Henderson. University of Hawaii at Manoa, Jan. 2001, pp. 153–174. [151]Google Scholar
Carter, G. S. and Gregg, M. C. (2002). Intense, variable mixing near the head of the Monteray submarine canyon. J. Phys. Oceanogr., 32, 3145–3165. [177, 323]2.0.CO;2>CrossRefGoogle Scholar
Caughey, S. J. and Palmer, S. G. (1979). Some aspects of turbulent structure through the depth of the convective boundary layer. Quart. J. R. Met. Soc., 105, 811–827. [247, 249]CrossRefGoogle Scholar
Caulfield, C. and Peltier, W. (2000). Anatomy of the mixing transition in homogeneous and stratified free shear layers. J. Fluid Mech., 413, 1–47. [92, 105]CrossRefGoogle Scholar
Caulfield, C. P. and Woods, A. W. (1998). Turbulent gravitational convection from a point source in a non-uniformly stratified environment. J. Fluid Mech., 360, 229–248. [125]CrossRefGoogle Scholar
Cerretelli, C. and Williamson, C. H. K. (2003). The physical mechanism for vortex merging. J. Fluid Mech., 475, 79–100. [98]CrossRefGoogle Scholar
Chapman, D. and Browning, K. A. (1997). Radar observations of wind-shear splitting within evolving Kelvin–Helmholtz billows. Quart. J. R. Met. Soc., 123, 1433–1439. [103]CrossRefGoogle Scholar
Chapman, D. and Browning, K. A. (1999). Release of potential shearing instability in warm fronts. Quart. J. R. Meteorol. Soc., 125, 2265–2289. [103]CrossRefGoogle Scholar
Cheyney, C. E. and Richardson, P. L. (1976). Observed decay of a cyclonic Gulf Stream ring. Deep-Sea Res., 23, 143–155. [348]Google Scholar
Chelton, D. B. and Schlax, M. G. (1996). Global observations of oceanic Rossby waves. Science, 272, 234–238. [365]CrossRefGoogle Scholar
Chomaz, J. M., Bonneton, P. and Hopfinger, E. J. (1993). Structure of the near wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech., 254, 1–21. [211]CrossRefGoogle Scholar
Chriss, T. M. and Caldwell, D. R. (1982). Evidence for the influence of form drag on bottom boundary layer flow. J. Geophys. Res., 87, 4148–4154. [275]CrossRefGoogle Scholar
Church, J. A and Gregory, J. M. (2001). Sea level change. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turikian, vol. 5. London: Academic Press, pp. 2599–2604. [367]Google Scholar
Clarke, L. B. and Werner, B. T. (2004). Tidally modulated occurrence of megaripples in a saturated surf zone. J. Geophys. Res., 109(C1), doi:10.1029/2002JC001522. [297]CrossRefGoogle Scholar
Cooper, L. N. (1967). Stratification in the deep ocean. Sci. Prog., Oxford, 55, 73–90. [81, 191]Google Scholar
Corliss, J. B., Dymond, J., Gordon, L. I., Edmonds, J. M., Heezen, R. P., Ballard, R. B., Green, K., Williams, D., Bainbridge, A., Crane, K. and Andel, T. H. (1979). Submarine thermal springs on the Galápagos Rift. Science, 203, 1073–1083. [116]CrossRefGoogle ScholarPubMed
Cortesi, A. B., Smith, B. L., Yadigaroglu, G. and Banerjee, S. (1999). Numerical investigation of the entrainment and mixing in neutral and stably-stratified mixing layers. Phys. Fluids, 11, 162–185. [92]CrossRefGoogle Scholar
Cox, D. T., Kobyashi, K. N. and Okayasu, A. (1996). Bottom shear stress in the surf zone. J. Geophys. Res., 101, 14337–14348. [298]CrossRefGoogle Scholar
Crease, J. (1962). Velocity measurements in the deep water of the western North Atlantic. J. Geophys. Res., 67, 3173–3176. [340]CrossRefGoogle Scholar
Csanady, G. T. (1973). Turbulent Diffusion in the Environment. Dordrecht: Reidel. [253, 264]CrossRefGoogle Scholar
Csanady, G. T. (1994). Vortex pair model of Langmuir circulation. J. Mar. Res., 52, 559–581. [234, 236, 253]CrossRefGoogle Scholar
Csanady, G. T. (2001). Air–Sea Interaction. Cambridge: Cambridge University Press. [228]CrossRefGoogle Scholar
Cummins, P. F., Vagle, S., Armi, L. and Farmer, D. M. (2003). Stratified flow over topography: upstream influence and generation of nonlinear internal waves. Proc. R. Soc. Lond., A459, 1467–1487. [74, 336]CrossRefGoogle Scholar
Dalziel, S. (1991). Two-layer hydraulics; a functional approach. J. Fluid Mech., 223, 135–163. [327]CrossRefGoogle Scholar
D'Asaro, E. A. (1988). Generation of submesoscale vortices: a new mechanism. J. Geophys. Res., 93, 6685–6693. [321]CrossRefGoogle Scholar
D'Asaro, E. A. (2001). Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr., 31, 3530–3537. [246]2.0.CO;2>CrossRefGoogle Scholar
D'Asaro, E. A. and Lien, R.-C. (2000). Lagrangian measurements of waves and turbulence in stratified flows. J. Phys. Oceanogr., 30, 641–655. [171, 337]2.0.CO;2>CrossRefGoogle Scholar
Davey, A. and Reid, W. A. (1977). On the stability of stratified viscous Couette flow: Part 1. Constant buoyancy frequency. J. Fluid Mech., 80, 509–526. [90]CrossRefGoogle Scholar
Davis, R. E. (1987). Modelling eddy transport of passive tracers. J. Mar Res., 45, 635–666. [363, 364]CrossRefGoogle Scholar
Davis, R. E. (1991a). Observing the general circulation with floats. Deep-Sea Res., 38, S531–S571. [33, 34, 364]CrossRefGoogle Scholar
Davis, R. E. (1991b). Lagrangian ocean studies. Ann. Rev. Fluid Mech., 23, 43–64. [34, 261, 342, 364]CrossRefGoogle Scholar
Davis, R. E. (1998). Preliminary results from directly measuring mid-depth circulation in the tropical and South Pacific. J. Gephys. Res., 103, 24619–24639. [363]CrossRefGoogle Scholar
Davis, R. E. and Acrivos, A. (1967). The stability of oscillatory internal waves. J. Fluid Mech., 30, 723–736. [154, 155]CrossRefGoogle Scholar
Deacon, M. (1971). Scientists and the Sea, 1650–1900. London: Academic Press. [326]Google Scholar
Deane, G. B. (1997). Sound generation and air entrainment by breaking waves in the surf zone. J. Acoust. Soc. Amer., 102, 2671–2689. [293]CrossRefGoogle Scholar
Deane, G. B. and Stokes, M. D. (1998). Air entrainment processes and bubble size distributions in the surf zone. J. Phys. Oceanogr., 29, 1393–1407. [239]2.0.CO;2>CrossRefGoogle Scholar
Deane, G. B. and Stokes, M. D. (2002). Scale dependence of bubble creation mechanisms in breaking waves. Nature, 418, 839–844. [239]CrossRefGoogle ScholarPubMed
Delisi, D. P. and Dunkerton, T. J. (1989). Laboratory observations of gravity wave critical-layer flows. PAGEOPH, 130, 445–461. [163]CrossRefGoogle Scholar
Denman, K. L. and Gargett, A. E. (1988). Multiple thermoclines are barriers to vertical exchange in the subarctic Pacific during SUPER, May 1984. J. Mar. Res., 46, 77–103. [184]CrossRefGoogle Scholar
Silva, I. P. D., Fernando, H. J. S., Eaton, F. and Herbert, D. (1996). Evolution of Kelvin–Helmholtz billows in nature and laboratory. Earth Planet. Sci. Lett., 143, 217–231. [111]CrossRefGoogle Scholar
Dewey, R. K., Crawford, W. R., Gargett, A. E. and Oakey, N. S. (1987). A microstructure instrument for profiling oceanic turbulence in coastal boundary layers. J. Atmos. Oceanic Technol., 4, 288–297. [173]2.0.CO;2>CrossRefGoogle Scholar
Dhanak, M. R. and Holappa, K. (1999). An autonomous ocean turbulence measurement platform. J. Atmos. Oceanic Technol., 16, 1506–1518. [173]2.0.CO;2>CrossRefGoogle Scholar
Dickson, R. E. and McCave, I. N. (1986). Nepheloid layers on the continental slopes west of the Porcupine Bank. Deep-Sea Res., 33, 791–818. [226]CrossRefGoogle Scholar
Dickson, R. R. (1983). Global summaries and intercomparisons. Flow statistics from long-term current meter moorings. In Eddies in Marine Science, ed. , A. R. Robinson. Berlin: Springer-Verlag, pp. 278–353. [343]Google Scholar
Dickson, R. R., Gould, W. J., Gurbett, P. A. and Killworth, P. D. (1982). A seasonal signal in ocean currents to abyssal depths. Nature, 295, 193–198. [346]CrossRefGoogle Scholar
Dickson, R. R., Meineke, J., Malmberg, S.-A. and Lee, A. J. (1988). The ‘great salinity anomaly’ in the northern North Atlantic. Prog. Oceanogr., 20, 103–151. [367]CrossRefGoogle Scholar
Dillon, T. M. (1982). Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J. Phys. Oceanogr., 87, 9601–9613. [176]Google Scholar
Donelan, M., Longuet-Higgins, M. S. and Turner, J. S. (1972). Periodicity in whitecaps. Nature, 239, 449–451. [236]CrossRefGoogle Scholar
Donlon, C. J., Eifler, W. and Nightindale, T. J. (1999). The thermal skin temperature of the ocean at high wind speed. Proc. IGARSS Conf.Hamberg, Germany. [17]Google Scholar
Dörnbrack, A. (1998). Turbulent mixing by breaking gravity waves. J. Fluid Mech., 375, 113–141. [163]CrossRefGoogle Scholar
Doron, K. and Sutherland, B. R. (2003). Internal waves generated from a turbulent mixed region. Phys. Fluids, 15, 499–498Google Scholar
Doron, P., Bertuccioli, L., Katz, J. and Osborn, T. R. (2001). Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. J. Phys. Oceanogr., 31, 2108–2134. [277]2.0.CO;2>CrossRefGoogle Scholar
Drake, D. E. (1971). Suspended sediment and thermal stratification in the Santa Barbara Channel. Deep-Sea Res., 18, 763–769. [226]Google Scholar
Drazin, P. G. and Howard, L. N. (1966). Hydrodynamic stability of parallel flow of inviscid fluid. In Advances in applied mechanics, ed. , G. Kuerti, vol. 7. New York, Academic Press, pp. 1–89. [90]Google Scholar
Drazin, P. G. and Reid, W. H. (1981). Hydrodynamic Stability. Cambridge: Cambridge University Press. [83, 90, 113, 118, 276]Google Scholar
Duncan, J. H. (1981). An investigation of breaking waves produced by a towed hydrofoil. Proc. R. Soc. Lond., A377, 331–348. [233]CrossRefGoogle Scholar
Dunkerton, T. J. (1997). Shear instability of internal inertia-gravity waves. J. Atmos. Sci., 54, 1628–1641. [149]2.0.CO;2>CrossRefGoogle Scholar
Dunkerton, T. J., Delisi, D. P. and Lelong, M.-P. (1998). Alongslope current generated by obliquely incident internal gravity waves. Geophys. Res. Letts., 25, 3871–3874. [315]CrossRefGoogle Scholar
Dyer, K. K. and Huntley, D. A. (1999). The origin, classification and modelling of sand banks and ridges. Continental Shelf Res., 19, 1285–1330. [281]CrossRefGoogle Scholar
Eckart, C. (1948). An analysis of the stirring and mixing in incompressible fluids. J. Mar. Res., 7, 265–275. [20]Google Scholar
Edwards, K. A., MacCready, P., Moum, J. N., Pawlak, G., Klymak, J. and Perlin, A. (2004). Form drag and mixing due to tidal flow past a sharp point. Submitted to J. Phys. Oceanogr., 34, 1297–1312. [322]2.0.CO;2>CrossRefGoogle Scholar
Egbert, G. D. and Ray, R. D. (2001). Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775–778. [42]CrossRefGoogle Scholar
Ekman, V. W. (1904). On dead water. Sci. Results Norw. North Polar Expedi.1893–96, 5(15). [45]Google Scholar
Ekman, V. W. (1905). On the influence of the Earth's rotation on ocean currents. Arch. Math. Astron. Phys., 2, no. 11. [220]Google Scholar
Eliassen, A. and Palm, E. (1961). On the transfer of energy in stationary mountain waves. Geofs. Publ. Oslo, 22(3), 1–23. [161]Google Scholar
Elliott, A. J. (1984). Measurements of the turbulence in an abyssal boundary layer. J. Phys. Oceanogr., 14, 1778–1786. [221]2.0.CO;2>CrossRefGoogle Scholar
Ellison, T. H. (1957). Turbulent transport of heat and momentum from an infinite rough plane. J. Fluid Mech., 2, 456–466. [182]CrossRefGoogle Scholar
Emery, W. J., Lee, W. G. and Magaard, L. (1984). Geographic and seasonal distribution of Brunt-Väisälä frequency and Rossby radii in the North Pacific and North Atlantic. J. Phys. Oceanogr., 14, 294–317. [114]2.0.CO;2>CrossRefGoogle Scholar
England, M. H. (2001). Tracers and large scale models. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian, vol. 6. London: Academic Press, pp. 3009–3020. [357]Google Scholar
Eriksen, C. C. (1978). Measurements and models of finestructure, internal gravity waves, and wave breaking in the deep ocean. J. Geophys. Res., 83, 2989–3009. [77, 201, 202, 205]CrossRefGoogle Scholar
Eriksen, C. C. (1982). Observations of internal wave reflection off sloping bottoms. J. Geophys. Res., 87, 525–538. [303]CrossRefGoogle Scholar
Eriksen, C. C. (1985). Implications of ocean bottom reflection for internal wave spectra and mixing. J. Phys. Oceanogr., 15, 1145–1156. [307]2.0.CO;2>CrossRefGoogle Scholar
Eriksen, C. C. (1998). Internal wave reflection and mixing at Fieberling Guyot. J. Geophys. Res., 103, 2977–2994. [307, 312]CrossRefGoogle Scholar
Ertel, H. (1942). Ein neuer hydrodynamischer Wirbelsalz. Meteorol. Z., 50, 277–281. [78]Google Scholar
Estrada, M. and Berdalet, E. (1998). Effects of turbulence on phytoplankton. In Physiological Ecology of Harmful Algal Blooms. ed. , D. M. Anderson, , A. D. Cambella and , G. M. Hallegraeff. NATO ASI Series, vol. G41, pp. 601–618. [267]Google Scholar
Etling, D. and Brown, R. A. (1993). Roll vortices in the planetary boundary layer: a review. Boundary Layer Meteorol., 65, 215–248. [349]CrossRefGoogle Scholar
Faller, A. J. and Auer, S. J. (1988). The role of Langmuir circulation in the dispersion of surface tracers. J. Phys. Oceanogr., 18, 1108–1123. [264]2.0.CO;2>CrossRefGoogle Scholar
Faller, A. J. and Caponi, E. A. (1978). Laboratory studies of wind-driven Langmuir circulation. J. Geophys. Res., 83, 3617–3633. [255]CrossRefGoogle Scholar
Farmer, D. M. and Armi, L. (1986). Maximal two-layer flow over a sill and through the combination of a sill and a contraction with barotropic flow. J. Fluid Mech., 164, 53–76. [327, 329]CrossRefGoogle Scholar
Farmer, D. M. and Armi, L. (1999a). Stratified flow over topography: the role of small-scale entrainment and mixing in flow establishment. Proc. R. Soc. Lond., A455, 3221–3258. [334, 335]CrossRefGoogle Scholar
Farmer, D. M. and Armi, L. (1999b). The generation and trapping of solitary waves over topography. Science, 283, 188–190. [336]CrossRefGoogle Scholar
Farmer, D. M. and Freeland, H. (1983). The physical oceanography of fjords. J. Phys. Oceanogr., 12, 147–220. [332, 333]Google Scholar
Farmer, D. M. and Li, M. (1995). Patterns of bubble clouds organised by Langmuir circulation. J. Phys. Oceanogr., 25, 1425–1440. [253, 257]2.0.CO;2>CrossRefGoogle Scholar
Farmer, D. M. and Smith, J. D. (1979). Generation of lee waves over the sill in Knight Inlet. In Fjord Oceanography, ed. , H. J. Freeland, , D. M. Farmer and , C. D. Levings. London: Plenum Press, pp. 259–269. [74, 333]Google Scholar
Farmer, D. M. and Smith, J. D. (1980). Tidal interaction of stratified flow with a sill in Knight Inlet. Deep-Sea Res. A, 27, 239–254. [333]CrossRefGoogle Scholar
Farmer, D. M., Crawford, G. B. and Osborn, T. R. (1987). Temperature and velocity microstructure caused by swimming Fish. Limnol. Oceanogr., 32, 978–983. [268]CrossRefGoogle Scholar
Farmer, D. M, Vagel, S. and Li, M. (2001). Bubble and temperature fields in Langmuir circulations. In Fluid Mechanics and the Environment: Dynamical Approaches, ed. , J. L. Lumley. New York: Springer, pp. 95–105. [267]Google Scholar
Fer, I., Lemmin, U. and Thorpe, S. A. (2001). Cascading of water down the sloping sides of a deep lake in winter. Geophys. Res. Letts., 28, 2093–2096. [318]CrossRefGoogle Scholar
Fer, I., , Lemmin U. and Thorpe, S. A. (2002). Winter cascading of cold water in Lake Geneva. J. Geophys. Res., 107(C6), 10.1029/2001JC000828, 13-1 to 16. [319]CrossRefGoogle Scholar
Ferron, B., Mercier, H., Speer, K., Gargett, A. and Polzin, K. (1998). Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28, 1929–1945. [176, 332]2.0.CO;2>CrossRefGoogle Scholar
Ffield, A. and Gordon, A. L. (1996). Tidal mixing signatures in the Indonesian Seas. J. Phys. Oceanogr., 26, 1924–1937. [75]2.0.CO;2>CrossRefGoogle Scholar
Fincham, A. M., Maxworthy, T. and Spedding, G. R. (1996). Energy dissipation and vortex structure in freely decaying, stratified grid turbulence. Dynamics of Atmospheres Oceans, 23, 155–169. [193, 194, 196]CrossRefGoogle Scholar
Finnigan, J. (2000). Turbulence in plant canopies. Ann. Rev. Fluid Mech., 32, 519–571. [282]CrossRefGoogle Scholar
Fischer, H. B. (1973). Longitudinal dispersion and turbulent mixing in open-channel flow. Ann. Rev. Fluid Mech., 5, 59–78. [287]CrossRefGoogle Scholar
Fjørtoft, R. (1950). Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex. Geofys. Publ. Oslo, 17(6), 1–52. [85]Google Scholar
Flament, P., Armi, L. and Washburn, L. (1985). The evolving structure of an upwelling filament. J. Geophys. Res., 90, 11765–11778. [350]CrossRefGoogle Scholar
Flament, P., Lumpkin, R., Tournadre, J. and Armi, L. (2001). Vortex pairing in an unstable anticyclonic shear flow: discrete subharmonics of one pendulum day. J. Fluid Mech., 440, 401–409. [355]CrossRefGoogle Scholar
Fleury, M. and Lueck, R. G. (1992). Microstructure in and around a double-diffusive interface. J. Phys. Oceanogr., 22, 701–718. [139]2.0.CO;2>CrossRefGoogle Scholar
Forseka, S. U., Fernando, H. J. S. and Heijst, G. J. F. (1998). Evolution of an isolated turbulent region in a stratified fluid. J. Geophys. Res., 103, 24857–24868. [169]CrossRefGoogle Scholar
Foster, T. D. (1971). Intermittent convection. Geophys. Fluid Mech., 2, 201–217. [120]Google Scholar
Foster, T. D. and Carmack, E. C. (1976). Temperature and salinity structure in the Weddell Sea. J. Phys. Oceanogr., 6, 36–44. [137]2.0.CO;2>CrossRefGoogle Scholar
Franz, G. J. (1959). Splashes as sources of sound in liquids. J. Acoust. Soc. Am., 31, 1080–1096. [245]CrossRefGoogle Scholar
Freeland, H., Rhines, P. and Rossby, T. (1975). Statistical observations of the trajectories of neutrally buoyant floats in the North Atlantic. J. Mar. Res., 33, 383–404. [341, 365]Google Scholar
Fringer, O. B. and Street, R. L. (2003). The dynamics of breaking progressive interfacial waves. J. Fluid Mech., 494, 319–353. [109, 146, 201]CrossRefGoogle Scholar
Fritts, D. C., Garten, J. R. and Andreassen, O. (1994). Gravity wave breaking in two and three dimensions. 2. Three-dimensional evolution and instability structure. J. Geophys. Res., 99, 8109–8124. [164]CrossRefGoogle Scholar
Fritts, D. C., Palmer, T. L., Andreassen, O. and Lie, J. (1996a). Evolution and breakdown of Kelvin–Helmholtz billows in stratified compressible flows. Part 1: comparison of two- and three-dimensional flows. J. Atmos. Sci., 53, 3173–3191. [92]2.0.CO;2>CrossRefGoogle Scholar
Fritts, D. C., Garten, J. F. and Andreassen, O. (1996b). Wave breaking and transition to turbulence in stratified shear flows. J. Atmos. Sci., 53, 1057–1085. [164]2.0.CO;2>CrossRefGoogle Scholar
Fritts, D. C., Arendt, S. and Andreassen, Ø. (1998). Vorticity dynamics in a breaking internal gravity wave. Part 2. Vortex interactions and transition to turbulence. J. Fluid Mech., 367, 47–65. [10, 164]CrossRefGoogle Scholar
Ganachaud, A. and Wunsch, C. (2000). Improved estimates of global ocean circulation, heat flux and mixing from hydrographic data. Nature, 408, 453–457. [42]CrossRefGoogle Scholar
Garcez Faria, A. F., Thornton, E. B., Stanton, T. P., Soares, C. V. and Lippman, T. C. (1998). Vertical profiles of longstream currents and related bed shear stress and bottom roughness. J. Geophys. Res., 103, 3217–3232. [298]CrossRefGoogle Scholar
Gargett, A. E. (1978). Microstructure and fine-structure in an upper ocean frontal region. J. Geophys. Res., 83, 5123–5134. [179]CrossRefGoogle Scholar
Gargett, A. E. (1979). Turbulence measurements through a train of breaking internal waves in Knight Inlet, BC. In Fjord Oceanography, NATO Conference Series IV, Marine Sciences, ed. , H. J. Freeland, , D. M. Farmer and , C. D. Levings. New York: Plenum Press, pp. 277–281. [333]Google Scholar
Gargett, A. E. (1988). The scaling of turbulence in the presence of stable stratification. J. Geophys. Res., 93, 5021–5036. [182]CrossRefGoogle Scholar
Gargett, A. E. (1989). Ocean turbulence. Annu. Rev. Fluid Mech., 21, 419–451. [171]CrossRefGoogle Scholar
Gargett, A. E. (1999). Velcro measurements of turbulent kinetic energy dissipation rate, ε. J. Atmos. Oceanic Technol., 16, 1973–1993. [177, 178]2.0.CO;2>CrossRefGoogle Scholar
Gargett, A. E. and Moum, J. N. (1995). Mixing efficiencies in turbulent tidal fronts: results from direct and indirect measurements of density flux. J. Phys. Oceanogr., 25, 2583–2608. [182]2.0.CO;2>CrossRefGoogle Scholar
Gargett, A. E. and Schmitt, R. W. (1982). Observations of salt fingers in the coastal waters of the eastern North Pacific. J. Geophys. Res., 87, 8017–8029. [137]CrossRefGoogle Scholar
Gargett, A. E., Osborn, T. R. and Nasmyth, P. W. (1984). Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech., 144, 231–280. [173, 175, 184, 337]CrossRefGoogle Scholar
Garrett, C. (1982). On the parameterization of diapycnal fluxes due to double-diffusive intrusions. J. Phys. Oceanogr., 12, 952–959. [23]2.0.CO;2>CrossRefGoogle Scholar
Garrett, C. (1983). On the initial streakiness of a dispersing tracer in two- and three-dimensional turbulence. Dyn. Atmos. Oceans, 7, 265–277. [360, 361]CrossRefGoogle Scholar
Garrett, C. (2000). The dynamic ocean. In Perspectives in Fluid Dynamics, ed. , G. K. Batchelor, , H. K. Moffatt and , M. G. Worster. Cambridge: Cambridge University Press, pp. 507–556. [34]Google Scholar
Garrett, C. and Munk, W. H. (1972a). Space-time scales of internal waves. Geophys. Fluid Dyn., 2, 225–264. [64]CrossRefGoogle Scholar
Garrett, C. and Munk, W. (1972b). Oceanic mixing by breaking internal waves. Deep-Sea Res., 19, 823–832. [169]Google Scholar
Garrett, C. J. R. and Munk, W. H. (1975). Space-time scales of internal waves. A progress report. J. Geophys. Res., 80, 291–297. [64, 67]CrossRefGoogle Scholar
Garrett, C., MacCready, P. and Rhines, P. (1993). Bounday mixing and arrested Ekman layers: rotating stratified flow near a sloping boundary. Ann. Rev. Fluid Mech., 25, 291–323. [317]CrossRefGoogle Scholar
Gaspar, P. and Wunsch, C. (1989). Estimates from altimeter data of barotropic Rossby waves in the Northwaestern Atlantic. J. Phys. Oceanogr., 19, 1821–1844. [367]2.0.CO;2>CrossRefGoogle Scholar
Gemmrich, J. R. and Farmer, D. M. (1999). Observations of the scale and occurrence of breaking surface waves. J. Phys. Oceanogr., 29, 2595–2606. [237, 239]2.0.CO;2>CrossRefGoogle Scholar
Gemmrich, J. R. and Farmer, D. M. (2004). Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 34, 1067–1086. [237]2.0.CO;2>CrossRefGoogle Scholar
Gemmrich, J. R. and Haren, H. (2001). Thermal fronts generated by internal waves propagating obliquely along the continental slope. J. Phys. Oceanogr., 31, 649–655. [315]2.0.CO;2>CrossRefGoogle Scholar
George, R., Flick, R. E. and Guza, R. T. (1994). Observations of turbulence in the surf zone. J. Geophys. Res., 99, 801–810. [297]CrossRefGoogle Scholar
Gerkema, T. (2002). Application of an internal tide generation model to baroclinic Spring-Neap cycle. J. Geophys. Res., 107(C9) D10, 10.1029/2001 JC000932. [165]CrossRefGoogle Scholar
Gerkema, T. and Shira, V. (2005). Near-inertial waves on the non-traditional beta plane. J. Geophys. Res. 110(C1) 10.1029/2004JC002519. [70]CrossRefGoogle Scholar
Geyer, W. R. and Signell, R. P. (1990). Measurements of tidal flow around a headland with shipboard acoustic Doppler current profiler. J. Geophys. Res., 95, 3189–3197. [322]CrossRefGoogle Scholar
Ghisalberti, M. and Nepf, H. (2002). Mixing layers and coherent structures in vegetated acquatic flows. J. Geophys. Res., 107(C2), 10.1029/2001JC000871. [282]CrossRefGoogle Scholar
Gibson, C. (1988). Evidence and consequences of fossil turbulence in the ocean. In Small-Scale Turbulence and Mixing in the Ocean, ed. , J. C. J. Nihoul and , B. M. Jamart. Amsterdam: Elsevier, pp. 319–334. [184]Google Scholar
Gibson, C. H. and Swartz, W. H. (1963). Detection of conductivity fluctuations in a turbulent flow field. J. Fluid Mech., 16, 357–364. [180]CrossRefGoogle Scholar
Gibson, C. H. and Thomas, W. H. (1995). Effects of turbulence intermittency on growth inhibition of a red tide dinoflagellateGonyaulax polyedra Stein. J. Geophys. Res., 100, 24841–24846. [268]CrossRefGoogle Scholar
Gilbert, D. and Garrett, C. J. R. (1989). Implications for ocean mixing of internal wave scattering off irregular topography. J. Phys. Oceanogr., 19, 1716–1729. [311]2.0.CO;2>CrossRefGoogle Scholar
Gill, A. E. (1982). Atmosphere–Ocean Dynamics. London: Academic Press. [3, 7, 8, 16, 45, 63, 65, 73, 114, 219, 229, 314, 326, 348, 377]Google Scholar
Gill, A. E., Green, J. S. A. and Simmons, A. J. (1974). Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res., 21, 499–528. [65, 345]Google Scholar
Gnanadesikan, A. (1999). A simple predictive model for the structure of the ocean pycnocline. Science, 283, 2077–2079. [44]CrossRefGoogle ScholarPubMed
Goldstein, S. (1931). On the stability of superposed streams of fluids of different densities. Proc. R. Soc. Lond., A132, 524–548. [82]CrossRefGoogle Scholar
Goodman, L. (1990). Acoustic scattering from ocean microstructure. J. Geophys. Res., 95, 11557–11573. [188]CrossRefGoogle Scholar
Graf, G. (1989). Benthic-pelagic coupling in a deep-sea benthic community. Nature, 341, 437–439. [219]CrossRefGoogle Scholar
Graf, W. H. (1998). Fluvial Hydrodynamics. Chichester: J. Wiley and Sons. [279]Google Scholar
Grant, H. L., Moilliet, A. and Vogel, W. M. (1968). Some observations of turbulence in and above the thermocline. J. Fluid Mech., 34, 443–448. [172]CrossRefGoogle Scholar
Grant, H. L., Stewart, R. W. and Moilliet, A. (1962). Turbulence spectra from a tidal channel. J. Fluid Mech., 12, 241–268. [28]CrossRefGoogle Scholar
Grant, W. D. and Madsen, O. S. (1986). The continental shelf bottom boundary layer. Ann. Rev. Fluid Mech., 18, 265–305. [281]CrossRefGoogle Scholar
Green, T. and Houk, D. F. (1979). The mixing of rain with near-surface water. J. Fluid Mech., 90, 569–588. [243, 245]CrossRefGoogle Scholar
Gregg, M. C. (1976). Temperature and salinity microstructure in the Pacific Equatorial Undercurrent. J. Geophys. Res., 81, 1180–1196. [179]CrossRefGoogle Scholar
Gregg, M. C. (1980). Microstructure patches in the thermocline. J. Phys. Oceanogr., 10, 915–943. [186, 187]2.0.CO;2>CrossRefGoogle Scholar
Gregg, M. C. (1987). Diapycnal mixing in a thermocline: a review. J. Geophys. Res., 92, 5249–5286. [187]CrossRefGoogle Scholar
Gregg, M. C. (1989). Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 9686–9698. [205]CrossRefGoogle Scholar
Gregg, M. C. (1991). The study of mixing in the ocean: a brief history. Oceanography, April 1991, 39–45. [132]CrossRefGoogle Scholar
Gregg, M. C. (1999). Uncertainties and limitations in measuring ε and χT. J. Atmos. Oceanogr. Technol., 16, 1483–1490. [174, 175, 179]2.0.CO;2>CrossRefGoogle Scholar
Gregg, M. C. and Özsoy, E. (2002). Flow, water mass changes, and hydraulics in the Bosphorus. J. Geophys. Res., 107(C3), 10.1029/2000JC000485, (2002), 2-1–2-23. [329, 330]CrossRefGoogle Scholar
Gregg, M. C. and Sanford, T. B. (1988). The dependence of turbulent dissipation on stratification in a diffusively stable thermocline. J. Geophys. Res., 93, 12381–12392. [65, 184, 185]CrossRefGoogle Scholar
Gregg, M. C., D'Asaro, E. A., Shay, T. J. and Larson, N. (1986). Observations of persistent mixing and near-inertial internal waves. J. Phys. Oceanogr., 16, 856–885. [149, 173, 175, 182, 187]2.0.CO;2>CrossRefGoogle Scholar
Gregg, M. C., Özsoy, E. and Latif, M. A. (1999). Quasi-steady exchange flow in the Bosphorus. Geophys. Res. Letts., 26, 83–86. [329]CrossRefGoogle Scholar
Gregg, M. C., Sanford, T. B. and Winkel, D. P. (2003). Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513–515. [206, 371]CrossRefGoogle ScholarPubMed
Griffiths, R. W. and Hopfinger, E. J. (1984). The structure of mesoscale turbulence and horizontal spreading at ocean fronts. Deep-Sea Res., 31, 245–269. [195, 198]CrossRefGoogle Scholar
Grimshaw, R. H. J. (1978). Long, non-linear internal waves in channels of arbitrary cross-section. J. Fluid Mech., 86, 415–431. [87]CrossRefGoogle Scholar
Gross, T. F., Williams, A. J. III and Nowell, A. R. M. (1988). A deep-sea sediment transport storm. Nature, 331, 518–521. [226]CrossRefGoogle Scholar
Grue, J., Jensen, A., Rusås, P.-O. and Sveen, J. K. (2000). Breaking and broadening of internal solitary waves. J. Fluid Mech., 413, 181–217. [149]CrossRefGoogle Scholar
Guizien, K., Dohmen-Janssen, M. and Vittori, G. (2003). IDV bottom boundary layer modelling under combined wave and current: turbulent separation and phase lag effects. J. Geophys. Res., 108(C1), 3016, doi:10.1029/2001.JC001292. [277]CrossRefGoogle Scholar
Haidvogel, D. B. and Keffer, T. (1984). Tracer dispersal by mid-ocean mesoscale eddies, I. Emsamble statistics. Dyn. Atmos. Oceans, 8, 1–40. [360]CrossRefGoogle Scholar
Haigh, S. P. and Lawrence, G. A. (1999). Symmetric and non-symmetric Holmboe instabilities in an inviscid flow. Phys. Fluids, 11, 1459–1468. [110]CrossRefGoogle Scholar
Handler, R. A., Smith, G. B. and Leighton, R. I. (2001). The thermal structure of an air-water interface at low wind speeds. Tellus, 53A, 233–244. [255]CrossRefGoogle Scholar
Hara, T. and Mei, C. C. (1990). Centifugal instability of an oscillatory flow over periodic ripples. J. Fluid Mech., 217, 1–32. [276]CrossRefGoogle Scholar
Hasse, L. and Brown, R. A. (2001). The influence of mesoscale atmospheric processes. In Wind Stress over the Ocean, ed. , I. S. F. Jones and , Y. Toba. Cambridge: Cambridge University Press, pp. 218–231. [349]Google Scholar
Hasselmann, K. (1967). A criterion for nonlinear wave stability. J. Fluid Mech., 30, 737–739. [68]CrossRefGoogle Scholar
Haurwitz, B., Stommel, H. and Munk, W. H. (1959). On the thermal unrest in the ocean. In The Atmosphere and the Sea in Motion, Rossby Memorial Volume, ed. , B. Bolin. New York: Rockefeller Institute Press and Oxford University Press, pp. 74–94. [47]Google Scholar
Haury, L. R., Briscoe, M. G. and Orr, M. H. (1979). Tidally generated internal wave packets in Massachusetts Bay. Nature, 278, 312–317. [286]CrossRefGoogle Scholar
Haynes, P. (2001). Vertical shear as a route to mixing. In From stirring to mixing in a stratified ocean. Proceedings of ‘Aha Huliko'a Hawaiian Winter Workshop, ed. , P. Müller and , D. Henderson. SOEST University of Hawaii at Manoa Special Publication, pp. 73–80. [19]Google Scholar
Haynes, P. and Anglade, J. (1997). The vertical-scale cascade in atmospheric tracers due to large-scale differential advection. J. Atmos. Sci., 54, 1121–1136. [19]2.0.CO;2>CrossRefGoogle Scholar
Haynes, P. and McIntyre, M. (1987). On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828–840. [78]2.0.CO;2>CrossRefGoogle Scholar
Hazel, P. (1972). Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech., 51, 39–61. [90, 91]CrossRefGoogle Scholar
Heathershaw, A. D. (1979). The turbulent structure of the bottom boundary layer in a tidal current. Geophys. J. R. Astr. Soc., 58, 395–430. [218]CrossRefGoogle Scholar
Heathershaw, A. D. and Thorne, P. D. (1985). Sea-bed noises reveal roles of turbulent bursting phenomena in sediment transport by tidal currents. Nature, 316, 339–342. [279]CrossRefGoogle Scholar
Heezen, B. C. and Hollister, C. D. (1971). The Face of the Deep. Oxford: Oxford University Press, p. 371. [372]Google Scholar
Helfrich, K. R. (2001). Dispersion from hydrothermal vents. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turikian, vol. 2. London: Academic Press, pp. 733–741. [116]Google Scholar
Helfrich, K. R. and Battisti, T. (1991). Experiments on baroclinic vortex shedding from hydrothermal plumes. J. Geophys. Res., 96, 12511–12518. [125, 127]CrossRefGoogle Scholar
Helmholtz, H. (1868). Über discontinuirliche Flüssigkeitsbewegungen. Monats. Königl. Preuss. Akad. Wiss. Berlin, 23, 215–228. [81]Google Scholar
Henyey, F. S., Wright, J. and Flatté, S. M. (1986). Energy and action flow through the internal wave field: an eikonal approach. J. Geophys. Res., 91, 8487–8495. [206]CrossRefGoogle Scholar
Hibiya, T. and Nagasawa, M. (2004). Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Letts., 31 (1), L01311, doi:10.1029/2003GL017998, 2004. [42, 70, 156, 206, 325, 371]CrossRefGoogle Scholar
Hickey, B., Baker, E. and Kachel, N. (1986). Suspended particle movement in and around Quinault submarine canyon. Marine Geology, 71, 35–83. [226]CrossRefGoogle Scholar
Hill, A. E., Souza, A. J., Jones, K., Simpson, J. H., McCandliss, R., Shapiro, G. I., Wilson, H. and Leftley, J. (1998). The Malin slope cascade in winter 1996. J. Mar. Res., 56, 87–106. [318]CrossRefGoogle Scholar
Hinze, J. O. (1959). Turbulence. New York: McGraw-Hill. [27, 172, 175]Google Scholar
Hoare, R. A. (1966). Problems of heat transfer in Lake Vanda, a density stratified Antarctic lake. Nature, 210, 787–789. [137]CrossRefGoogle Scholar
Hogg, A., Ivey, G. and Winters, K. (2001a). Hydraulics and mixing in controlled exchange flows. J. Geophys. Res., 106, 959–972. [330]CrossRefGoogle Scholar
Hogg, A., Winters, K. and Ivey, G. (2001b). Linear internal waves and the control of stratified exchange flows. J. Fluid Mech., 447, 357–375. [331]CrossRefGoogle Scholar
Hogg, A. McC. and Ivey, G. N. (2003). The Kelvin–Helmholtz instability transition in stratified exchange flows. J. Fluid Mech., 477, 339–362. [93, 110]CrossRefGoogle Scholar
Hogg, N., Biscaye, P., Gardner, W. and Schmitz, W. J. (1982). On the transport and modification of Antarctic Bottom Water in the Vema Channel. J. Mar. Res., 40 (supplement), 231–263. [208]Google Scholar
Hogg, N. G. (1974). The preconditioning phase of MEDOC 1969. Part II. Topographic effects. Deep-Sea Res., 20, 429–448. [130]Google Scholar
Holbrook, W. S., Páramo, P., Pearse, S. and Schmitt, R. W. (2003). Thermohaline fine structure in an oceanographic front from seismic reflection profiling. Science, 301, 821–824. [189]CrossRefGoogle Scholar
Hollister, C. D. and McCave, I. N. (1984). Sedimentation under deep-sea storms. Nature, 309, 220–225. [215, 225, 372]CrossRefGoogle Scholar
Holloway, G. and Gargett, A. (1987). The influence of salt fingering for towed microstructure observations. J. Geophys. Res., 92(C2), 1963–1965. [210]CrossRefGoogle Scholar
Holmboe, J. (1962). On the behayiour of symmetric waves in stratified shear layers. Geophys. Publ., 24, 67–113. [90, 91, 109]Google Scholar
Holt, J. T. (1998). Experiments on Kelvin–Helmholtz billows influenced by boundaries. Geophys. Astrophys. Fluid Dynamics, 89, 205–233. [99, 101]CrossRefGoogle Scholar
Hopfinger, E. J. (1987). Turbulence in stratified fluids: a review. J. Geophys. Res., 92, 5287–5303. [211]CrossRefGoogle Scholar
Hopfinger, E., Kurniawan, A., Graf, W. H. and Lemmin, U. (2004). Sediment erosion by Görtler vortices: the scour-hole problem. J. Fluid Mech., 520, 327–342. [279]CrossRefGoogle Scholar
Hornung, H. G., Wellert, C. and Turner, J. S. (1995). The flow field downstream of a hydraulic jump. J. Fluid Mech., 287, 299–316. [233]CrossRefGoogle Scholar
Howard, L. N. (1961). Note on a paper by John W. Miles. J. Fluid Mech., 10, 509–512. [82, 88, 89]CrossRefGoogle Scholar
Howard, L. N. (1964). Convection at high Rayleigh number. In Proceedings of the 11th International Congress Applied Mechanics, Munich, ed. , H. Görtler. Berlin: Springer-Verlag, pp. 1109–1115. [120]Google Scholar
Huang, R. X. (1999). Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727–746. [116, 216, 219]2.0.CO;2>CrossRefGoogle Scholar
Hughes, C. W. (1995). Rossby waves in the Southern Ocean: a comparison of TOPEX/POSEIDON altimetry with model predictions. J. Geophys. Res., 100, 15933–15950. [365]CrossRefGoogle Scholar
Hunt, G. N. (1985). Radioactivity in coastal and surface waters of the UK. Aquatic Environment Monitoring Report, MAFF Directorate of Fisheries Research, Lowestoft, 12: 46 pp. [289]Google Scholar
Hunt, J. C. R. and Graham, J. M. R. (1978). Free stream turbulence near plane boundaries. J. Fluid Mech., 84, 209–235. [230]CrossRefGoogle Scholar
Hunt, J. C. R. and Snyder, W. H. (1980). Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid Mech., 96, 671–704. [323, 324]CrossRefGoogle Scholar
Huppert, H. E. (2000). Geological fluid mechanics. In Perspectives in Fluid Dynamics, ed. , G. K. Batchelor, , H. K. Moffatt and , M. G. Worster. Cambridge: Cambridge University Press, pp. 447–506. [6]Google Scholar
Huppert, H. E. and Linden, P. F. (1979). On heating a stable salinity gradient from below. J. Fluid Mech., 95, 431–464. [137]CrossRefGoogle Scholar
Huppert, H. E. and Turner, J. S. (1978). Melting icebergs. Nature, 271, 46–48. [140]CrossRefGoogle Scholar
Huppert, H. E. and Turner, J. S. (1980). Iceblocks melting into a salinity gradient. J. Fluid Mech., 100, 367–384. [140]CrossRefGoogle Scholar
Huppert, H. E. and Turner, J. S. (1981). Double-diffusive convection. J. Fluid Mech., 106, 299–329. [132, 133]CrossRefGoogle Scholar
Imawaki, S. and Takano, K. (1982). Low-frequency kinetic energy spectrum in the deep western North Pacific. Science, 216, 1407–1408. [344]CrossRefGoogle ScholarPubMed
Imberger, J. (1998). Flux paths in a stratified lake: a review. In Physical Processes in Lakes and Oceans, ed. , J. Imberger. Washington, DC: American Geophysical Union, pp. 1–17. [339]Google Scholar
Inall, M. E., Rippeth, T. P. and Sherwin, T. (2000). The impact of non-linear waves on the dissipation of internal tidal energy at the shelf break. J. Geophys. Res., 105, 8687–8705. [286]CrossRefGoogle Scholar
Inall, M., Cottier, F., Griffiths, C. and Rippeth, T. (2004). Sill dynamics and energy transformation in a jet fjord. Ocean Dyn., 54, 307–314. [334]CrossRefGoogle Scholar
Inman, D. L., Tait, R. J. and Nordstrom, C. E. (1971). Mixing in the surf zone. J. Geophys. Res., 76, 3493–3514. [298]CrossRefGoogle Scholar
Itsweire, E. L., Kosiff, J. R., Briggs, D. A. and Ferziger, J. H. (1993). Turbulence in stratified shear flows: implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr., 23, 1508–1522. [182, 184]2.0.CO;2>CrossRefGoogle Scholar
Ivey, G. N. and Corcos, G. M. (1982). Boundary mixing in a stratified fluid. J. Fluid Mech., 121, 1–26. [193]CrossRefGoogle Scholar
Ivey, G. N. and Noakes, R. I. (1989). Vertical mixing due to breaking of critical waves on sloping boundaries. J. Fluid Mech., 204, 479–500. [307, 309, 313]CrossRefGoogle Scholar
Ivey, G. N., Winters, K. B. and Silva, I. P. D. (2000). Turbulent mixing in a sloping benthic boundary layer energised by internal waves. J. Fluid Mech., 418, 59–76. [307]CrossRefGoogle Scholar
Jackson, R. G. (1976). Sedimentological and fluid-dynamic implications of the turbulent bursting phenomenon in geophysical flows. J. Fluid Mech., 77, 531–560. [217]CrossRefGoogle Scholar
Jenkins, W. J. (1980). Tritium and 3He in the Sargasso Sea. J. Mar. Res., 38, 533–569. [357]Google Scholar
Jensen, B. L., Sumer, B. M. and Fredsøe, J. (1989). Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech., 206, 265–297. [277]CrossRefGoogle Scholar
Jessup, A. T., Zappa, C. J., Loewen, M. R. and Hesany, V. (1997). Infrared remote sensing of breaking waves. Nature, 385, 52–55. [1]CrossRefGoogle Scholar
Jevons, W. S. (1857). On the cirrus form of cloud. London–Edinburgh–DublinPhilos. Mag. J. Sci., 4th series, 14, 22–35. [132]CrossRefGoogle Scholar
Jiménez, J. (2000). Turbulence. In Perspectives in Fluid Dynamics, ed. , G. K. Batchelor, , H. K. Moffatt and , M. G. Worster. Cambridge: Cambridge University Press, pp. 231–288. [13]Google Scholar
Jiménez, J. (2004). Turbulent flows over rough walls. Ann. Rev. Fluid Mech., 36, 173–196. [216]CrossRefGoogle Scholar
Johnson, G. C., Lueck, R. G. and Sanford, T. B. (1994). Stress on the Mediterranean outflow plume: Part 2. Turbulent dissipation and shear measurements. J. Phys. Oceanogr., 24, 2084–2092. [173, 320]2.0.CO;2>CrossRefGoogle Scholar
Jonas, T., Terzhevik, A. Y., Minonov, D. and Wüest, A. (2003a). Radiatively driven convection in an ice-covered lake investigated using temperature microstructure techniques. J. Geophys. Res., 108, 3183, doi:10.1029/2002JC001316. [120]CrossRefGoogle Scholar
Jonas, T., Stips, A., Eugster, W. and Wüest, A. (2003b). Observations of a quasi shear-free lacustrine convective boundary layer: stratification and its implications on turbulence. J. Geophys. Res., 108(C10), doi: 10.1029/2002JC001440. [249]CrossRefGoogle Scholar
Jones, I. S. F. and Toba, Y. (2001). Wind Stress over the Ocean. Cambridge: Cambridge Univesity Press. [228]CrossRefGoogle Scholar
Jones, W. L. (1967). Propagation of internal gravity waves in fluids with shear flows and rotation. J. Fluid Mech., 30, 439–448. [162]CrossRefGoogle Scholar
Jones, W. L. (1968). Reflection and stability of waves in stably stratified fluid with shear flow: a numerical study. J. Fluid Mech., 34, 609–624. [162]CrossRefGoogle Scholar
Joule, J. P. (1850). On the mechanical equivalent of heat. Phil. Trans. R. Soc. Lond., 140(1), 61–82; and Scientific Papers, published by Taylor and Francis for the Physical Society, London (1884), pp. 298–328. [4, 5]CrossRefGoogle Scholar
Joyce, T. M. (1974). Fine-structure contamination of moored sensors: a numerical experiment. J. Phys. Oceanogr., 4, 183–190. [191]2.0.CO;2>CrossRefGoogle Scholar
Joyce, T. M. and Desaubies, Y. J. F. (1977). Discrimination between internal waves and temperature finestructure. J. Phys. Oceanogr., 7, 22–32. [191]2.0.CO;2>CrossRefGoogle Scholar
Joyce, T. M., Zenk, W. and Toole, J. M. (1978). The anatomy of the Antarctic polar front in the Drake Passage. J. Geophys. Res., 83, 6093–6113. [353]CrossRefGoogle Scholar
Joyce, T. M., Warren, B. A. and Talley, L. D. (1986). The geothermal heating of the abyssal subarctic Pacific. Deep-Sea Res., 33, 1003–1015. [219]CrossRefGoogle Scholar
Kantha, L. H. and Clayson, C. (2000). Small Scale Processes in Geophysical Flows. San Diego: Academic Press. [19, 266]Google Scholar
Kawaniski, K. and Yokosi, S. (1997). Characteristics of suspended sediment and turbulence in a tidal boundary layer. Continental Shelf Res., 17, 859–875. [280]CrossRefGoogle Scholar
Kelland, P. (1840). On the theory of waves. Rep. Br. Assoc. Adv. Sci., Part ii, 50–52. [87]Google Scholar
Kelvin, Lord (1871). Influence of wind and capillarity on waves in water supposed frictionless. Mathematical and Physical Papers, 4, 76–85. [81]Google Scholar
Kenney, B. C. (1993). Observations of coherent bands of algae in a surface shear layer. Limnol. Oceanogr., 38, 1059–1067. [255]CrossRefGoogle Scholar
Kerr, R. C. (1991). Erosion of a stable density gradient by a sediment-driven convection. Nature, 353, 423–425. [320]CrossRefGoogle Scholar
Kibel', I. A. (1940). Prilozhenic k meteorologii uravnenii mekhaniki baraklinnoi zhidkosti. Izv. Akad. Naukl. SSSR Ser. Geogr. Geofiz, No. 5. [348]
Kirwan, A. D., McNally, G. J., Reyna, E. and Merrell, W. J. (1978). The near-surface circulation of the eastern North Pacific. J. Phys. Oceanogr., 8, 937–945. [261, 362]2.0.CO;2>CrossRefGoogle Scholar
Klaassen, G. P. and Peltier, W. R. (1985). The onset of turbulence in finite amplitude Kelvin–Helmholtz billows. J. Fluid Mech., 155, 1–35. [92, 101]CrossRefGoogle Scholar
Klaassen, G. P. and Peltier, W. R. (1989). The role of transverse secondary instabilities in the evolution of free shear layers. J. Fluid Mech., 202, 367–402. [92]CrossRefGoogle Scholar
Klaassen, G. P. and Peltier, W. R. (1991). The influence of secondary instability in free shear layers. J. Fluid Mech., 227, 71–106. [92, 101]CrossRefGoogle Scholar
Klostermeyer, J. (1984). Observations indicating parametric instabilities in internal gravity waves at thermospheric heights. Geophys. Astrophys. Fluid Dyn., 29, 117–138. [156]CrossRefGoogle Scholar
Klostermeyer, J. (1990). On the role of parametric instability of internal gravity waves in atmospheric radar observations. Radio Sci., 25, 983–995. [156]CrossRefGoogle Scholar
Klymak, J. M. and Gregg, M. C. (2001). Three-dimensional nature of flow near a sill. J. Geophys. Res., 106, 22295–22311. [336, 337]CrossRefGoogle Scholar
Koop, C. G. (1981). A preliminary investigation of the interaction of internal waves with a steady shearing motion. J. Fluid Mech., 113, 347–386. [162]CrossRefGoogle Scholar
Koop, C. G. and Browand, F. K. (1979). Instability and turbulence in a stratified fluid with shear. J. Fluid Mech., 93, 135–159. [93, 103]CrossRefGoogle Scholar
Koop, C. G. and McGee, B. (1986). Measurements of internal gravity waves in a continuously stratified shear flow. J. Fluid Mech., 172, 453–480. [162]CrossRefGoogle Scholar
Kranenburg, C. (1982). Stability conditions for gradient transport models of transient density – stratified shear flow. Geophys. Astrophys. Fluid Dyn., 13, 3–23. [193]Google Scholar
Krauss, E. B. and Turner, J. S. (1967). A one-dimensional model of the seasonal thermocline. II. The general theory and its consequences. Tellus, 19, 98–106. [266]Google Scholar
Kraynik, A. M. (1988). Foam flows. Ann. Rev. Fluid Mech., 20, 325–357. [243]CrossRefGoogle Scholar
Kumar, S., Gupta, R. and Banerjee, S. (1998). An experimental investigation of the characteristics of free-surface turbulence in channel flow. Phys. Fluids, 10(2), 437–456. [285]CrossRefGoogle Scholar
Kunze, E. A. (1990). The evolution of salt fingers in inertial wave shear. J. Mar. Res., 48, 471–504. [137]CrossRefGoogle Scholar
Kunze, E. (2001). Vortical modes. In Encylopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian. vol. 6. London: Academic Press, pp. 3174–3178. [78]Google Scholar
Kunze, E. and Sanford, T. B. (1993). Submesoscale dynamics near a seamount. J. Phys. Oceanogr., 23, 2567–2601. [78, 211]2.0.CO;2>CrossRefGoogle Scholar
Kunze, E., Williams, A. J. III and Schmitt, R. W. (1987). Optical microstructure in the thermohaline staircase east of Barbados. Deep-Sea Res., 34, 1697–1704. [137, 138]CrossRefGoogle Scholar
Kunze, E. A., Williams, A. J. III and Briscoe, M. G. (1990a). Observations of shear and vertical stability from a neutrally buoyant float. J. Geophys. Res., 95, 16127–18142. [20, 211]Google Scholar
Kunze, E., Briscoe, M. G. and Williams, A. J. III (1990b). Interpreting shear and strain from a neutrally buoyant float. J. Geophys. Res., 95, 18111–18125. [205]CrossRefGoogle Scholar
Kunze, E., Rosenfeld, L. K., Carter, G. S. and Gregg, M. C. (2002). Internal waves in Monteray Canyon. J. Phys. Oceanogr., 32, 1890–1913. [322]2.0.CO;2>CrossRefGoogle Scholar
Lamarre, E. and Melville, W. K. (1994). Void-fraction measurements and sound-speed fields in bubble plumes generated by breaking waves. J. Acoust. Soc. Amer., 95, 1317–1329. [233]CrossRefGoogle Scholar
Lamb, H. (1932). Hydrodynamics, 6th edn. Cambridge: Cambridge University Press. [87, 274]Google Scholar
Lamb, K. G. (2003). Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores. J. Fluid Mech., 478, 81–100. [303]CrossRefGoogle Scholar
Langmuir, I. (1938). Surface motion of water induced by wind. Science, 87, 119–123. [251]CrossRefGoogle ScholarPubMed
Porta, A., Voth, G. S., Crawford, A. M., Alexander, J. and Bodenschatz, E. (2001). Fluid particle accelerations in fully developed turbulence. Nature, 409, 1017–1019. [369]CrossRefGoogle ScholarPubMed
Lasheras, J. C. and Choi, H. (1988). Three-dimensional instability of a plane, free shear layer. An experimental study of the formation and evolution of streamwise vortices. J. Fluid Mech., 189, 53–86. [105]CrossRefGoogle Scholar
Law, C. S., Martin, A. P., Liddicoat, M. I., Watson, A. J., Richards, K. J. and Woodward, E. M. S. (2001). A Lagrangian SF6 study of an anticyclonic eddy in the North Atlantic: patch evolution, vertical mixing and nutrient supply to the mixed layer. Deep-Sea Res., Part II, 48, 705–724. [265]CrossRefGoogle Scholar
Law, C. S., Abraham, E. R., Watson, A. J. and Liddicoat, M. I. (2003). Vertical eddy diffusion and nutrient supply to the surface mixed layer of the Antarctic Circumpolar Current. J. Geophys. Res., 108(C8), doi:10.1029/2002JC001604, 2003. [265]CrossRefGoogle Scholar
Lawrence, G. A., Browand, F. K. and Redekopf, L. G. (1991). The stability of a sheared density interface. Phys. Fluids, A3, 2360–2370. [109, 110]CrossRefGoogle Scholar
Lawson, K. and Larson, N. G. (2001). CTD. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian. London: Academic Press, vol. 1, pp. 579–588. [6]Google Scholar
Lazier, J. R. N. (1973). Temporal changes in some fresh water temperature structures. J. Phys. Oceanogr., 3, 226–229. [59, 61, 149]2.0.CO;2>CrossRefGoogle Scholar
Lazier, J. R. N. and Sandstrom, H. (1978). Migrating thermal structure in a freshwater thermocline. J. Phys. Oceanogr., 8, 1070–1079. [59]2.0.CO;2>CrossRefGoogle Scholar
Lazier, J. R. N., Pickart, R. S. and Rhines, P. B. (2001). Deep convection. In Ocean Circulation and Climate, ed. , G. Siedler, , J. Church and , J. Gould. London: Academic Press. [131]Google Scholar
Leaman, K. D. (1976). Observations of vertical polarization and energy flux of near-inertial waves. J. Phys. Oceanogr., 6, 894–908. [65, 73]2.0.CO;2>CrossRefGoogle Scholar
Ledwell, J. R. and Bratkovich, A. (1995). A tracer study of mixing in the Santa Cruz basin. J. Gephys. Res., 100, 20681–20704. [292]CrossRefGoogle Scholar
Ledwell, J. R. and Hickey, B. M. (1995). Evidence of enhanced boundary mixing in the Santa Monica Basin. J. Geophys. Res., 100, 20665–20679. [292]CrossRefGoogle Scholar
Ledwell, J. R., Watson, A. J. and Laws, C. S. (1993). Evidence of slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701–703. [40]CrossRefGoogle Scholar
Ledwell, J. R., Watson, A. J. and Laws, C. S. (1998). Mixing of a tracer in the pycnocline. J. Geophys. Res., 108, 21499–21529. [40, 206, 207, 359, 360]CrossRefGoogle Scholar
Ledwell, J. R., Montgomery, E. T., Polzin, K. L., St Laurant, L. C., Schmitt, R. W. and Toole, J. M. (2000). Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179–182. [41]CrossRefGoogle ScholarPubMed
Legg, S. (2003). Internal tides generated on a corrugated continental slope: Part 1: cross-slope barotropic forcing. J. Phys. Oceanogr., 34, 156–173. [311]2.0.CO;2>CrossRefGoogle Scholar
Legg, S. and Adcroft, A. (2003). Internal wave breaking at concave and convex continental slopes. J. Phys. Oceanogr., 33, 2224–2246. [307, 311, 313]2.0.CO;2>CrossRefGoogle Scholar
Leibovich, S. (1983). The form and dynamics of Langmuir circulation. Ann. Rev. Fluid Dyn., 15, 391–427. [251, 255]CrossRefGoogle Scholar
Lelong, M.-P. and Dunkerton, T. J. (1998). Inertia-gravity wave breaking in three-dimensions, I: convectively stable waves. J. Atmos. Sci., 55, 2473–2488. [149]2.0.CO;2>CrossRefGoogle Scholar
Lelong, M.-P. and Riley, J. J. (1991). Internal wave – vortical mode interactions in strongly stratified flows. J. Fluid Mech., 232, 1–19. [78]CrossRefGoogle Scholar
Méhauté, B. and Khangaonkar, T. (1990). Dynamic interaction of intense rain with water waves. J. Phys. Oceanogr., 20, 1805–1812. [244]2.0.CO;2>CrossRefGoogle Scholar
Lentz, S. J. and Trowbridge, J. H. (1991). The bottom boundary layer over the northern California shelf. J. Phys. Oceanogr., 21, 1186–1201. [316]2.0.CO;2>CrossRefGoogle Scholar
Levine, E. R. and Lueck, R. G. (1999). Turbulence measurements from an autonomous underwater vehicle. J. Atmos. Oceanic Technol., 16, 1533–1544. [173]2.0.CO;2>CrossRefGoogle Scholar
Li, L. and Dalrymple, R. A. (1998). Instabilities in the undertow. J. Fluid Mech., 369, 175–190. [299]Google Scholar
Li, M. and Garrett, C. (1993). Cell merging and the jet/downwelling ratio in Langmuir circulation. J. Mar. Res., 51, 737–796. [256]CrossRefGoogle Scholar
Li, M. and Garrett, C. (1997). Mixed-layer deepening due to Langmuir circulation. J. Phys. Oceanogr., 27, 121–132. [265]2.0.CO;2>CrossRefGoogle Scholar
Li, M., Zahariev, K. and Garrett, C. (1995). The role of Langmuir circulation in the deepening of the ocean surface mixed layer. Science, 270, 1955–1957. [265]CrossRefGoogle Scholar
Lien, R.-C. and Gregg, M. C. (2001). Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res., 106, 4575–4591. [9, 151]CrossRefGoogle Scholar
Lien, R.-C. and Sanford, T. B. (2000). Spectral characteristics of velocity and vorticity fluxes in an unstratified turbulent boundary layer. J. Geophys. Res., 105, 8659–8672. [270]CrossRefGoogle Scholar
Lien, R.-C., D'Asaro, E. A. and McPhaden, M. J. (2002). Internal waves and turbulence in the Upper Central Equatorial Pacific: Lagrangian and Eulerian observations. J. Phys. Oceanogr., 32, 2619–2639. [267]CrossRefGoogle Scholar
Lilly, D. K. (1983). Stratified turbulence and the meso-scale variability of the atmosphere. J. Atmos. Sci., 40, 749–761. [211, 342]2.0.CO;2>CrossRefGoogle Scholar
Lilly, J. M., Rhines, P. B., Visbeck, M., Davis, R., Lazier, J. R. N., Schott, F. and Farmer, D. (1999). Observing deep convection in the Labrador Sea during winter 1994/5. J. Phys. Oceanogr., 29, 2065–2098. [7, 131]2.0.CO;2>CrossRefGoogle Scholar
Linden, P. F. (1974). Salt fingers in a steady shear flow. Geophys. Fluid Dyn., 6, 1–27. [132]CrossRefGoogle Scholar
Linden, P. F. (1975). The deepening of a mixed layer in a stratified fluid. J. Fluid Mech., 71, 385–405. [72]CrossRefGoogle Scholar
Linden, P. F. and Shirtcliffe, T. G. L. (1978). The diffusive interface in double-diffusive convection. J. Fluid Mech., 87, 417–432. [137]CrossRefGoogle Scholar
Liu, Y. N., Maxworthy, T. and Spedding, G. R. (1987). Collapse of a turbulent front in a stratified fluid 1. Nominally two-dimensional evolution in a narrow tank. J. Geophys. Res., 92, 5427–5433. [193]CrossRefGoogle Scholar
Loder, J. W., Drinkwater, K. F., Oakey, N. S. and Horne, E. P. W. (1994). Circulation, hydrographic structure and mixing at tidal fronts: the view from Georges Bank. Phil. Trans. R. Soc. Lond., A302, 447–460. [283]Google Scholar
Lohrmann, A., Hacket, B. and Roed, L. P. (1990). High-resolution measurements of turbulence, velocity and stress using a pulse-to-pulse coherent sonar. J. Atmosph. Oceanic Technol., 7, 19–37. [178]2.0.CO;2>CrossRefGoogle Scholar
Long, R. R. (2003). Do tidal channel turbulence measurements support k-5/3?Environmental Fluid Mech., 3, 109–127. [28]CrossRefGoogle Scholar
Longuet-Higgins, M. S. (1965). Planetary waves on a rotating sphere II. Proc. R. Soc. Lond., A284, 40–68. [341]CrossRefGoogle Scholar
Longuet-Higgins, M. S. (1970). Longshore currents generated by obliquely incident sea waves: 1. J. Geophys. Res., 75, 6783–6789. [297]Google Scholar
Longuet-Higgins, M. S. (1981). Oscillatory flow over steep sand ripples. J. Fluid Mech., 107, 1–36. [271, 273]CrossRefGoogle Scholar
Lorke, A. and Wüest, A. (2002). Probability density of displacement and overturning length scales under diverse stratification. J. Geophys. Res., 107(C12), doi:10.1029/2001JC001154, 2002. [177]CrossRefGoogle Scholar
Love, A. E. H. (1891). Wave motion in a heterogeneous heavy liquid. Proc. Lond. Math Soc., 22, 307–316. [45]Google Scholar
Lozovatsky, I. D., Morosov, E. G. and Fernando, H. J. S. (2003). Spatial decay of energy density of tidal internal waves. J. Geophys. Res., 108(C6, 32), doi:10.1029/2001JC001169. [325, 371]CrossRefGoogle Scholar
Lu, Y. and Lueck, R. G. (1999). Using broadband ADCP in a tidal channel. Part II: turbulence. J. Atmos. Oceanic Technol., 14, 1568–1579. [178]2.0.CO;2>CrossRefGoogle Scholar
Ludlam, F. (1967). Characteristics of billow clouds and their relation to clear air turbulence. Quart. J. R. Meteorol. Soc., 93, 419–435. [83]CrossRefGoogle Scholar
Lueck, R. G. and Lu, Y. (1997). The logarithmic layer in a tidal channel. Continental Shelf Res., 17, 1785–1861. [271]CrossRefGoogle Scholar
Lueck, R. G. and Mudge, T. D. (1997). Topographically induced mixing around a shallow seamount. Science, 276, 1831–1833. [311]CrossRefGoogle Scholar
Lueck, R. G. and Osborn, T. R. (1985). Turbulence measurements in a submarine canyon. Continental Shelf Res., 4, 681–698. [322]CrossRefGoogle Scholar
Lueck, R. and Reid, R. (1984). On the production and dissipation of mechanical energy in the ocean. J. Geophys. Res., 89, 3439–3445. [345]CrossRefGoogle Scholar
Lueck, R. G., Huang, D., Newman, D. and Box, J. (1997). Turbulence measurement with a moored instrument. J. Atmos. Oceanic Technol., 14, 143–161. [173]2.0.CO;2>CrossRefGoogle Scholar
Lumkin, R., Treguier, A.-M. and Speer, K. (2002). Lagrangian eddy scales in the North Atlantic Ocean. J. Phys. Oceanogr., 32, 2425–2440. [363]CrossRefGoogle Scholar
Lupton, J. E. (1995). Hydrothermal plumes: near and far field. In Seafloor Hydrothermal Systems. Physical, Chemical, Biological and Geological Interactions, vol. 91. Washington D. C.: AGU Geophys. Monograph, pp. 317–346. [116, 128]Google Scholar
Lupton, J. E. and Craig, H. (1981). A major 3He source on the East Pacific Rise. Science, 214, 13–18. [126]CrossRefGoogle Scholar
McCave, I. N. (1984). Size spectra and aggregation of suspended particles in the deep ocean. Deep-Sea Res., 31, 329–352. [225, 282]CrossRefGoogle Scholar
McCave, I. N., Hollister, C. D. and Newell, A. R. M. (editors) (1988). Deep Ocean Sediment Transport: High Energy Benthic Boundary Layer Collected Reprints. Woods Hole Oceanographic Institution. [215]Google Scholar
McClean, J. L., Poulain, P.-M. and Pelton, J. W. (2002). Eulerian and Lagrangian statistics from surface drifters and high-resolution POP simulation in the North Atlantic. J. Geophys. Res., 22, 2472–2491. [362]Google Scholar
McComas, C. H. and Bretherton, F. P. (1977). Resonant interactions of oceanic internal waves. J. Geophys. Res., 82, 1397–1412. [68]CrossRefGoogle Scholar
MacCready, P. M. and Pawlak, G. (2001). Stratified flow along a corrugated slope: separation drag and wave drag. J. Phys. Oceanogr., 31, 2824–2839. [322]2.0.CO;2>CrossRefGoogle Scholar
McDougall, T., Thorpe, S. and Gibson, C. (1988). Small-scale turbulence and mixing in the ocean: a glossary. In Small-Scale Turbulence and Mixing in the Ocean, ed. , J. C. J. Nihoul and , B. M. Jamert. Amsterdam: Elsevier, pp. 3–9. [135]Google Scholar
McDowell, S. E. and Rossby, H. T. (1978). Mediterranean water: an intense eddy of the Bahamas. Science, 202, 1085–1087. [352]CrossRefGoogle ScholarPubMed
McEwan, A. D. (1983). Internal mixing in stratified fluids. J. Fluid Mech., 128, 59–80. [154]CrossRefGoogle Scholar
McEwan, A. D. and Robinson, R. M. (1975). Parametric instability of internal gravity waves. J. Fluid Mech., 67, 667–687. [154]CrossRefGoogle Scholar
McIntyre, M. E. (1992). On the role of wave propagation and wave breaking in atmosphere-ocean dynamics. In Theoretical and Applied Mechanics, ed. , S. R. Bodner, , J. Singer, , A. Solan and , Z. Hashin. Elsevier Sci Pubs. B. V. IUTAM Proceedings, pp 281–303. [144]Google Scholar
McIntyre, M. E. (2000). On global-scale atmospheric circulations. In Perspectives in Fluid Dynamics, ed. , G. K. Batchelor, , H. K. Moffatt and , M. G. Worster. Cambridge: Cambridge University Press, pp. 557–624. [144]Google Scholar
MacKinnon, J. A. and Gregg, M. C. (2003a). Shear and baroclinic energy flux on the summer New England Shelf. J. Phys. Oceanogr., 33, 1462–1475. [149]2.0.CO;2>CrossRefGoogle Scholar
MacKinnon, J. A. and Gregg, M. C. (2003b). Mixing on the late-summer New England shelf – solibores, shear and stratification. J. Phys. Oceanogr., 33, 1476–1492. [205, 287]2.0.CO;2>CrossRefGoogle Scholar
McPhee, M. G. (2002). Turbulent stress at the ice-ocean interface and bottom hydrographic roughness during SHEBA drift. J. Geophys. Res., 107(C10), doi:10.1029/2000JC000633, 2002. [228]CrossRefGoogle Scholar
McPhee, M. G. and Stanton, T. P. (1996). Turbulence in the statically unstable boundary layer under Arctic leads. J. Geophys. Res., 101(C3), 6409–6428. [228]CrossRefGoogle Scholar
McWilliams, J. C. (1976). Maps of the Mid-Ocean Dynamics Experiment. J. Phys. Oceanogr., 6, 810–846. [341]2.0.CO;2>CrossRefGoogle Scholar
McWilliams, J. C. and Chow, H. H. S. (1981). Equilibrium geostrophic turbulence, I. A reference solution on a β plane. J. Phys. Oceanogr., 11, 921–949. [343]2.0.CO;2>CrossRefGoogle Scholar
McWilliams, J. C., Sullivan, P. P. and Moeng, C.-H. (1997). Langmuir turbulence in the ocean. J. Fluid Mech. 334, 31–58. [256, 266]CrossRefGoogle Scholar
Magaad, L. and McKee, W. D. (1973). Semi-diurnal tidal currents at ‘Site D’. Deep-Sea Res., 20, 997–1009. [165]Google Scholar
Malarkey, J. and Davies, A. G. (2002). Discrete vortex modelling of oscillatory flow over ripples. Appl. Ocean Res., 24, 127–145. [273, 275]CrossRefGoogle Scholar
Marmorino, G. O. (1987). Observations of small-scale mixing processes in the seasonal thermocline. Part II: wave breaking. J. Phys. Oceanogr., 17, 1348–1355. [95, 197]2.0.CO;2>CrossRefGoogle Scholar
Marmorino, G. O., Rosenblum, L. J. and Trump, C. L. (1987). Fine-scale temperature variability: the influence of near-inertial waves. J. Geophys. Res., 92, 13049–13062. [148, 149, 165, 166]CrossRefGoogle Scholar
Marsigli, L. M. (1681). Osservazioni intorno al Bosforo Tracio o vero Canale di Constantantinopli, rappresentate in lettera alla Sacra Real Maesta Cristina Regina di Svezia, Roma. (Reprinted in Boll. Pesca. Piscic. Idrobiol., 11, 734–758, and as Internal observations on the Thracian Bosphorus, or true channel of Constantinople, represented in 1681 by letters to Her Majesty, Queen Christina of Sweden, in Oceanography, Concepts and History, ed. M. Deacon, Stroudsburg, Pa., pp. 34–44 (1978)). [326]Google Scholar
Masson, D. G., Kenyon, N. K. and Weaver, P. P. E. (1996). Slides, debris flows, and turbidity currents. In Oceanography, ed. , C. P. Summerhayes and , S. A. Thorpe. London: Manson Publishing, pp. 136–151. [319]Google Scholar
Matsunaga, N., Takehara, K. and Awaya, Y. (1994). The offshore vortex train. J. Fluid Mech., 276, 113–124. [299, 300]CrossRefGoogle Scholar
Matthews, P. C. (1988). A model for the onset of penetrative convection. J. Fluid Mech., 188, 571–583. [120]CrossRefGoogle Scholar
Matthews, P. C. and Heaney, S. I. (1987). Solar heating and its influence on mixing in ice-covered lakes. Freshwater Biol., 18, 135–149. [120]CrossRefGoogle Scholar
Maxey, M. R. (1987). The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech., 174, 441–465. [280]CrossRefGoogle Scholar
Maxworthy, T. (1979). A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. J. Geophys. Res., 84, 338–346. [74, 286, 328, 336]CrossRefGoogle Scholar
Maxworthy, T. (1980). On the formation of non-linear internal waves from the gravitational collapse of mixed regions in two and three dimensions. J. Fluid Mech., 96, 47–64. [76]CrossRefGoogle Scholar
Maxworthy, T. and Narimousa, S. (1994). Unsteady turbulent convection into a homogeneous rotating fluid with oceanographic applications. J. Phys. Oceanogr., 24, 865–887. [128]2.0.CO;2>CrossRefGoogle Scholar
Melville, W. K. (1996). The role of surface-wave breaking in air-sea interaction. Ann. Rev. Fluid Mech., 28, 279–321. [231]CrossRefGoogle Scholar
Melville, W. K. and Matusov, P. (2002). Distribution of breaking waves at the ocean surface. Nature, 417, 58–63. [237, 240]CrossRefGoogle ScholarPubMed
Melville, W. K., Veron, F. and White, C. J. (2002). The velocity field under breaking waves: coherent structures and turbulence. J. Fluid Mech., 454, 203–234. [233, 235, 293]CrossRefGoogle Scholar
Merrifield, M. A. and Holloway, P. E. (2002). Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res., 107(C8), 10.1029/2001JC000996. [42]CrossRefGoogle Scholar
Meunier, P. and Villermaux, E. (2003). How vortices mix. J. Fluid Mech., 476, 213–222. [22]CrossRefGoogle Scholar
Michallet, H. and Ivey, G. N. (1999). Experiments on mixing due to internal solitary waves breaking on uniform slopes. J. Geophys. Res., 104, 13467–13477. [303]CrossRefGoogle Scholar
Miles, J. (1961). On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496–508. [82, 88]CrossRefGoogle Scholar
Miller, R. L. (1976). Role of vortices in surf zone prediction: sedimentation and wave forces. In Beach and Nearshore Sedimentation, ed. , R. A Davis and , R. L. Ethington. Soc. Economic Palaentologists and Mineralogists, Special Publication 24, pp. 92–114. [293]Google Scholar
Moisander, P. H.Henck, J. L., Kononen, K. and Paerl, H. W. (2002). Small-scale shear effects on heterocystous cyanobacteria. Limnol. & Oceanogr., 47, 108–119. [268]CrossRefGoogle Scholar
Monin, A. S. and Ozmidov, R. V. (1985). Turbulence in the Ocean. Dordrecht: D. Reidel Pub. Corp. [173]CrossRefGoogle Scholar
Mortimer, C. H. (1955). Some effects of the Earth's rotation on water movement in stratified lakes. Int. Assoc. Appl. Limnology, 12, 66–77. [46, 47]Google Scholar
Morton, B. R., Taylor, G. I. and Turner, J. S. (1956). Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond., A234, 1–13. [123]CrossRefGoogle Scholar
Moum, J. N. (1996a). Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res., 101, 14095–14109. [178]CrossRefGoogle Scholar
Moum, J. N. (1996b). Efficiency of mixing in the main thermocline. J. Geophys. Res., 101, 12057–12069. [182]CrossRefGoogle Scholar
Moum, J. N. and Nash, J. D. (2000). Topographically induced drag and mixing at a small bank on the continental slope. J. Phys. Oceanogr., 30, 2049–2054. [323]2.0.CO;2>CrossRefGoogle Scholar
Moum, J. N. and Smyth, W. D. (2001). Upper ocean mixing processes. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian, vol. 6. London: Academic Press, pp. 3093–3100. [248]Google Scholar
Moum, J. N., Gregg, M. C., Lien, R. C. and Carr, M. E. (1995). Comparison of turbulent kinetic energy dissipation rate estimates from two ocean microstructure profilers. J. Atmosph. Oceanic Technol., 12, 346–366. [173]2.0.CO;2>CrossRefGoogle Scholar
Moum, J. N., Caldwell, D. R., Nash, J. D. and Gunderson, G. D. (2002). Observations of boundary mixing over the continental slope. J. Phys. Oceanogr., 32, 2113–2130. [173, 227, 308]2.0.CO;2>CrossRefGoogle Scholar
Moum, J. M., Farmer, D. M., Smyth, W. D., Armi, L. and Vagle, S. (2003). Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceanogr., 33, 2093–2112. [2, 7, 147, 287]2.0.CO;2>CrossRefGoogle Scholar
Mowbray, D. E. and Rarity, B. S. H. (1967). A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech., 28, 1–16. [50, 56, 57]CrossRefGoogle Scholar
Muench, R. D., Fernando, H. J. S. and Stegen, G. R. (1990). Temperature and salinity staircases in the northwestern Weddell Sea. J. Phys. Oceanogr., 20, 295–306. [137]2.0.CO;2>CrossRefGoogle Scholar
Müller, P. (1984). Small-scale vortical motions. In ‘Aha Huloko'a, Proceedings of Hawaiian Winter Workshop, Jan. 17–20, 1984. Hawaii Institute of Geophysics Special Publication, pp. 249–262. [77, 78]Google Scholar
Müller, P. and Briscoe, M. (2000). Diapycnal mixing and internal waves. Oceanography, 13, 98–103. [304]CrossRefGoogle Scholar
Müller, P. and Liu, X. (2000a). Scattering of internal waves at finite topography in two dimensions. Part 1 Theory and case studies. J. Phys. Oceanogr., 30, 532–549. [311]2.0.CO;2>CrossRefGoogle Scholar
Müller, P. and Liu, X. (2000b). Scattering of internal waves at finite topography in two dimensions. Part 2. Spectral calculations and boundary mixing. J. Phys. Oceanogr., 30, 550–563. [311]2.0.CO;2>CrossRefGoogle Scholar
Müller, P. and Siedler, G. (1976). Consistency relations for internal waves. Deep-Sea Res., 23, 613–628. [62]Google Scholar
Müller, P., Olbers, D. J. and Willebrandt, J. (1978). The IWEX spectrum. J. Geophys. Res., 83, 479–500. [62, 64, 77]CrossRefGoogle Scholar
Müller, P., Holloway, G., Henyey, F. and Pomphrey, N. (1986). Nonlinear interactions among internal gravity waves. Rev. Geophys. Space Phys., 24, 493–536. [68]CrossRefGoogle Scholar
Müller, P., Lien, R.-C. and Williams, R. (1988). Estimates of potential vorticity at small scales in the ocean. J. Phys. Oceanogr., 18, 401–416. [211]2.0.CO;2>CrossRefGoogle Scholar
Munk, W. (1966). Abyssal recipes. Deep-Sea Res., 13, 207–230. [38, 40, 45, 49, 83, 209, 292]Google Scholar
Munk, W. (1977). Once again: once again – tidal friction. Progress Oceanogr., 40, 7–35. [65, 270]CrossRefGoogle Scholar
Munk, W. (1981). Internal waves and small scale processes. In Evolution in Physical Oceanograph, ed. , F. Warren and , C. Wunsch. Cambridge, MA: MIT Press, pp. 236–263. [65]Google Scholar
Munk, W. (2003). Ocean freshening, sea level rising. Science, 300, 2041–2042. [7]CrossRefGoogle ScholarPubMed
Munk, W. and Wunsch, C. (1998). Abyssal recipes II, energetics of tidal and wind motion. Deep-Sea Res. Part 1, 45, 1977–2010. [38, 39, 40, 41, 65, 73, 126, 345, 371]CrossRefGoogle Scholar
Munk, W., Worcester, P. and Wunsch, C. (1995). Ocean Acoustic Tomography. Cambridge: Cambridge University Press. [342]CrossRefGoogle Scholar
Munk, W., Armi, L., Fischer, K. and Zachariasen, F. (2000). Spirals on the sea. Proc. R. Soc. Lond., A456, 1217–1280. [113, 349]CrossRefGoogle Scholar
Murray, J. and Pullar, L. (1910). Bathymetrical Survey of the Scottish Fresh-Water Lochs., vols. 1–6. Edinburgh: Challenger Office. [46]Google Scholar
Nadaoka, K., Hino, M. and Koyano, Y. (1989). Structure of the turbulent flow field under breaking waves in the surf zone. J. Fluid Mech., 204, 359–387. [293, 295]CrossRefGoogle Scholar
Nagasawa, M., Niwa, Y. and Hibiya, T. (2000). Spatial and temporal distributions of the wind-generated internal wave energy available for deep water mixing in the North Pacific. J. Geophys. Res., 105, 13933–13943. [40, 73]CrossRefGoogle Scholar
Nagasawa, M., Hibiya, T., Niwa, Y. Watanabe, M., Isoda, Y., Takagi, S. and Kamei, Y. (2002). Distribution of fine-scale shear in the deep waters of the North Pacific obtained using expendable current profilers. J. Geophys. Res., 107(C12), doi:10.1029/2002JC001376. [42]CrossRefGoogle Scholar
Nash, J. D. and Moum, J. N. (1999). Estimating salinity variance dissipation rates from conductivity microstructure measurements. J. Atmosph. Oceanic Technol., 16, 263–274. [180]2.0.CO;2>CrossRefGoogle Scholar
Nash, J. D. and Moum, J. N. (2001). Internal hydraulic flows on the continental shelf: high drag states over a small bank. J. Geophys. Res., 106, 4593–4611. [323]CrossRefGoogle Scholar
Nash, J. D., Kunze, E., Toole, J. M. and Schmitt, R. W. (2004). Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 1117–1134. [310]2.0.CO;2>CrossRefGoogle Scholar
Nasmyth, P. W. (1973). Turbulence and microstructure in the upper ocean. Mem. Soc. Roy. Sci. Liege, Series 6, 4, 47–56. [175]Google Scholar
Naveira Garabato, A. C., Polzin, K. L., King, B. A., Haywood, K. J. and Visbeck, M. (2004). Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210–213. [41, 206]CrossRefGoogle Scholar
Neal, V. T., Neshyba, S. and Denner, W. (1969). Thermal stratification in the Arctic Ocean. Science, 166, 373–374. [137]CrossRefGoogle ScholarPubMed
Nepf, H. M. and Geyer, W. R. (1996). Intratidal variations in stratification and mixing in the Hudson estuary. J. Geophys. Res., 101, 12079–12086. [290]CrossRefGoogle Scholar
New, A. I. (1988). Internal tidal mixing in the Bay of Biscay. Deep-Sea Res., 35, 691–709. [74]CrossRefGoogle Scholar
New, A. I. and Pingree, R. D. (1990). Evidence of internal tidal mixing near the shelf break. Deep-Sea Res., 37, 1783–1803. [75]CrossRefGoogle Scholar
Nicolaou, D., Liu, R. and Stevenson, T. N. (1993). The evolution of thermocline waves from an oscillatory disturbance. J. Fluid Mech., 254, 401–416. [64]CrossRefGoogle Scholar
Niiler, P. P. and Krauss, E. B. (1977). One-dimnsional models of the upper ocean. In Modelling and Prediction of the Upper Layers of the Ocean, ed. , E. B. Krauss. New York: Pergamon, pp. 143–172. [266]Google Scholar
Nimmo Smith, W. A. M. (2000). Dispersion of material by wind and tide in shallow seas. Dissertation presented for the degree of Doctor of Philosophy, Southampton University, 149 pp. [299, 301]
Nimmo Smith, W. A. M., Thorpe, S. A. and Graham, A. (1999). Surface effects of bottom-generated turbulence in a shallow sea. Nature, 400, 251–254. [283, 284]CrossRefGoogle Scholar
Nimmo Smith, W. A. M., Atsavapranee, P., Katz, J. and Osborn, T. R. (2002). PIV measurements in the bottom boundary layer of the coastal ocean. Exp. Fluids, 33, 962–971. [15, 277]CrossRefGoogle Scholar
Nimmo Smith, W. A. M., Katz, J. and Osborn, T. R. (2005). On the structure of turbulence in the bottom boundary layer of the coastal ocean. Submitted to J. Phys. Oceanogr., 35, 72–93. [277, 278]CrossRefGoogle Scholar
Niwa, Y. and Hibiya, T. (2001a). Spatial distribution of the M2 internal tide in the North Pacific predicted using a three-dimensional numerical model. J. Geodetic Soc. Japan, 47, 711–718. [42, 75, 76]Google Scholar
Niwa, Y. and Hibiya, T. (2001b). Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J. Geophys. Res., 106, 22441–22449. [3, 42, 75]CrossRefGoogle Scholar
Noyes, T. J., Guza, R. T., Elgar, S. and Herbers, T. H. C. (2004). Field observations of shear waves in the surf zone. J. Geophys. Res., 109(C1), doi:10.1029/2002JC001761, 2004. [298]CrossRefGoogle Scholar
Oakey, N. S. (1982). Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256–271. [175, 179, 182]2.0.CO;2>CrossRefGoogle Scholar
Oakey, N. S. (1985). Statistics of mixing parameters in the upper ocean during JASIN Phase 2. J. Phys. Oceanogr., 15, 1662–1675. [246]2.0.CO;2>CrossRefGoogle Scholar
Oakey, N. S. (1988). Estimates of mixing inferred from temperaure and velocity microstructure. In Small-Scale Turbulence and Mixing in the Ocean, ed. , J. Nihoul and , B. Jamart. Amsterdam: Elsevier, pp. 239–248. [183, 209]Google Scholar
Oakey, N. S. (1990). Turbulent kinetic energy dissipation and mixing at the Georges Bank tidal front. EOS, 71, 96. [283]Google Scholar
Oakey, N. S. and Elliott, J. A. (1977). Vertical temperature gradient structure across the Gulf Stream. J. Geophys. Res., 82, 1369–1380. [173]CrossRefGoogle Scholar
Oakey, N. S. and Elliott, J. A. (1980). The variability of temperature gradient microstructure observed in the Denmark Strait. J. Geophys. Res., 85, 1933–1944. [331]CrossRefGoogle Scholar
Odell, G. and Kovasnay, L. (1971). A new type of water channel with density stratification. J. Fluid Mech., 50, 535–544. [162]CrossRefGoogle Scholar
Okubo, A. (1971). Oceanic diffusion diagrams. Deep-Sea Res., 18, 789–802. [260, 262]Google Scholar
Oliver, H. and Oliver, S. (2003). Meteorologist's profile – John Dalton. Weather, 58, 206–211. [4]CrossRefGoogle Scholar
Oltman-Shay, J., Howd, P. A. and Birkemairer, W. A. (1989). Shear instabilities of the mean longshore current. 2. Field observations. J. Geophys. Res., 94, 18031–18042. [298]CrossRefGoogle Scholar
Oort, A. H., Anderson, L. A. and Peixoto, P. (1994). Estimates of the energy cycle of the oceans. J. Geophys. Res., 99, 7665–7688. [40, 345, 377]CrossRefGoogle Scholar
Orlanski, I. and Bryan, K. (1969). Formation of the thermocline step structure by large-amplitude internal gravity waves. J. Geophys. Res., 74, 6975–6983. [146]CrossRefGoogle Scholar
Osborn, T. R. (1974). Vertical profiling of velocity microstructure. J. Phys. Oceanogr., 4, 109–115. [174]2.0.CO;2>CrossRefGoogle Scholar
Osborn, T. R. (1980). Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 83–89. [181]2.0.CO;2>CrossRefGoogle Scholar
Osborn, T. R. and Cox, C. S. (1972). Oceanic fine structure. Geophys. Fluid Dyn., 3, 321–345. [181]CrossRefGoogle Scholar
Osborn, T. R. and Lueck, R. G. (1985). Turbulence measurements from a submarine. J. Phys. Oceanogr., 15, 1502–1520. [173]2.0.CO;2>CrossRefGoogle Scholar
Osborn, T. R., Farmer, D. M., Vagle, S., Thorpe, S. A. and Cure, M. (1992). Measurements of bubble plumes and turbulence from a submarine. Atmosphere Ocean, 30, 419–440. [173]CrossRefGoogle Scholar
Osterkamp, T. E. (2001). Sub-sea permafrost. In Encyclopedia of Ocean Scences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian, vol. 5. London: Academic Press, pp. 2902–2912. [122]Google Scholar
Özkan-Haller, H. T. and Kirby, J. T. (1999). Non-linear evolution of shear instabilities in the longshore current and comparison of observations and computations. J. Geophys. Res., 104, 25953–25984. [17, 299]CrossRefGoogle Scholar
Ozmidov, R. V. (1965). On some features of energy spectra of oceanic turbulence. Doklady Ak. Nauk. SSSR, 161, 828–831. [261]Google Scholar
Pak, H., Zaneveld, R. V. and Kitchen, J. (1980). Intermediate nepheloid layers observed off Oregon and Washington. J. Geophys. Res., 85, 6697–6708. [226]CrossRefGoogle Scholar
Paka, V. T., Nabatoz, V. N., Lozovatsky, I. D. and Dillon, T. M. (1999). Oceanic microstructure measurements bt BAKLAN and GRIF. J. Atmos. Oceanic. Technol., 16, 1519–1532. [173, 180]2.0.CO;2>CrossRefGoogle Scholar
Pan, Y. and Banerjee, S. (1995). A numerical study of free-surface turbulence in channel flow. Phys. Fluids, 7, 1649–1664. [285]CrossRefGoogle Scholar
Park, Y.-G., Whitehead, J. A. and Gnanadeskian, A. (1994). Turbulent mixing in stratified fluids: layer formation and energetics. J. Fluid Mech., 279, 279–311. [193]CrossRefGoogle Scholar
Paulson, C. A. and Simpson, J. J. (1981). The temperature difference across the cool skin of the ocean. J. Geophys. Res., 86, 11044–11054. [17]CrossRefGoogle Scholar
Pawlak, G. and Armi, L. (1998). Vortex dynamics in a spatially accelerating shear layer. J. Fluid Mech., 376, 1–35. [93, 94, 99, 100, 334, 336]CrossRefGoogle Scholar
Pawlak, G. and Armi, L. (2000). Mixing and entrainment in developing stratified currents. J. Fluid Mech., 424, 45–73. [93, 99, 334]CrossRefGoogle Scholar
Peregrine, D. H. (1983). Breaking waves on beaches. Ann. Rev. Fluid Mech., 15, 149–178. [293]CrossRefGoogle Scholar
Peregrine, D. H. (1998). Surf zone currents. Theoret. Comput. Fluid Dynamics, 10, 295–309. [299]CrossRefGoogle Scholar
Peters, H. and Gregg, M. C. (1988). Some dynamical and statistical properties of Equatorial turbulence. In Small-Scale Turbulence and Mixing in the Ocean, ed. , J. C. J. Nihoul and , B. M. Jamart. Amsterdam: Elsevier Oceanography Series, Elsevier, pp. 185–200. [182, 187]Google Scholar
Peters, H., Gregg, M. C. and Toole, J. M. (1988). On the parametrization of equatorial turbulence. J. Geophys. Res., 93, 1199–1218. [176, 204]CrossRefGoogle Scholar
Pettersson, O. (1909). Gezeitenähnliche Bewegungen des Tiefenwassers. Publ. de Circonstances, Cons. Int. Explor. Mer, Copenhagen, 47, 1–21. [46]Google Scholar
Phillips, O. M. (1966). The Dynamics of the Upper Ocean. Cambridge: Cambridge University Press. [xii, 49, 67, 303]Google Scholar
Phillips, O. M. (1970). On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res., 17, 435–443. [316, 317]Google Scholar
Phillips, O. M. (1971). On spectra measured in an undulating layered medium. J. Phys. Oceanogr., 1, 1–6. [191]2.0.CO;2>CrossRefGoogle Scholar
Phillips, O. M. (1972). Turbulence in a stratified fluid: is it stable?Deep-Sea Res., 19, 79–81. [193]Google Scholar
Phillips, O. M. (1985). Spectral and statistical properties of the equilibrium range of wind-generated gravity waves. J. Fluid Mech., 156, 505–531. [237]CrossRefGoogle Scholar
Piat, J.-F. and Hopfinger, E. J. (1981). A boundary layer topped by a density interface. J. Fluid Mech., 113, 411–432. [72]CrossRefGoogle Scholar
Pingree, R. D. (1996). A shallow subtropical subducting westward propagating eddy (Swesty). Phil. Trans. R. Soc. Lond., A354, 979–1026. [355]CrossRefGoogle Scholar
Pingree, R. D. and Cann, B. (1992). Three anticyclonic Slope Water Oceanic eDDIES (SWODDIES) in the southern Bay of Biscay in 1990. Deep-Sea Res., 39, 1147–1175. [352]CrossRefGoogle Scholar
Pingree, R. D. and Cann, B. (1993). A shallow MEDDY (a SMEDDY) from the secondary Mediterranean salinity maximum. J. Geophys. Res., 98, 20169–20185. [352]CrossRefGoogle Scholar
Pingree, R. D. and Maddock, L. (1977). Tidal eddies and coastal discharge. J. Mar. Biol. Assoc. UK, 57, 869–875. [322]CrossRefGoogle Scholar
Plueddemann, A. J., Smith, J. A., Farmer, D. M., Weller, R. A., Crawford, W. R., Pinkel, R., Vagel, S. and Gnansadesikan, A. (1996). Structure and variability of Langmuir circulation during surface waves Process Program. J. Geophys. Res., 101, 3525–3543. [251]CrossRefGoogle Scholar
Pollard, R. T. and Millard, R. C. (1970). Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res., 17, 813–821. [70]Google Scholar
Pollard, R. T., Rhines, P. B. and Thompson, R. O. R. Y. (1973). The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 3, 381–404. [266]Google Scholar
Polzin, K. (1996). Statistics of the Richardson number: mixing models and fine structure. J. Phys. Oceanogr., 26, 1409–1425. [202, 205]2.0.CO;2>CrossRefGoogle Scholar
Polzin, K. and Ferrari, R. (2004). Isopycnal dispersion in NATRE. J. Phys. Oceanogr., 34. [290, 361]2.0.CO;2>CrossRefGoogle Scholar
Polzin, K. L., Toole, J. M. and Schmitt, R. W. (1995). Finescale parameterisations of turbulent dissipation. J. Phys. Oceanogr., 25, 306–328. [169]2.0.CO;2>CrossRefGoogle Scholar
Polzin, K., Speer, K. G., Toole, J. M. and Schmitt, R. W. (1996). Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature, 380, 54–56. [332]CrossRefGoogle Scholar
Polzin, K. L., Toole, J. M., Ledwell, J. R. and Schmitt, R. W. (1997). Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93–96. [2, 41, 76, 208]CrossRefGoogle ScholarPubMed
Polzin, K., Kunze, E., Hummon, J. and Firing, E. (2002). The finescale response of lowered ADCP velocity profiles. J. Atmos. Oceanic Technol., 19, 205–224. [206]2.0.CO;2>CrossRefGoogle Scholar
Polzin, K. L., Kunze, E., Toole, J. M. and Schmitt, R. W. (2003). The partition of finescale energy into internal waves and subinertial motions. J. Phys. Oceanogr., 33, 234–248. [211, 361]2.0.CO;2>CrossRefGoogle Scholar
Poon, Y. K., Tang, S. and Wu, J. (1992). Interactions between rain and wind waves. J. Phys. Oceanogr., 22, 976–987. [243, 244]2.0.CO;2>CrossRefGoogle Scholar
Posmentier, E. S. (1977). The generation of salinity fine structure by vertical diffusion. J. Phys. Oceanogr., 7, 298–301. [193]2.0.CO;2>CrossRefGoogle Scholar
Pouliquen, O., Chomaz, J. M. and Huerre, P. (1994). Propagating Holmboe waves at the interface between two immiscible fluids. J. Fluid Mech., 266, 277–302. [109]CrossRefGoogle Scholar
Powell, M. D., Vickery, P. J. and Reinhold, T. A. (2003). Reduced drag coefficients in high wind speeds in tropical cyclones. Nature, 422, 278–283. [228]CrossRefGoogle Scholar
Pratt, L., Deese, H., Murray, S. and Johns, W. (2000). Continuous dynamical modes in straits having arbitrary cross sections, with applications to the Bab al Mandab. J. Phys. Oceaogr., 30, 2515–2534. [90, 330]2.0.CO;2>CrossRefGoogle Scholar
Price, J. F., Weller, R. A. and Pinkel, R. (1986). Diurnal cycle: observations and models of the upper ocean response to diurnal heating, cooling and wind mixing. J. Geophys. Res., 91, 8411–8427. [249, 266]CrossRefGoogle Scholar
Prosperetti, A., Crum, L. A. and Pumphrey, H. C. (1989). The underwater noise of rain. J. Geophys. Res., 94, 3255–3259. [245]CrossRefGoogle Scholar
Pruppacher, H. R. and Klett, J. D. (1978). The Microphysics of Clouds and Precipitation. Dordrecht: Riedel. [282]CrossRefGoogle Scholar
Quadfasel, D., Kudrass, H. and Frische, A. (1990). Deep-water renewal by turbidity currents in the Sulu Sea. Nature, 348, 320–322. [319]CrossRefGoogle Scholar
Radko, T. (2003). A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech., 497, 365–380. [139, 140]CrossRefGoogle Scholar
Rahmstorf, S. (2001). Abrupt climate change. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turikian, vol. 1. London: Academic Press, pp. 1–6. [367]Google Scholar
Rainville, L. and Pinkel, R. (2005). Observations of the propagation and nonlinear interaction of the internal tide generated at the Hawaiian Ridge. Submitted to J. Phys. Oceanogr. [70]Google Scholar
Rankin, K. I. and Hires, R. I. (2000). Laboratory measurements of bottom shear stress on a mobile bed. J. Geophys. Res., 105, 17011–17019. [273]CrossRefGoogle Scholar
Rapp, R. J. and Melville, W. K. (1990). Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. Lond., A331, 735–800. [233, 234]CrossRefGoogle Scholar
Raubenheimer, B., Elgar, S. and Guza, R. T. (2004). Observations of swath zone velocities. A note on fiction coefficients. J. Geophys. Res., 107 (C1), doi:10.1029/2029/2003JC00187. [297]Google Scholar
Ray, R. D. and Cartwright, D. E. (1998). Ocean self-attraction and loading in numerical tidal models. Mar. Geol., 21, 181–192. [70]Google Scholar
Ray, R. D. and Mitchem, G. T. (1997). Surface manifestations of internal tides in the deep ocean: observations from altimetry and island gauges. Progress in Oceanogr., 40, 135–162. [55]CrossRefGoogle Scholar
Rayleigh, Lord (1880). On the stability, or instability, of certain fluid motions. Proc. London Math. Soc., 10, 4–13. [83]Google Scholar
Rayleigh, Lord (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170–177. [10]Google Scholar
Rayleigh, Lord (1916). On convection currents in a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag., 32, 529–546. [115]CrossRefGoogle Scholar
Redondo, J. M., du Madron, X., Medina, P., Sanchuz, M. A. and Schaaff, E. (2001). Comparison of sediment resuspension measurements in sheared and zero-mean turbulent flows. Continental Shelf Res., 21, 2095–2103. [279]CrossRefGoogle Scholar
Reverdin, G., Niiler, P. P. and Valdimarsson, H. (2003). North Atlantic ocean surface currents. J. Geophys. Res., 108 (C1), 3002 doi:10.1029/2001JC001020. [344]CrossRefGoogle Scholar
Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond., 174, 935–982; and Scientific Papers (1901), 2, 51–105. [2, 81, 82, 368]CrossRefGoogle Scholar
Reynolds, O. (1895). On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. R. Soc. Lond., A186, 123–164; and Scientific Papers (1901), 2, 535–577. [22, 368]CrossRefGoogle Scholar
Reynolds, O. (1900). On the action of rain to calm the sea. Papers on Mech. and Phys. Subjects, 1, 86–88. Cambridge University Press. [243]Google Scholar
Rhines, P. B. (1975). Waves and turbulence on a β plane. J. Fluid Mech., 69, 417–443. [343]CrossRefGoogle Scholar
Rhines, P. B. (1979). Geostrophic turbulence. Ann. Rev. Fluid Mech., 11, 401–411. [343]CrossRefGoogle Scholar
Richards, K. J. and Pollard, R. T. (1991). Structure of the upper ocean in the western equatorial Pacific. Nature, 350, 48–50. [140]CrossRefGoogle Scholar
Richards, K. J., Smeed, D. A., Hopfinger, E. J. and Chabert d'Hieres, G. (1992). Boundary–layer separation of rotating flows past surface-mounted obstacles. J. Fluid Mech., 26, 1579–1590. [325]Google Scholar
Richardson, L. F. and Stommel, H. (1948). Note on eddy diffusion in the sea. J. Meteorol., 5, 238–240. [33]2.0.CO;2>CrossRefGoogle Scholar
Richardson, P. L. (1983a). Eddy kinetic energy in the North Atlantic from surface drifters. J. Geophys. Res., 88, 4355–4367. [343, 362]CrossRefGoogle Scholar
Richardson, P. L. (1983b). Gulf Stream Rings. In Eddies in Marine Science, ed. , A. R. Robinson. Berlin: Springer-Verlag, pp. 19–45. [348]
Richardson, P. L. (1993). A census of eddies observed in North Atlantic SOFAR float tracks. Progress in Oceanogr., 31, 1–50. [342]CrossRefGoogle Scholar
Richardson, P. L., Walsh, D., Armi, L., Schroder, M. and Price, J. F. (1989). Tracking three Meddies with SOFAR floats. J. Phys. Oceanogr., 19, 371–383. [352, 353]2.0.CO;2>CrossRefGoogle Scholar
Richardson, P. L., Bowers, A. S. and Zenk, W. (2000). A census of Meddies tracked by floats. Progress in Oceanogr., 45, 209–250CrossRefGoogle Scholar
Ridderinkhof, H. and Zimmerman, J. T. F. (1992). Chaotic stirring in a tidal system. Science, 258, 1107–1111. [288]CrossRefGoogle Scholar
Rippeth, T. P., Fisher, N. R. and Simpson, J. H. (2001). The cycle of turbulent dissipation in the presence of tidal straining. J. Phys. Oceanogr., 31, 2458–2471. [290]2.0.CO;2>CrossRefGoogle Scholar
Robinson, S. K. (1991). Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech., 23, 601–639. [217, 218]CrossRefGoogle Scholar
Rona, P. A., Jackson, D. R., Bemis, K. G., Jones, C. D., Mitsuzawa, K., Pulmer, D. R. and Silver, D. (2002). Acoustic advances study of sea floor hydrothermal flow. EOS, 83(44), 497–502. [189]CrossRefGoogle Scholar
Rose, C. P. and Thorne, P. D. (2001). Measurements of suspended sediment transport parameters in a tidal estuary. Continental Shelf Res., 21, 1551–1571. [188, 280]CrossRefGoogle Scholar
Rossby, T. and Webb, D. (1970). Observing abyssal motions by tracking Swallow floats in the SOFAR channel. Deep-Sea Res., 17, 359–365. [341]Google Scholar
Rossby, H. T., Riser, S. C. and Mariano, A. J. (1983). The western North Atlantic – a Lagrangian viewpoint. In Eddies in Marine Science, ed. , A. R. Robinson. Berlin: Springer-Verlag, pp. 66–91. [342]Google Scholar
Ruddick, B. (2003). Sounding out ocean fine structure. Science, 301, 772–773. [140]CrossRefGoogle ScholarPubMed
Ruddick, D. R. and Turner, J. S. (1979). The vertical length scale of double-diffusive intrusions. Deep-Sea Res., 26A, 903–913. [140, 142]CrossRefGoogle Scholar
Rudnick, D. L. and Ferrari, R. (1999). Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science, 283, 526–529. [131, 229]CrossRefGoogle ScholarPubMed
Rudnick, D. L., Boyd, T. J., Brainard, R. E. and 16 others (2003). From tides to mixing along the Hawaiian Ridge. Science, 301, 355–357. [42, 313, 371]CrossRefGoogle ScholarPubMed
St Laurent, L. and Garrett, C. (2002). The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 2882–2899. [75]
St Laurent, L. and Schmitt, R. W. (1999). The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 29, 1404–1424. [13, 210]2.0.CO;2>CrossRefGoogle Scholar
St Laurent, L. C., Toole, J. M. and Schmitt, R. W. (2001). Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31, 3476–3495. [41, 208, 323, 325]2.0.CO;2>CrossRefGoogle Scholar
Salmun, H. and Phillips, O. M. (1992). An experiment on boundary mixing, part 2. Slope dependence at small angles. J. Fluid Mech., 240, 355–378. [318]CrossRefGoogle Scholar
Sanford, T. B. and Lien, R.-C. (1999). Turbulent properties in a homogeneous tidal bottom boundary layer. J. Geophys. Res., 104, 1245–1257. [275, 276]CrossRefGoogle Scholar
Sanford, T. B., Drever, R. G. and Dunlap, J. H. (1985). An acoustic Doppler and electromagnetic velocity profiler. J. Atmos. Oceanic Technol., 2, 110–124. [173]2.0.CO;2>CrossRefGoogle Scholar
Sanford, T. B., Carlson, J. A., Dunlap, J. H., Prater, M. D. and Lien, R.-C. (1999). An electromagnetic vorticity and velocity sensor for observing finescale kinetic fluctuations in the ocean. J. Atmos. Oceanic Technol., 16, 1647–1667. [277]2.0.CO;2>CrossRefGoogle Scholar
Sarmiento, J. L. (1983). A simulation of bomb tritium entry into the Atlantic Ocean. J. Phys. Oceanogr., 13, 1924–1939. [357]2.0.CO;2>CrossRefGoogle Scholar
Saunders, P. M. (1967). The temperature at the ocean–air interface. J. Atmos. Sci., 24, 269–273. [17]2.0.CO;2>CrossRefGoogle Scholar
Saunders, P. M. (1983). Benthic observations on the Madeira abyssal plain: currents and dispersion. J. Phys. Oceanogr., 13, 1416–1429. [225]2.0.CO;2>CrossRefGoogle Scholar
Saunders, P. M. (1987). Flow through Discovery Gap. J. Phys. Oceanogr., 17, 631–643. [208, 209]2.0.CO;2>CrossRefGoogle Scholar
Scandura, P., Vittori, G. and Blondeaux, P. (2000). Three-dimensional oscillatory flow over steep ripples. J. Fluid Mech., 412, 355–378. [277]CrossRefGoogle Scholar
Schmitt, R. W. (1979). Flux measurements on salt fingers at an interface. J. Mar. Res., 37, 419–436. [139]Google Scholar
Schmitt, R. W. (1981). Form of the temperature-salinity relationship in the Central Water: evidence of double-diffusive mixing. J. Phys. Oceanogr., 11, 1015–1026. [136]2.0.CO;2>CrossRefGoogle Scholar
Schmitt, R. W. (1994). Double diffusion in oceanography. Annu. Rev. Fluid Mech., 26, 255–285. [139, 183]CrossRefGoogle Scholar
Schmitt, R. W. (1995). The salt finger experiments of Jevons (1857) and Rayleigh (1880). J. Phys. Oceanogr., 25, 8–17. [132]2.0.CO;2>CrossRefGoogle Scholar
Schmitt, R. W. (2001). Double-diffusive convection. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian, vol. 2. London: Academic Press, pp. 757–766. [133]Google Scholar
Schmitt, R. W. and Evans, D. L. (1978). An estimate of the vertical mixing due to salt fingers based on observations in the North Atlantic Central Water. J. Geophys. Res., 83, 2913–2919. [132]CrossRefGoogle Scholar
Schmitt, R. W. and Georgi, D. T. (1982). Finestructure and microstructure in the North Atlantic Current. J. Mar. Res., 40 (Suppl.), 657–705. [137]Google Scholar
Schmitt, R. W. and Ledwell, J. R. (2001). Dispersion and diffusion in the deep ocean. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian, vol. 2. London: Academic Press, pp. 726–733. [12, 208, 362]Google Scholar
Schmitt, R. W., Lueck, R. G. and Joyce, T. M. (1986). Fine- and microstructure at the edge of a warm core ring. Deep-Sea Res., 33, 1665–1690. [140]CrossRefGoogle Scholar
Schmitt, R. W., Perkins, H., Boyd, J. D. and Stalcup, M. C. (1987). C-SALT: an investigation of the thermohaline staircase in the western tropical North Atlantic. Deep-Sea Res., 34, 1655–1704. [138]CrossRefGoogle Scholar
Schmitt, R. W., Toole, J. M., Koehler, R. L., Mellinger, E. C. and Doherty, K. W. (1988). The development of a fine and microstructure profiler. J. Atmos. Oceanic Technol., 5, 484–500. [173]2.0.CO;2>CrossRefGoogle Scholar
Schmitz, W. J., Holland, W. R. and Price, J. F. (1983). Mid-latitude mesoscale variability. Rev. Geophys. & Space Phys., 21, 1109–1118. [343]CrossRefGoogle Scholar
Schott, F. and Leaman, K. D. (1991). Observations with moored Doppler current profilers in the convection region in the Golfe du Lion. J. Phys. Oceanogr., 21, 558–574. [129]2.0.CO;2>CrossRefGoogle Scholar
Schott, F., Visbeck, M., Send, U., Fischer, J., Stramma, L. and Desaubies, Y. (1996). Observations of deep convection in the Gulf of Lions, northern Mediterranean, during winter of 1991/2. J. Phys. Oceanogr., 26, 505–524. [129]2.0.CO;2>CrossRefGoogle Scholar
Tokos, Schultz, , K. H. L., Hinrichsen, H.-H. and Zenk, W. (1994). Merging and migration of two Meddies. J. Phys. Oceanogr., 24, 2129–2140. [352, 353]2.0.CO;2>CrossRefGoogle Scholar
Scinocca, J. F. (1995). The mixing of mass and momentum by Kelvin–Helmholtz billows. J. Atmos. Sci., 52, 2509–2530. [92, 103]2.0.CO;2>CrossRefGoogle Scholar
Scorer, R. (1951). Billow clouds. Quart. J. R. Meteorol. Soc., 77, 235–240. [83]CrossRefGoogle Scholar
Scotti, R. S. and Corcos, G. M. (1972). An experiment on the stability of small disturbances in a stratified free shear flow. J. Fluid Mech., 52, 499–528. [93]CrossRefGoogle Scholar
Seim, H. E. (1999). Acoustic backscatter from turbulent microstructure. J. Atmos. Oceanic Technol., 16, 1491–1498. [188]2.0.CO;2>CrossRefGoogle Scholar
Seim, H. E., Gregg, M. C. and Miyamoto, R. T. (1995). Acoustic backscatter from turbulent microstructure. J. Atmos. Oceanic Technol., 12, 367–380. [197, 199]2.0.CO;2>CrossRefGoogle Scholar
Send, U. and Marshall, J. (1995). Integral effects of deep convection. J. Phys. Oceanogr., 25, 855–872. [129, 130]2.0.CO;2>CrossRefGoogle Scholar
Sharples, J. and Simpson, J. H. (2001). Shelf-sea and slope fronts. In Encyclpedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian, vol. 5. London: Academic Press, pp. 2760–2768. [15]Google Scholar
Shay, T. J. and Gregg, M. C. (1984). Turbulence in an oceanic convective layer. Nature, 310, 282–285. (Corrigendum, 311, 84.) [246, 247]CrossRefGoogle Scholar
Shay, T. J. and Gregg, M. C. (1986). Convectively driven turbulent mixing in the upper ocean. J. Phys. Oceanogr., 16, 1777–1798. [247, 248]2.0.CO;2>CrossRefGoogle Scholar
Shen, C. Y. and Meid, R. P. (1986). Statistics of internal wave overturning from observations of upper ocean temperature. J. Phys. Oceanogr., 16, 1763–1776. [201]2.0.CO;2>CrossRefGoogle Scholar
Shirtcliffe, T. G. L. (1969). The development of layered thermosolutal convection. Int. J. Heat. Mass Transfer, 12, 215–222. [137]CrossRefGoogle Scholar
Shirtcliffe, T. G. L. and Turner, J. S. (1970). Observations of the cell structure of salt fingers. J. Fluid Mech., 41, 707–719. [135]CrossRefGoogle Scholar
Shrira, V. I., Voronovich, V. V. and Kozhelupova, N. G. (1997). Explosive instability of vorticity waves. J. Phys. Oceanogr., 27, 547–554. [298]2.0.CO;2>CrossRefGoogle Scholar
Siddiqui, M. H. K., Loewen, M. R., Asher, W. F. and Jessup, A. T. (2004). Coherent structures beneath wind waves and their influence on air–water gas transfer. J. Geophys. Res., 109 (C3), C03024, doi:10.1029/2002JC001559, 2004. [231]CrossRefGoogle Scholar
Signell, R. P. and Geyer, W. R. (1991). Transient eddy formation around headlands. J. Geophys. Res., 96, 2561–2575. [322]CrossRefGoogle Scholar
Simpson, J. E. (1997). Gravity Currents in the Environment and the Laboratory, 2nd edn. Cambridge: Cambridge University Press. [6, 52, 319]Google Scholar
Simpson, J. H. (1981). The shelf sea fronts: implications of their existence and behaviour. Phil. Trans. R. Soc. Lond., A302, 531–546. [282, 283]CrossRefGoogle Scholar
Simpson, J. H. and Bowers, D. (1981). Models of stratification and frontal movement in shelf seas. Deep-Sea Res., 28A, 727–738. [283]CrossRefGoogle Scholar
Simpson, J. H. and Hunter, J. R. (1974). Fronts in the Irish Sea. Nature, 250, 404–406. [282]CrossRefGoogle Scholar
Simpson, J. H. and Sharples, J. (1994). Does the Earth's rotation influence the location of the shelf sea fronts?J. Geophys. Res., 99(C2), 3315–3319. [283]CrossRefGoogle Scholar
Simpson, J. H., Crawford, W. R., Rippeth, T. P., Campbell, A. R. and Choek, J. V. S. (1996). The vertical structure of turbulent dissipation in shelf seas. J. Phys. Oceanogr., 26, 1579–1590. [283]2.0.CO;2>CrossRefGoogle Scholar
Simpson, J. H., Rippeth, T. P. and Campbell, A. R. (2000). The phase lag of turbulent dissipation in tidal flow. From Interactions Between Estuaries, Coastal Seas and Shelf Seas, ed. , T. Yanagi. Tokyo: Terra Scientific Pub Co. (TERRAPUB), pp. 57–67. [16]Google Scholar
Simpson, J. H., Burchard, H., Fisher, N. R. and Rippeth, T. P. (2002). The semi-diurnal cycle of dissipation in a ROFI: model-measurement comparisons. Continental Shelf Res., 22, 1615–1628. [16]CrossRefGoogle Scholar
Skyllingstad, E. D. and Denbo, D. W. (1995). An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 8501–8522. [256]CrossRefGoogle Scholar
Skyllingstad, E. D., Paulson, C. A., Pegan, W. S., McPhee, M. G. and Stanton, T. (2003). Effects of keels on ice bottom turbulent exchange. J. Geophys. Res., 108(C12), doi:10.1029/2002JC001488. [228]CrossRefGoogle Scholar
Skyllingstad, E. D., Smyth, W. D., Moum, J. N. and Wijesekera, H. (1999). Upper-ocean turbulence during a westerly wind burst: a comparison of large-eddy simulation results and microstructure measurements. J. Phys. Oceanogr., 29, 5–28. [247, 265, 266]2.0.CO;2>CrossRefGoogle Scholar
Skyllingstad, E. D., Smyth, W. D. and Crawford, G. B. (2000). Resonant wind-driven mixing in the ocean boundary layer. J. Phys. Oceanogr., 30, 1866–1890. [266]2.0.CO;2>CrossRefGoogle Scholar
Sleath, J. F. A. (1985). Energy dissipation in oscillating flow over rippled beds. Coastal Engineering, 9, 159–170. [273, 274]CrossRefGoogle Scholar
Sleath, J. F. A. (1987). Turbulent oscillatory flow over rough beds. J. Fluid Mech., 182, 369–409. [277]CrossRefGoogle Scholar
Sleath, J. F. A. (1990). Seabed boundary layers. In The Sea, ed. , B. LeMehaute and , D. M. Hanes, vol. 9B. New York: John Wiley and Sons, pp. 693–727. [277]Google Scholar
Slinn, D. N., Allen, J. S., Newberger, P. A. and Holman, R. A. (1998). Nonlinear shear instabilities of alongshore currents over barred beaches. J. Geophys. Res., 103, 18357–18379. [299]CrossRefGoogle Scholar
Small, J. (2003). The reflection and shoaling of non-linear internal waves at the Malin shelf break. J. Phys. Oceanogr., 33, 2657–2674. [49]2.0.CO;2>CrossRefGoogle Scholar
Smayda, T. J. and Reynolds, C. S. (2001). Community assembly in marine phytoplankton; applications of recent models to harmful dinoflagellate blooms. J. Plankton Res., 23, 447–461. [267]CrossRefGoogle Scholar
Smith, J. A. (1996). Observations of Langmuir circulation, waves and the mixed layer. In The Air–Sea Interface: Radio and Acoustic Sensing, Turbulence and Wave Dynamics, ed. , M. A. Donelan, , W. H. Hi and , W. J. Plant. Toronto: University of Toronto Press, pp. 613–22. [252, 253]Google Scholar
Smith, J. A. (1998). Evolution of Langmuir circulation during a storm. J. Geophys. Res., 103, 12649–12668. [251]CrossRefGoogle Scholar
Smith, J. A. and Largier, J. L. (1995). Observations of nearshore circulation: rip currents. J. Geophys. Res., 100, 10967–10975. [299]CrossRefGoogle Scholar
Smith, J., Pinkel, R. and Weller, R. A. (1987). Velocity structure in the mixed layer during MILDEX. J. Phys. Oceanogr. 17, 425–39. [253]2.0.CO;2>CrossRefGoogle Scholar
Smyth, C. and Hay, A. D. (2003). Near-bed turbulence and bottom friction during SandyDuck 97. J. Geophys. Res., 108, 3197, doi:10.1029/2001JC000952. [281]CrossRefGoogle Scholar
Smyth, W. D. (2004). Kelvin–Helmholtz billow evolution from a localized source. Submitted to Quart. J. R. Met. Soc., 130, 2753–2766. [111]CrossRefGoogle Scholar
Smyth, W. D. and Peltier, W. (1989). The transition between Kelvin–Helmholtz and Holmboe instability: an investigation of the overreflection hypothesis. J. Atmos. Sci., 46, 3698–3720. [109]2.0.CO;2>CrossRefGoogle Scholar
Smyth, W. D. and Peltier, W. (1990). Three-dimensional primary instabilities of a stratified, dissipative stratified flow. Geophys. Astrophys. Fluid Dyn., 52, 249–261. [109]CrossRefGoogle Scholar
Smyth, W. D. and Winters, K. B. (2003). Turbulence and mixing in Holmboe waves. J. Phys. Oceanogr., 33, 694–711. [103, 109]2.0.CO;2>CrossRefGoogle Scholar
Smyth, W. D., Zavialov, P. O. and Moum, J. N. (1997). Decay of turbulence in the upper ocean following sudden isolation from surface forcing. J. Phys. Oceanogr., 27, 810–822. [247]2.0.CO;2>CrossRefGoogle Scholar
Smyth, W. D., Moum, J. N. and Caldwell, D. R. (2001). The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations. J. Phys. Oceanogr., 31, 1969–1992. [5, 92, 105, 183]2.0.CO;2>CrossRefGoogle Scholar
Snodgrass, F. E., Groves, G. W., Hasselmann, K. F., Miller, G. R., Munk, W. H. and Powers, W. M. (1966). Propagation of ocean swell across the Pacific. Phil. Trans. R. Soc. Lond., A259, 431–497. [111, 291]CrossRefGoogle Scholar
Soloviev, A. and Lucas, R. (2003). Observations of wave-enhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep-Sea Res., 50, 371–395. [237]CrossRefGoogle Scholar
Sonmor, L. J. and Klaassen, G. P. (1997). Towards a unified theory of gravity wave stability. J. Atmos. Sci., 54, 2655–2680. [145]2.0.CO;2>CrossRefGoogle Scholar
Soulsby, R. L. (1983). The bottom boundary layer of shelf seas. In Physical Oceanography of Coastal and Shelf Seas, ed. , B. Johns. Amsterdam: Elsevier, pp. 189–266. [221]Google Scholar
Soulsby, R. L., Atkins, R. and Salkield, A. P. (1994). Observations of the turbulent structure of a suspension of sand in a turbulent current. Continental Shelf Res., 14, 429–435. [280]CrossRefGoogle Scholar
Spelt, P. D. M. and Biesheuvel, A. (1997). On the motion of gas bubbles in homogeneous isotropic turbulence. J. Fluid Mech., 336, 221–244. [241]CrossRefGoogle Scholar
Spigel, R. H., Imberger, J. and Rayner, K. N. (1986). Modelling the diurnal mixed layer. Limnol. Oceanogr., 31, 533–556. [338]CrossRefGoogle Scholar
Spilhaus, A. F. (1937). A bathythermograph. J. Mar. Res., 1, 95–100. [190]CrossRefGoogle Scholar
Squire, H. B. (1933). On the stability of three-dimensional disturbances of viscous flow between parallel walls. Proc. R. Soc. Lond., A142, 621–628. [85]CrossRefGoogle Scholar
Stammer, D. (1997). Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 1743–1769. [114, 347]2.0.CO;2>CrossRefGoogle Scholar
Stammer, D. and Wunsch, C. (1999). Temporal changes in eddy energy of the oceans. Deep-Sea Res. II, 46, 77–108. [345, 346]CrossRefGoogle Scholar
Stansfield, K., Garrett, C. and Dewey, R. (2001). The probability distribution of the Thorpe displacement within overturns in Juan De Fuca Strait. J. Phys. Oceanogr., 31, 3421–3434. [177]2.0.CO;2>CrossRefGoogle Scholar
Stanton, T. P. and Ostrovsky, L. A. (1998). Observations of highly nonlinear internal solitons over the continental shelf. Geophys. Res. Letts., 25, 2695–2698. [51]CrossRefGoogle Scholar
Staquet, C. (2000). Mixing in a stably stratified shear layer: two- and three-dimensional numerical experiments. Fluid Dyn. Res., 27, 367–404. [92]CrossRefGoogle Scholar
Staquet, C. and Sommeria, J. (2002). Internal gravity waves: from instabilities to turbulence. Ann. Rev. Fluid Mech., 34, 559–593. [144]CrossRefGoogle Scholar
Stern, M. E. (1960). The ‘salt fountain’ and thermohaline convection. Tellus, 12, 172–175. [131, 132]CrossRefGoogle Scholar
Stern, M. E. (1967). Lateral mixing of water masses. Deep-Sea Res., 14, 747–753. [140]Google Scholar
Stern, M. and Simeonov, J. A. (2002). Internal wave overturns produced by salt fingers. J. Phys. Oceanogr., 32, 3638–3656. [165]2.0.CO;2>CrossRefGoogle Scholar
Stern, M. and Turner, J. S. (1969). Salt fingers and convecting layers. Deep-Sea Res., 16, 497–511. [135]Google Scholar
Stern, M., Radko, T. and Simeonov, J. (2001). Salt fingers in an unbounded thermocline. J. Mar. Res., 59, 355–390. [165]CrossRefGoogle Scholar
Stevens, C. and Imberger, J. (1996). The initial response of a stratified lake to a surface shear stress. J. Fluid Mech., 312, 39–66. [338]CrossRefGoogle Scholar
Stigebrandt, A. and Aure, J. (1989). Vertical mixing in basin waters of fjords. J. Phys. Oceanogr., 19, 917–926. [333]2.0.CO;2>CrossRefGoogle Scholar
Stillinger, D. C., Helland, K. N. and Atta, C. W. (1983). Experiments on the transition of homogeneous turbulence to internal waves. J. Fluid Mech., 131, 91–122. [184]CrossRefGoogle Scholar
Stips, A., Prandke, H. and Neumann, T. (1998). The structure and dynamics of the bottom boundary layer in shallow sea areas without tidal influence: an experimental approach. Prog. Oceanogr., 41, 383–453. [269]CrossRefGoogle Scholar
Stokes, G. G. (1847). On the theory of oscillatory waves. Trans. Cambridge Philos. Soc., 8, 441–455. [45]Google Scholar
Stommel, H. (1949a). Horizontal diffusion due to oceanic turbulence. J. Mar. Res., 8, 199–225. [33, 261]Google Scholar
Stommel, H. (1949b). Trajectories of small bodies sinking slowly through convection cells. J. Mar. Res., 8, 24–29. [35, 36]Google Scholar
Stommel, H. and Fedorov, K. N. (1967). Small scale structure in temperature and salinity near Timor and Mindinao. Tellus, 19, 306–325. [131, 140, 229]CrossRefGoogle Scholar
Stommel, H., Arons, A. B. and Blanchard, D. (1956). An oceanographical curiosity: the perpetual salt fountain. Deep-Sea Res., 3, 152–153. [116]Google Scholar
Strang, E. J. and Fernando, H. J. S. (2001). Entrainment and mixing in stratified shear flows. J. Fluid Mech., 428, 349–386. [109, 265]CrossRefGoogle Scholar
Sundermeyer, M. A. and Ledwell, J. R. (2001). Lateral dispersion over the continental shelf: analysis of dye release experiments. J. Geophys. Res., 106, 9603–9622. [289]CrossRefGoogle Scholar
Sundermeyer, M. A. and Price, J. F. (1998). Lateral mixing and the North Atlantic Tracer Release Experiment: observations and numerical simulations of Lagrangian particles and a passive tracer. J. Geophys. Res., 103, 21481–21497. [360]CrossRefGoogle Scholar
Sutherland, B. R. (2001). Finite amplitude internal wavepacket dispersion and breaking. J. Fluid Mech., 429, 343–380. [168]CrossRefGoogle Scholar
Sutherland, B. R. and Linden, P. F. (1998). Internal wave excitation from a stratified flow over a thin barrier. J. Fluid Mech., 377, 223–252. [72, 168]CrossRefGoogle Scholar
Sutyrin, G. (1994). Nonlinear Rossby waves and vortices. In Modelling of Oceanic Eddies, ed. , G. J. F. van Heilst. Amsterdam: North-Holland, pp. 93–99. [367]Google Scholar
Svendsen, I. A. (1987). Analysis of surf zone turbulence. J. Geophys. Res., 92, 5115–5124. [297]CrossRefGoogle Scholar
Swallow, J. C. (1971). The Aries current measurements in the western North Atlantic. Phil. Trans. R. Soc. Lond., A270, 451–460. [340]CrossRefGoogle Scholar
Swallow, J. C. and Caston, G. F. (1974). The preconditioning phase of MEDOC 1969. Part I. Observations. Deep-Sea Res., 20, 429–448. [130]Google Scholar
Tait, R. I. and Howe, M. R. (1968). Some observations of thermohaline stratification in the deep ocean. Deep-Sea Res., 15, 275–280. [136]Google Scholar
Tait, R. I. and Howe, M. R. (1971). Thermohaline staircase. Nature, 231, 178–179. [136]CrossRefGoogle ScholarPubMed
Taylor, G. I. (1916). Skin friction of the wind on the Earth's surface. Proc. R. Soc. Lond., A92, 196–199. [269]CrossRefGoogle Scholar
Taylor, G. I. (1919). Tidal friction in the Irish Sea. Phil. Trans. R. Soc. Lond., A220, 1–92. [37, 269]CrossRefGoogle Scholar
Taylor, G. I. (1921). Diffusion by continuous movements. Proc. Lond. Math. Soc, Ser. 2, 20, 196–212. [32]Google Scholar
Taylor, G. I. (1931). Effect of variation of density on the stability of superposed streams of fluid. Proc. R. Soc. Lond., A132, 499–523. [82]CrossRefGoogle Scholar
Taylor, G. I. (1935). Statistical theory of turbulence. Proc. R. Soc. Lond., A151, 421–454. [178]CrossRefGoogle Scholar
Taylor, G. I. (1950). The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. 1. Proc. R. Soc. Lond., A201, 192–196. [10]CrossRefGoogle Scholar
Taylor, G. I. (1953). Dispersion of soluable matter in solvent flowing slowly though a tube. Proc. R. Soc. Lond., A219, 186–203. [287]CrossRefGoogle Scholar
Taylor, G. I. (1954). The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond., A223, 446–468. [287]CrossRefGoogle Scholar
Taylor, J. R. (1993). Turbulence and mixing in the boundary layer generated by shoaling internal waves. Dyn. Atmos. Oceans, 19, 233–258. [307]CrossRefGoogle Scholar
Teixeira, M. A. C. and Belcher, S. E. (2002). On the distribution of turbulence by a progressive surface wave. J. Fluid Mech., 458, 229–267. [236]CrossRefGoogle Scholar
Tennekes, H. and Lumley, J. L. (1972). A First Course in Turbulence, 2nd edn. Cambridge MA: MIT Press. [19, 27, 64]Google Scholar
Terray, E. A., Donelan, M. A., Agarwal, Y. C., Drennan, W. M., Kahma, K. K., Williams, A. J. III, Huang, P. A. and Kitaigorodsk, S. A. ii (1996). Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792–807. [239]2.0.CO;2>CrossRefGoogle Scholar
Thomas, W. H. and Gibson, C. H. (1990). Quantified small-scale turbulence inhibits a red tide dinoflagellate Gonyaulax polyedra Stein. Deep-Sea Res., 37, 1583–1593. [268]CrossRefGoogle Scholar
Thornton, E. B. and Guza, R. T. (1983). Transformation of wave height distribution. J. Geophys. Res., 88, 5925–5938. [297]CrossRefGoogle Scholar
Thorpe, A. J. and Guymar, T. H. (1977). The nocturnal jet. Quart. J. R. Meteorol. Soc., 103, 633–653. [249]CrossRefGoogle Scholar
Thorpe, S. A. (1968a). A method of producing a shear flow in a stratified fluid. J. Fluid Mech., 32, 693–704. [109, 110]CrossRefGoogle Scholar
Thorpe, S. A. (1968b). On the shape of progressive internal waves. Phil. Trans. R. Soc. Lond., A263, 563–614. [87]CrossRefGoogle Scholar
Thorpe, S. A. (1968c). On standing internal gravity waves of finite amplitude. J. Fluid Mech., 32, 489–528. [151, 152, 169]CrossRefGoogle Scholar
Thorpe, S. A. (1969). Experiments on the instability of stratified shear flows: immiscible fluids. J. Fluid Mech., 39, 25–48. [86]CrossRefGoogle Scholar
Thorpe, S. A. (1971a). Asymmetry of the internal seiche in Loch Ness. Nature, 231, 306–308. [46, 52]CrossRefGoogle Scholar
Thorpe, S. A. (1971b). Experiments on the instability of stratified shear flows: miscible fluids. J. Fluid Mech., 46, 299–319. [93, 94, 104]CrossRefGoogle Scholar
Thorpe, S. A. (1973). Experiments on instability and turbulence in a stratified shear flow. J. Fluid Mech., 61, 731–751. [93, 103, 109]CrossRefGoogle Scholar
Thorpe, S. A. (1974). Near-resonant forcing in a shallow two-layer fluid: a model for the internal surge in Loch Ness. J. Fluid Mech. 63, 509–527. [87]CrossRefGoogle Scholar
Thorpe, S. A. (1975). The excitation, dissipation, and interaction of internal waves in the deep ocean. J. Geophys. Res., 80, 328–338. [71]CrossRefGoogle Scholar
Thorpe, S. A. (1977). Turbulence and mixing in a Scottish loch. Phil. Trans. R. Soc. Lond., A286, 125–181. [48, 176, 203]CrossRefGoogle Scholar
Thorpe, S. A. (1978a). The near-surface ocean mixing layer in stable heating conditions. J. Geophys. Res., 83, 2875–2885. [97]CrossRefGoogle Scholar
Thorpe, S. A. (1978b). On the shape and breaking of finite amplitude internal gravity waves in a shear flow. J. Fluid Mech., 85, 7–31. [157, 159]CrossRefGoogle Scholar
Thorpe, S. A. (1978c). On internal gravity waves in an accelerating shear flow. J. Fluid Mech., 88, 623–639. [160]CrossRefGoogle Scholar
Thorpe, S. A. (1981). An experimental study of critical layers. J. Fluid Mech., 103, 321–344. [163]CrossRefGoogle Scholar
Thorpe, S. A. (1982). On the layers produced by rapidly oscillating a vertical grid in a uniformly stratified fluid. J. Fluid Mech., 124, 391–409. [193, 195]CrossRefGoogle Scholar
Thorpe, S. A. (1983). Benthic observations on the Madeira abyssal plain: fronts. J. Phys. Oceanogr., 13, 1430–1440. [224, 225]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (1984). The effect of Langmuir circulation on the distribution of submerged bubbles caused by breaking waves. J. Fluid Mech., 142, 151–170. [253]CrossRefGoogle Scholar
Thorpe, S. A. (1985). Small-scale processes in the upper ocean boundary layer. Nature, 318, 5l9–522. [258, 260]CrossRefGoogle Scholar
Thorpe, S. A. (1987a). Transitional phenomena and the development of turbulence in stratified fluids: a review. J. Geophys. Res. 92(C5), 5231–5248. [93, 99, 102]CrossRefGoogle Scholar
Thorpe, S. A. (1987b). Current and temperature variability on the continental slope. Phil. Trans. R. Soc. Lond., A323, 471–517. [310, 317]CrossRefGoogle Scholar
Thorpe, S. A. (1989). The distortion of short internal waves produced by a long wave, with application to ocean boundary mixing. J. Fluid Mech., 208, 395–415. [151]CrossRefGoogle Scholar
Thorpe, S. A. (1992). The break-up of Langmuir circulation and the instability of an array of vortices. J. Phys. Oceanogr., 22, 350–360. [253]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (1994a). Statically unstable layers produced by overturning internal gravity waves. J. Fluid Mech., 260, 333–350. [60, 152]CrossRefGoogle Scholar
Thorpe, S. A. (1994b). The stability of statically unstable layers. J. Fluid Mech., 260, 315–331. [119, 145]CrossRefGoogle Scholar
Thorpe, S. A. (1995). On the meandering and dispersion of a plume of floating particles caused by Langmuir circulation and a mean current. J. Phys. Oceanogr., 25, 685–690. [263]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (1997). On the interactions of internal waves reflecting from slopes. J. Phys. Oceanogr. 27, 2072–2078. [312]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (1999a). A note on the breaking of internal waves in the ocean. J. Phys. Oceanogr., 29, 2433–2441. [150]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (1999b). On internal wave groups. J. Phys. Oceanogr., 29, 1085–1095. [166, 167]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (1999c). Fronts formed by obliquely reflecting internal waves at a sloping boundary. J. Phys. Oceanogr., 29, 2462–2467. [313]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (1999d). The generation of alongslope currents by breaking internal waves. J. Phys. Oceanogr., 20, 29–38. [315]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (2001). On the reflection of internal wave groups from sloping topography. J. Phys. Oceanogr., 31, 3121–3126. [315]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (2002a). On the dispersion of pairs of internal inertial gravity waves. J. Mar. Res., 60 (3), 461–476. [70]CrossRefGoogle Scholar
Thorpe, S. A. (2002b). The axial coherence of Kelvin–Helmholtz billows. Quart. J. R. Meteorol. Soc., 128, 1529–1542. [98, 99]CrossRefGoogle Scholar
Thorpe, S. A. (2003). A note on standing internal inertial gravity waves of finite amplitude. Geophys. Astrophys Fluid Dyn., 97, 59–74. [55, 151]CrossRefGoogle Scholar
Thorpe, S. A. (2004). Langmuir circulation. Ann. Rev. Fluid Dyn., 36, 55–79. [251]CrossRefGoogle Scholar
Thorpe, S. A. and Brubaker, J. M. (1983). Observations of sound reflection by temperature microstructure. Limnol. Oceanogr., 28, 601–613. [188]CrossRefGoogle Scholar
Thorpe, S. A. and Hall, A. J. (1977). Mixing in upper layer of lake during heating cycle. Nature, 265, 719–722. [259]CrossRefGoogle Scholar
Thorpe, S. A. and Hall, A. J. (1980). The mixing layer of Loch Ness. J. Fluid Mech., 101, 687–703. [259]CrossRefGoogle Scholar
Thorpe, S. A. and Hall, A. J. (1987). Bubble clouds and temperature anomalies in the upper ocean. Nature, 328, 48–51. [250]CrossRefGoogle Scholar
Thorpe, S. A. and Holt, J. T. (1995). The effects of laterally sloping upper and lower boundaries on waves and instability in stratified shear flows. J. Fluid Mech., 286, 49–65. [99]CrossRefGoogle Scholar
Thorpe, S. A. and Jiang, R. (1998). Estimating internal waves and diapycnal mixing from conventional mooring data in a lake. Limnology Oceanogr., 43, 936–945. [339]CrossRefGoogle Scholar
Thorpe, S. A. and Lemmin, U. (1999). Internal waves and temperature fronts on slopes. Annales Geophysicae, 17, 1227–1234. [316]CrossRefGoogle Scholar
Thorpe, S. A. and Umlauf, L. (2002). Internal gravity wave frequencies and wavenumbers from single point measurements over a slope. J. Mar. Res., 60 (4), 690–723. [63, 305]CrossRefGoogle Scholar
Thorpe, S. A. and White, M. (1988). A deep intermediate nepheloid layer. Deep-Sea Res., 35, 1665–1671. [227]CrossRefGoogle Scholar
Thorpe, S. A., Hutt, P. K. and Soulsby, R. (1969). The effect of horizontal gradients on thermohaline convection. J. Fluid Mech., 38, 375–400. [140, 141]CrossRefGoogle Scholar
Thorpe, S. A., Hall, A. J., Packwood, A. R. and Stubbs, A. R. (1985). The use of a towed side-scan sonar to investigate processes near the sea surface. Continental Shelf Research, 4, 597–608. [86]CrossRefGoogle Scholar
Thorpe, S. A., Hall, P. and White, M. (1990). The variability of mixing at the continental slope. Phil. Trans. R. Soc. Lond., A33, 183–194. [310]CrossRefGoogle Scholar
Thorpe, S. A., Curé, M. and White, M. (1991). The skewness of temperature derivatives in oceanic boundary layers. J. Phys. Oceanogr., 21, 428–433. [258, 313]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A., Curé, M., Graham, A. and Hall, A. (1994). Sonar observations of Langmuir circulation and estimates of dispersion of floating particles. J. Atmos. Oceanic Technol., 11, 1273–1294. [288]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A., Lemmin, U., Perrinjaquet, C. and Fer, I. (1999a). Observations of the thermal structure of a lake using a submarine. Limnol. Oceanogr., 44, 1575–1582. [249]CrossRefGoogle Scholar
Thorpe, S. A., Nimmo Smith, W. A. M., Thurnherr, A. M. and Walters, N. J. (1999b). Patterns in foam. Weather, 54, 327–334. [244, 294, 295, 296]CrossRefGoogle Scholar
Thorpe, S. A., Osborn, T. R., Jackson, J. F. E., Hall, A. J. and Lueck, R. G. (2003a). Measurements of turbulence in the upper ocean mixing layer using Autosub. J. Phys. Oceanogr., 33, 122–145. [173, 239, 242, 246, 257, 258, 259, 265]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A., Osborn, T. R., Farmer, D. M. and Vagel, S. (2003b). Bubble clouds and Langmuir circulation: observations and models. J. Phys. Oceanogr., 33, 2013–2031. [243, 268, 280]2.0.CO;2>CrossRefGoogle Scholar
Thoulet, J. (1894). Contribution a l'étude des lacs des Vosges. Bull. Soc. Geogr. Paris, 15, 557–604. [46]Google Scholar
Toggweiler, J. R., Dixon, K. and Bryan, K. (1989). Simulations of radiocarbon in a course-resolution world ocean model. J. Geophys. Res., 94, 8217–8264. [357]CrossRefGoogle Scholar
Tokmakian, R. T. and Challenor, P. G. (1993). Observations in the Canary Basin and the Azores frontal region using Geosat. J. Gephys. Res., 98, 4761–4774. [365]CrossRefGoogle Scholar
Tollmein, W. (1929). Über die Entstehung der Turbulenz. Nachr. Ges. Wiss. Göttingen, Math.-phys. Kl., 1, 21–44. [85]Google Scholar
Toole, J. M. (1981a). Intrusion characteristics in the Antarctic Polar Front. J. Phys. Oceanogr., 11, 780–793. [140, 353]2.0.CO;2>CrossRefGoogle Scholar
Toole, J. M. (1981b). Anomalous characteristics of Equatorial thermohaline finestructure. J. Phys. Oceanogr., 11, 871–876. [140]2.0.CO;2>CrossRefGoogle Scholar
Toole, J. M. and Georgi, D. T. (1981). On the dynamics and effects of double-diffively driven intrusions. Prog. Oceanogr., 10, 123–145. [142]CrossRefGoogle Scholar
Toole, J. M., Schmitt, R. W. and Polzin, K. L. (1997). Near-boundary mixing above the flanks of a midlatitude seamount. J. Geophys. Res., 102, 947–949. [40, 312, 325]CrossRefGoogle Scholar
Townsend, A. A. (1959). Temperature fliuctuations over a heated horizontal surfaceJ. Fluid Mech., 5, 209–241. [119]CrossRefGoogle Scholar
Townsend, A. A. (1962). Natural convection in the Earth's boundary layer. Quart. J. R. Meteorol. Soc., 88, 51–58. [214]CrossRefGoogle Scholar
Townsend, A. A. (1966). Internal waves produced by a convective layer. J. Fluid Mech., 24, 307–319. [72]CrossRefGoogle Scholar
Townsend, A. A. (1968). Excitation of internal waves in a stably stratified atmosphere with considerable wind shear. J. Fluid Mech., 32, 145–171. [72]CrossRefGoogle Scholar
Trenberth, K. E. (2001). El Niňo Southern Oscillation (ENSO). In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turikian, vol. 5. London: Academic Press, pp. 2599–2604. [367]Google Scholar
Trowbridge, J. and Elgar, S. (2001). Turbulence measurements in the surf zone. J. Phys. Oceanogr., 31, 2403–2417. [281, 293]2.0.CO;2>CrossRefGoogle Scholar
Tsimplis, M. (1992). The effect of rain in calming the sea. J. Phys. Oceanogr., 22, 404–412. [243]2.0.CO;2>CrossRefGoogle Scholar
Turner, J. S. (1967). Salt fingers across a density interface. Deep-Sea Res., 14, 599–611. [132, 142]Google Scholar
Turner, J. S. (1973). Buoyancy Effects in Fluids. Cambridge: Cambridge University Press. [6, 132, 229, 264]CrossRefGoogle Scholar
Turner, J. S. (1974). Double-diffusive phenomena. Annu Rev. Fluid Mech., 6, 37–56. [132]CrossRefGoogle Scholar
Turner, J. S. (1978). Double-diffusive intrusions into a density gradient. J. Geophys. Res., 83, 2887–2901. [140]CrossRefGoogle Scholar
Turner, J. S. (1986). Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech., 173, 431–471. [125, 265]CrossRefGoogle Scholar
Turner, J. S. (1997). G. I. Taylor in his later years. Ann. Rev. Fluid Mech., 29, 1–25. [10]CrossRefGoogle Scholar
Uijttewaal, W. S. J. and Jirka, G. H. (2003). Grid turbulence in shallow flow. J. Fluid Mech., 489, 325–344. [286]CrossRefGoogle Scholar
Unesco (1983). Algorithms for computation of fundamental properties of seawater. UNESCO technical papers in marine science, vol. 44. Paris: UNESCO, 53 pages. [6]
Dyke, M. (1982). An Album of Fluid Motion. Stanford, CA: The Parabolic Press. [xi]Google Scholar
Haren, H., Oakey, N. and Garrett, C. (1994). Measurements of internal wave band eddy fluxes above a sloping bottom. J. Mar. Res., 52, 909–946. [314, 315]CrossRefGoogle Scholar
Veron, F. and Melville, W. K. (2001). Experiments on the stability and transition of wind-driven water surfaces. J. Fluid Mech., 446, 25–65. [17, 243, 254, 255]Google Scholar
Versluis, M., Heydt, A v. d., Schmitz, B. and Lohse, D. (2000). How snapping shrimp snap: through cavitation bubbles. Science, 289, 2114–2117. [268]CrossRefGoogle Scholar
Villard, P. V., Osborne, P. D. and Vincent, C. E. (2000). Influence of wave groups on SSC patterns over vortex ripples. Continental Shelf Res., 20, 2391–2410. [280]CrossRefGoogle Scholar
Vlasenko, V. and Hutter, K. (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. Phys. Oceanogr., 32, 1779–1793. [303]2.0.CO;2>CrossRefGoogle Scholar
Voropayev, S. I. and Afanasyev, Ya D. (1992). Two-dimensional vortex-dipole interaction in a stratified fluid. J. Fluid Mech., 236, 665–689. [195, 197]CrossRefGoogle Scholar
Voropayev, S. I., Afanasyev, Ya D. and Filippov, I. A. (1991). Horizontal jets and vortex dipoles in a stratified fluid. J. Fluid Mech., 227, 543–566. [169, 170]CrossRefGoogle Scholar
Wallace, B. C. and Wilkinson, D. L. (1988). Run up of internal waves on a gentle slope in a two-layer system. J. Fluid Mech., 191, 419–442. [299]CrossRefGoogle Scholar
Walsh, D. and Ruddick, B. (1998). Nonlinear equilibriation of thermohaline intrustions. J. Phys. Oceanogr., 28, 1043–1070. [140, 142]2.0.CO;2>CrossRefGoogle Scholar
Wang, G. and Dewar, W. K. (2003). Meddy-seamount interactions: implications for the Mediterranean salt tongue. J. Phys. Oceanogr., 33, 2446–2461. [353]2.0.CO;2>CrossRefGoogle Scholar
Wang, F. J. and Domoto, G. A. (1994). Free-surface Taylor vortices. J. Fluid Mech., 261, 169–198. [293]CrossRefGoogle Scholar
Wang, L.-P. and Maxey, M. R. (1993). Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech., 256, 27–68. [280]CrossRefGoogle Scholar
Watanabe, M. and Hibiya, T. (2002). Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Letts., 29(8), 10.1029/2001GL014422. [41, 65, 73, 346, 371]CrossRefGoogle Scholar
Watson, E. R. (1903). Internal oscillation in the water of Loch Ness. Nature, 69, 174. [46]CrossRefGoogle Scholar
Watson, E. R. (1904). Movements of the waters of Loch Ness, as indicated by temperature observations. Geographical Journal, 24, 430–37. [46]CrossRefGoogle Scholar
Watson, K. M. (1990). The coupling of surface and internal gravity waves: revisited. J. Phys. Oceanogr., 20, 1233–1248. [72]2.0.CO;2>CrossRefGoogle Scholar
Webb, D. J. and Suginohara, N. (2001). Oceanography: vertical mixing in the ocean. Nature, 409, 37. [371]CrossRefGoogle ScholarPubMed
Wedderburn, E. M. (1907). The temperature of the fresh-water lochs of Scotland, with special reference to Loch Ness. With appendix containing special observations made in Loch Ness by members of the Scottish Lake Survey. Trans. R. Soc. Edinburgh, 45, 407–89. [46, 80, 81, 191]CrossRefGoogle Scholar
Wedderburn, E. M. (1911). Some analogies between lakes and oceans. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 4, 55–64. [81]CrossRefGoogle Scholar
Welander, P. (1955). Studies of the general development of motion in a two-dimensional, ideal fluid. Tellus, 7, 141–156. [20, 21]CrossRefGoogle Scholar
Weller, R. A. and Price, J. F. (1988). Langmuir circulation within the oceanic mixed layer. Deep-Sea Res., 35, 711–747. [251, 265]CrossRefGoogle Scholar
Weller, R. A., Dean, J. P., Marra, J., Price, J. F., Francis, E. A. and Broadman, D. C. (1985). Three-dimensional flow in the upper ocean. Science, 227, 1552–1556. [251]CrossRefGoogle ScholarPubMed
Wesson, J. C. and Gregg, M. C. (1988). Turbulent dissipation in the Strait of Gibraltar and associated mixing. In Small-Scale Turbulence and Mixing in the Ocean, ed. , J. C. J. Nihoul and , B. M. Jamart. Amsterdam: Elsevier Oceanography Series, Elsevier, pp. 201–212. [328, 329]Google Scholar
Wesson, J. C. and Gregg, M. C. (1994). Mixing at the Camarinal Sill in the Strait of Gibraltar. J. Geophys. Res., 99, 9847–9878. [19, 20, 176, 177, 328]CrossRefGoogle Scholar
Widnall, S. E. and Sullivan, J. P. (1973). On the stability of vortex rings. Proc. R. Soc. Lond., A332, 335–353. [274]CrossRefGoogle Scholar
Widnall, S. E. and Tsai, C. Y. (1977). The instability of a thin vortex ring of constant vorticity. Phil. Trans. R. Soc. Lond., 287, 273–305. [274]CrossRefGoogle Scholar
Wijesekera, H. W. and Dillon, T. M. (1991). Internal waves and mixing in the upper equatorial Pacific ocean. J. Geophys. Res., 96, 7115–7125. [72]CrossRefGoogle Scholar
Wijesekera, H. W., Paulson, C. A. and Skyllingstad, E. D. (2004). Scaled temperature spectrum in the unstable oceanic surface layer. J. Geophys. Res., 109(C3), C03015, doi:10.1029/2003JC002066, 2004. [258]CrossRefGoogle Scholar
Williams, A. J. III (1975). Images of ocean microstructure. Deep-Sea Res., 22, 811–829. [137]Google Scholar
Williams, A. J. III (1981). A role of double diffusivity in a Gulf Stream frontal intrusion. J. Geophys. Res., 86, 1917–1926. [137]CrossRefGoogle Scholar
Wimbush, M. (1970). Temperature gradient above the deep-sea floor. Nature, 227, 1041–1043. [214, 220]CrossRefGoogle Scholar
Wimbush, M. and Munk, W. (1971). The benthic boundary layer. In The Sea, 4 (1). New York: John Wiley and Sons, pp. 731–758. [214, 220]Google Scholar
Winkel, D. P., Gregg, M. C. and Sanford, T. B. (2002). Patterns of shear and turbulence across the Florida current. J. Phys. Oceanogr., 32, 3269–3285. [331]2.0.CO;2>CrossRefGoogle Scholar
Winters, K. B. and D'Asaro, E. A. (1994). Three-dimensional wave breaking near a critical level. J. Fluid Mech., 272, 255–284. [162]CrossRefGoogle Scholar
Winters, K. B. and Riley, J. J. (1992). Instability of internal waves near a critical level. Dyn. Atmos. Oceans, 16, 249–278. [162]CrossRefGoogle Scholar
Winters, K. B. and Seim, H. E. (2000). The role of dissipation and mixing in exchange flow through a contracting channel. J. Fluid Mech., 407, 265–290. [330]CrossRefGoogle Scholar
Woods, J. D. (1968). Wave-induced shear instability in the summer thermocline. J. Fluid Mech., 32, 791–800. [49, 81, 83, 84, 111, 187, 191]CrossRefGoogle Scholar
Wu, J. (1975). Wind induced currents. J. Fluid Mech., 68, 49–70. [345]CrossRefGoogle Scholar
Wu, C. H. and Nepf, H. M. (2002). Breaking criteria and energy loss for three-dimensional wave breaking. J. Geophys. Res., 107(C10), doi:10.1029/2001 JC001077. [233]CrossRefGoogle Scholar
Wüest, A., Senden, D. C., Imberger, J., Piepke, G. and Gloor, M. (1994). Diapycnal diffusivity measured by tracer and microstructure techniques. Dyn. Atmos. Oceans, 24, 27–39. [339]CrossRefGoogle Scholar
Wunsch, C. (1970). On oceanic boundary mixing. Deep-Sea Res., 17, 293–301. [316, 317]Google Scholar
Wunsch, C. (1972). The spectrum from two years to two minutes of temperature fluctuations at Bermuda. Deep Sea Res., 19, 577–593. [47, 343]Google Scholar
Wunsch, C. (1981). Low frequency variability in the sea. pp 342–374. In Evolution in Physical Oceanography, ed. , B. Warren and , C. Wunsch. Cambridge, MA: MIT Press, pp. 342–374. [342]Google Scholar
Wunsch, C. (1983). Western North Atlantic interior. In Eddies in Marine Science, ed. , A. R. Robinson. Berlin: Springer-Verlag, pp. 46–65. [344]Google Scholar
Wunsch, C. (1997). The vertical partitioning of horizontal kinetic energy. J. Phys. Oceanogr., 27, 1770–1794. [346]2.0.CO;2>CrossRefGoogle Scholar
Wunsch, C. and Ferrari, R. (2004). Vertical mixing, energy and the general circulation of the oceans. Ann. Rev. Fluid Mech., 36, 281–314. [38, 65, 219, 345, 346, 371]CrossRefGoogle Scholar
Wunsch, C. and Stammer, D. (1995). The global frequency-wavenumber spectrum of oceanic variability estimated from the TOPEX/POSEIDON altimeter observations. J. Geophys. Res., 100, 24895–24910. [347]CrossRefGoogle Scholar
Wyrtki, K., Magaad, L. and Hager, J. (1976). Eddy energy in the ocean. J. Geophys. Res., 81, 2641–2646. [343]CrossRefGoogle Scholar
Yaglom, A. M. (1994). A. N. Kolmogorov as a fluid mechanician and founder of a school of turbulence research. Ann. Rev. Fluid Mech., 26, 1–22. [26]CrossRefGoogle Scholar
Yamasaki, H. and Lueck, R. G. (1990). Why oceanic dissipation rates are not lognormal. J. Phys. Oceanogr., 20, 1907–1918. [187]2.0.CO;2>CrossRefGoogle Scholar
Yamasaki, H., Lueck, R. G. and Osborn, T. (1990). A comparison of turbulence data from a submarine and a vertical profiler. J. Phys. Oceanogr., 20, 1778–1786. [187]2.0.CO;2>CrossRefGoogle Scholar
Yap, C. T. and Atta, C. W. (1993). Experimental studies of the development of quasi-two-dimensional turbulence in a stably stratified fluid. Dynamics Atmos. Oceans, 19, 289–323. [194]CrossRefGoogle Scholar
Yih, C. S. (1955). Stability of two-dimensional parallel flows for three-dimensional disturbances. Quart. Appl. Math., 12, 434–435. [85]CrossRefGoogle Scholar
Yih, C. S. (1960). Gravity waves in a stratified fluid. J. Fluid Mech., 8, 481–508. [154]CrossRefGoogle Scholar
Yoshida, S., Ohtani, M., Nishida S. and Linden, P. (1998). Mixing processes in a highly stratified river. In Physical Processes in Lakes and Oceans, ed. , J. Imberger. Amer. Geophys. Union, Coastal and Estuarine Series, pp. 389–400. [111]Google Scholar
Young, W. R., Rhines, P. B. and Garrett, C. J. R. (1982). Shear-flow dispersion, internal waves and horizontal mixing in the ocean. J. Phys. Oceanogr., 12, 515–527. [360]2.0.CO;2>CrossRefGoogle Scholar
Young, W. R., Roberts, A. J. and Stuhne, G. (2001). Reproductive pair correlations and the clustering of organisms. Nature, 412, 328–331. [37]CrossRefGoogle ScholarPubMed
Zedel, L. and Farmer, D. (1991). Organised structures in sub-surface bubble clouds: Langmuir circulation in the upper ocean. J. Geophys. Res., 96, 8889–8900. [253]CrossRefGoogle Scholar
Zeff, B. W., Lanterman, D. D., McAllister, R., Roy, R., Kostelich, E. J. and Lathrop, D. P. (2003). Measuring intense rotation and dissipation in turbulent flows. Nature, 421, 146–149. [28]CrossRefGoogle ScholarPubMed
Zenk, W. (2001). Abyssal currents. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turikian, vol. 1. London: Academic Press, pp. 12–28. [370]Google Scholar
Zhurbas, V. and Oh, I. S. (2003). Lateral diffusivity and Lagrangian scales in the Pacific Ocean as derived from drifter data. J. Geophys. Res., 108(C5), 3141; doi:10.1029/2002JC001596. [364]CrossRefGoogle Scholar
Zhurbas, V. and Oh, I. S. (2004). Drifter-derived maps of lateral diffusivity in the Pacific and Atlantic Oceans in relation to surface circulation patterns. J. Geophys. Res., 109(C5), doi:10.1029/2003JC002241. [364]CrossRefGoogle Scholar
Zikanov, D. and Slinn, D. N. (2001). Along-slope current generation by obliquely incident internal waves. J. Fluid Mech., 445, 235–261. [18, 315]CrossRefGoogle Scholar
Zilitinikevich, S. S., Kreiman, K. D. and Terzhevik, A. Yu. (1992). The thermal bar. J. Fluid Mech., 236, 27–42. [339]CrossRefGoogle Scholar
Adams, C. E. and Weatherley, G. L. (1981). Some effects of suspended sediment stratification on an oceanic bottom boundary layer. J. Geophys. Res., 86, 4161–4172. [216, 280]CrossRefGoogle Scholar
Adrian, R. J., Meinhart, C. D. and Tomkins, C. D. (2000). Vortex organisation in the outer region of the turbulent boundary layer. J. Fluid Mech., 422, 1–54. [219]CrossRefGoogle Scholar
Agrawal, Y. C., Terray, E. A., Donelan, M. A., Huang, P. A., Williams, A. J. III, Drennan, W. M., Kahma, K. K. and Kitagorodski, S. A. (1992). Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219–220. [230, 237, 241]CrossRefGoogle Scholar
Alford, M. H. and Gregg, M. C. (2001). Near-inertial mixing: modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106, 16947–16968. [8, 19, 149, 188]CrossRefGoogle Scholar
Alford, M. and Pinkel, R. (2000a). Observations of overturning in the thermocline: the context of ocean mixing. J. Phys. Oceanogr., 30, 805–832. [11, 20, 199, 200]2.0.CO;2>CrossRefGoogle Scholar
Alford, M. and Pinkel, R. (2000b). Patterns of turbulent and double-diffusive phenomena: observations from a rapid profiling microconductivity probe. J. Phys. Oceanogr., 30, 833–854. [210]2.0.CO;2>CrossRefGoogle Scholar
Allen, J. S., Newberger, P. A. and Holman, R. A. (1996). Nonlinear shear instabilities of alongshore currents on plane beaches. J. Fluid Mech., 310, 181–213. [298]CrossRefGoogle Scholar
Amen, R. and Maxworthy, T. (1980). The gravitational collapse of a mixed region into a linearly stratified fluid. J. Fluid Mech., 96, 65–80. [76]CrossRefGoogle Scholar
Andreassen, Ø., Hvidsten, P. Ø., Fritts, D. C. and Arendt, S. (1998). Vorticity dynamics in a breaking internal gravity wave. Part 1. Initial instability evolution. J. Fluid Mech., 367, 27–46. [10, 164]CrossRefGoogle Scholar
Anis, A. and Moum, J. N. (1992). The superadiabatic surface layer of the ocean during convection. J. Phys. Oceanogr., 22, 1221–1227. [248]2.0.CO;2>CrossRefGoogle Scholar
Apel, J., Kravtsov, Yu., Lavrova, O., Litovchenko, K., Mityagina, M. and Sabinin, K. (1999). Observations of unstable MBL conditions using radar imagery. In The Wind-Driven Air–sea Interface, ed. , M. L. Banner. Sydney, Australia: Publ. School of Mathematics, University of New South Wales, pp. 361–368. [349]Google Scholar
Armi, L. (1978). Some evidence for boundary mixing in the deep ocean. J. Geophys. Res., 83, 1971–1979. [292]CrossRefGoogle Scholar
Armi, L. and D' Asaro, E. (1980). Flow structures in the benthic ocean. J. Geophys. Res., 85, 469–484. [221, 223, 225]CrossRefGoogle Scholar
Armi, L. and Farmer, D. (1985). The internal hydraulics of the Strait of Gibraltar and associated sills and narrows. Oceanologica Acta, 8, 37–46. [326]Google Scholar
Armi, L. and Farmer, D. (1988). The flow of Mediterranean water through the Strait of Gibraltar. Progress in Oceanogr., 21, 1–105. [328, 329, 331]Google Scholar
Armi, L. and Farmer, D. (2002). Stratified flow over topography: bifurcation fronts and transitions to the uncontrolled state. Proc. R. Soc. Lond., A458, 513–538. [21, 334]CrossRefGoogle Scholar
Armi, L. and Millard, R. C. (1976). The bottom boundary layer of the deep ocean. J. Geophys. Res., 81, 4983–4990. [215, 221, 222]CrossRefGoogle Scholar
Armi, L., Hebert, D., Oakey, N., Price, J., Richardson, P. L., Rossby, T. and Ruddick, B. (1988). The history and decay of a Mediterranean salt lens. Nature, 333, 649–651. [352]CrossRefGoogle Scholar
Armi, L., Hebert, D., Oakey, N., Price, J. F., Richardson, P. L. and Rossby, H. T. (1989). Two years in the life of a Mediterranean salt lens. J. Phys. Oceanogr., 19, 354–370. [352]2.0.CO;2>CrossRefGoogle Scholar
Ashford, O. M. (1985). Prophet or Professor? The Life and Work of Lewis Fry Richardson. Bristol: Adam Hilger Ltd. [33]Google Scholar
Atsavapranee, P. and Gharib, M. (1997). Structures in stratified plane mixing layers and the effects of cross-shear. J. Fluid Mech., 342, 53–86. [93, 94, 99, 286]CrossRefGoogle Scholar
Bagnold, R. A. (1946). Motion of waves in shallow water. Interaction of waves and sand bottoms. Proc. R. Soc. Lond., A187, 1–15. [273]CrossRefGoogle Scholar
Bainbridge, R. (1957). The size, shape and density of marine phytoplankton concentrations. Cambridge Philos. Soc. Biol. Rev., 32, 91–115. [267]CrossRefGoogle Scholar
Baines, P. G. (1982). On internal tidal generation models. Deep-Sea Res., 29, 307–338. [41, 74, 75]CrossRefGoogle Scholar
Baines, P. G. (1995). Topographic Effects in Stratified Flows. Cambridge: Cambridge University Press. [323, 325, 330]Google Scholar
Baines, P. G. (2001). Mixing in flows down gentle slopes into stratified environments. J. Fluid Mech., 443, 237–270. [318]CrossRefGoogle Scholar
Baines, P. G. and Gill, A. E. (1969). On thermohaline convection with linear gradients. J. Fluid Mech., 37, 289–306. [132, 134]CrossRefGoogle Scholar
Baker, E. T. and Massoth, G. J. (1987). Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean. Earth and Planetary Sci. Letts., 85, 59–73. [126]CrossRefGoogle Scholar
Baker, E. T., Lavelle, J. W., Feely, R. A., Massoth, G. T. and Walker, S. L. (1989). Episodic venting of hydrothermal fluids from Juan de Fuca Ridge. J. Geophys. Res., 94, 9237–9250. [126]CrossRefGoogle Scholar
Balmforth, N., Smith, S. L. and Young, W. (1998). Dynamics of interfaces and layers in a stratified turbulent fluid. J. Fluid Mech., 355, 329–358. [193]CrossRefGoogle Scholar
Banks, W. H. H., Drazin, P. G. and Zaturska, M. B. (1976). On the normal modes of parallel flow of inviscid stratified fluid. J. Fluid Mech., 75, 149–171. [89]CrossRefGoogle Scholar
Barry, M. E., Ivey, G. N., Winters, K. B. and Imberger, J. (2001). Laboratory experiments on diapycnal mixing in stratified fluids. In ‘Aha Huliko'a Proceeds of Hawaiian Winter Workshop, Jan. 16–19, 2001, SOEST Special Publication, pp. 145–151. [182]Google Scholar
Batchelor, G. (1996). The Life and Legacy of G. I. Taylor. Cambridge: Cambridge University Press. [10, 123]Google Scholar
Batchelor, G. K. (1959). Small scale variations in convected quantities like temperature in a turbulent fluid. Part I. General discussion and the case of small conductivity. J. Fluid Mech., 5, 113–139CrossRefGoogle Scholar
Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press. [83, 274]Google Scholar
Belkin, I. M., Levitus, S., Antonov, J. and Malmberg, S.-A. (1998). Great salinity anomalies in the North Atlantic. Prog. Oceanogr., 41, 1–68. [367]CrossRefGoogle Scholar
Bell, T. H. (1975). Topographically generated internal waves in the open sea. J. Geophys. Res., 80, 320–327. [41, 74, 325]CrossRefGoogle Scholar
Bénard, H. (1900). Les tourbillons cellulaires dans une nappe liquide. Revue Gén. Sci. Pur. Appl., 11, 1261–1271 and 1309–1328. [115]Google Scholar
Benielli, D. and Sommeria, J. (1998). Excitation and breaking of internal gravity waves by parametric instability. J. Fluid Mech., 374, 117–144. [154, 156]CrossRefGoogle Scholar
Bernal, L. P. and Roshko, A. (1986). Streamwise vortex structure in plane mixing layers. J. Fluid Mech., 170, 499–525. [105]CrossRefGoogle Scholar
Bidokhti, A. A. and Tritton, D. J. (1992). The structure of a turbulent free shear layer in a rotating fluid. J. Fluid Mech., 241, 469–502. [113]CrossRefGoogle Scholar
Booker, J. R. and Bretherton, F. P. (1967). The critical layer for internal waves in a shear flow. J. Fluid Mech., 27, 513–539. [161]CrossRefGoogle Scholar
Bormans, M. and Garrett, C. (1989). A simple criterion for gyre formation by the surface outflow from a strait, with application to the Alboran Sea. J. Geophys. Res., 94, 12637–12644. [321]CrossRefGoogle Scholar
Bouruet-Aubertot, P. and Thorpe, S. A. (1999). Numerical experiments on internal gravity waves in an accelerating shear flow. Dyn. Atmosph. Oceans, 29, 41–63. [160]CrossRefGoogle Scholar
Bowden, K. F. (1965). Horizontal mixing in the sea due to a shearing current. J. Fluid Mech., 21, 83–95. [287, 288]CrossRefGoogle Scholar
Bowden, K. F. and Fairbairn, L. A. (1956). Measurements of turbulent fluctuations and Reynolds stresses in a tidal current. Proc. R. Soc. Lond., A237, 422–438. [270]CrossRefGoogle Scholar
Bowen, A. J. and Holman, R. A. (1989). Shear instabilities of the mean longslope current 1: Theory. J. Geophys. Res., 94, 18023–18030. [298]CrossRefGoogle Scholar
Boyer, D. L. and Zhang, X. (1990). Motion of oscillatory currents past topography. J. Phys. Oceanogr. 20, 1425–1448. [325]2.0.CO;2>CrossRefGoogle Scholar
Breeding, R. J. (1971). A non-linear investigation of critical levels for internal atmospheric gravity waves. J. Fluid Mech., 50, 545–563. [162]CrossRefGoogle Scholar
Bretherton, F. P. (1966). The propagation of groups of internal gravity waves in a shear flow. Quart. J. R. Meteorol. Soc., 92, 466–480. [161]CrossRefGoogle Scholar
Bretherton, F. P. and Garrett, C. J. R. (1968). Wavetrains in inhomogeneous moving media. Proc. R. Soc. Lond., A302, 529–554. [63]CrossRefGoogle Scholar
Brighton, P. M. M. (1978). Strongly stratified flow past three-dimensional obstacles. Quart. J. R. Meteorol. Soc., 104, 289–307. [324, 337]CrossRefGoogle Scholar
Briscoe, M. G. (1999). Short-term directional variability of the continuum range in the deep-ocean wave field. In Dynamics of oceanic internal gravity waves, II, Proceedings of Hawaiian Winter Workshop, ed. , P. Müller and , D. HendersonSOEST Special Publication, pp. 169–172. [67]Google Scholar
Brocchini, M. and Peregrine, D. H. (2001). The dynamics of strong turbulence at a free surface. Part 1. Description. J. Fluid Mech., 449, 225–254. [232]CrossRefGoogle Scholar
Broecker, W. (1991). The great ocean conveyer. Oceanography, 4, 79–89. [370]CrossRefGoogle Scholar
Broutman, D. (1986). On internal wave caustics. J. Phys. Oceanogr., 16, 1625–1635. [151]2.0.CO;2>CrossRefGoogle Scholar
Broutman, D. and Grimshaw, R. (1988). The energetics of the interaction between short small-amplitude internal waves and near inertial waves. J. Fluid Mech., 196, 93–106. [151]CrossRefGoogle Scholar
Broutman, D. and Young, W. R. (1986). On the interaction of small-scale oceanic internal waves with near-inertial waves. J. Fluid Mech., 166, 341–358. [69, 151, 165]CrossRefGoogle Scholar
Browand, F. K. and Winant, C. D. (1973). Laboratory observations of shear-layer instability in a stratified fluid. Boundary Layer Meteorol., 5, 67–77. [109]CrossRefGoogle Scholar
Brown, G. L. and Roshko, A. (1974). On the density effects and large structure in turbulent mixing layers, J. Fluid Mech., 64, 775–816. [24, 98, 105]CrossRefGoogle Scholar
Brown, S. N. and Stewartson, K. (1980). On the algebraic decay of disturbances in a stratified linear shear flow. J. Fluid Mech., 100, 811–816. [90]CrossRefGoogle Scholar
Browning, K. A. (1971). Structure of the atmosphere in the vicinity of large-amplitude Kelvin–Helmholtz billows. Quart. J. R. Meteorol. Soc., 97, 283–299. [83]CrossRefGoogle Scholar
Browning, K. A. and Watkins, C. D. (1970). Observations of clear-air turbulence by high powered radar. Nature, 227, 260–263. [103]CrossRefGoogle Scholar
Browning, K. A., Bryant, G. W., Starr, J. R. and Axford, D. N. (1973). Air motion within Kelvin–Helmholtz billows determined from simultaneous Doppler radar and aircraft measurements. Quart. J. R. Meteorol. Soc., 99, 619–638. [83]CrossRefGoogle Scholar
Brügge, B. (1995). Near-surface mean circulation and kinetic energy in the central North Atlantic from drifter data. J. Geophys. Res., 100, 20543–20554. [344]CrossRefGoogle Scholar
Brumley, B. H. and Jirka, G. H. (1987). Near surface turbulence in a grid stirred tank. J. Fluid Mech., 183, 235–263. [230]CrossRefGoogle Scholar
Brumley, B. H. and Jirka, G. H. (1988). Air–sea transfer of slightly soluble gases: turbulence, interfacial processes and conceptual models. Physico-chemical Hyrdodynamics, 10, 295–319. [230]Google Scholar
Bryden, H. L. (1983). The Southern Ocean. In Eddies in Marine Science, ed. , A. R. Robinson. Berlin: Springer-Verlag, pp. 265–277. [353]Google Scholar
Bryden, H. L. and Imawaki, S. (2001). Ocean heat transport. In Ocean Circulation and Climate, ed. , G. Siedler, , J. Church and , J. Gould, chapter 6.1. London: Academic Press. [19]Google Scholar
Bryden, H. and Nurser, A. J. G. (2003). Effects of strait mixing on ocean stratification. J. Phys. Oceanogr., 33, 1870–1872. [42, 332]2.0.CO;2>CrossRefGoogle Scholar
Burrows, M. and Thorpe, S. A. (1999). Drifter observations of the Hebrides slope current and nearby circulation patterns. Ann. Geophysicae, 17, 280–302CrossRefGoogle Scholar
Caldwell, D. R. and Chriss, T. M. (1979). The viscous boundary layer at the sea floor. Science, 205, 1131–1132. [270]CrossRefGoogle Scholar
Caldwell, D. R. and Elliott, W. P. (1971). Surface stresses produced by rainfall. J. Phys. Oceanogr., 1, 145–148. [244]2.0.CO;2>CrossRefGoogle Scholar
Cardwell, D. S. L. (1989). James Joule, a Biography. Manchester: Manchester University Press. [4]Google Scholar
Carnevale, G. F., Orlandi, P., Briscolini, M. and Kloosterziel, R. C. (2001). Simulations of internal-wave breaking and wave-packet propagation in the thermocline. In ‘Aha Huliko'a Proceedings of the Hawaiian Winter Workshop, ed. , P. Müller and , D. Henderson. University of Hawaii at Manoa, Jan. 2001, pp. 153–174. [151]Google Scholar
Carter, G. S. and Gregg, M. C. (2002). Intense, variable mixing near the head of the Monteray submarine canyon. J. Phys. Oceanogr., 32, 3145–3165. [177, 323]2.0.CO;2>CrossRefGoogle Scholar
Caughey, S. J. and Palmer, S. G. (1979). Some aspects of turbulent structure through the depth of the convective boundary layer. Quart. J. R. Met. Soc., 105, 811–827. [247, 249]CrossRefGoogle Scholar
Caulfield, C. and Peltier, W. (2000). Anatomy of the mixing transition in homogeneous and stratified free shear layers. J. Fluid Mech., 413, 1–47. [92, 105]CrossRefGoogle Scholar
Caulfield, C. P. and Woods, A. W. (1998). Turbulent gravitational convection from a point source in a non-uniformly stratified environment. J. Fluid Mech., 360, 229–248. [125]CrossRefGoogle Scholar
Cerretelli, C. and Williamson, C. H. K. (2003). The physical mechanism for vortex merging. J. Fluid Mech., 475, 79–100. [98]CrossRefGoogle Scholar
Chapman, D. and Browning, K. A. (1997). Radar observations of wind-shear splitting within evolving Kelvin–Helmholtz billows. Quart. J. R. Met. Soc., 123, 1433–1439. [103]CrossRefGoogle Scholar
Chapman, D. and Browning, K. A. (1999). Release of potential shearing instability in warm fronts. Quart. J. R. Meteorol. Soc., 125, 2265–2289. [103]CrossRefGoogle Scholar
Cheyney, C. E. and Richardson, P. L. (1976). Observed decay of a cyclonic Gulf Stream ring. Deep-Sea Res., 23, 143–155. [348]Google Scholar
Chelton, D. B. and Schlax, M. G. (1996). Global observations of oceanic Rossby waves. Science, 272, 234–238. [365]CrossRefGoogle Scholar
Chomaz, J. M., Bonneton, P. and Hopfinger, E. J. (1993). Structure of the near wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech., 254, 1–21. [211]CrossRefGoogle Scholar
Chriss, T. M. and Caldwell, D. R. (1982). Evidence for the influence of form drag on bottom boundary layer flow. J. Geophys. Res., 87, 4148–4154. [275]CrossRefGoogle Scholar
Church, J. A and Gregory, J. M. (2001). Sea level change. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turikian, vol. 5. London: Academic Press, pp. 2599–2604. [367]Google Scholar
Clarke, L. B. and Werner, B. T. (2004). Tidally modulated occurrence of megaripples in a saturated surf zone. J. Geophys. Res., 109(C1), doi:10.1029/2002JC001522. [297]CrossRefGoogle Scholar
Cooper, L. N. (1967). Stratification in the deep ocean. Sci. Prog., Oxford, 55, 73–90. [81, 191]Google Scholar
Corliss, J. B., Dymond, J., Gordon, L. I., Edmonds, J. M., Heezen, R. P., Ballard, R. B., Green, K., Williams, D., Bainbridge, A., Crane, K. and Andel, T. H. (1979). Submarine thermal springs on the Galápagos Rift. Science, 203, 1073–1083. [116]CrossRefGoogle ScholarPubMed
Cortesi, A. B., Smith, B. L., Yadigaroglu, G. and Banerjee, S. (1999). Numerical investigation of the entrainment and mixing in neutral and stably-stratified mixing layers. Phys. Fluids, 11, 162–185. [92]CrossRefGoogle Scholar
Cox, D. T., Kobyashi, K. N. and Okayasu, A. (1996). Bottom shear stress in the surf zone. J. Geophys. Res., 101, 14337–14348. [298]CrossRefGoogle Scholar
Crease, J. (1962). Velocity measurements in the deep water of the western North Atlantic. J. Geophys. Res., 67, 3173–3176. [340]CrossRefGoogle Scholar
Csanady, G. T. (1973). Turbulent Diffusion in the Environment. Dordrecht: Reidel. [253, 264]CrossRefGoogle Scholar
Csanady, G. T. (1994). Vortex pair model of Langmuir circulation. J. Mar. Res., 52, 559–581. [234, 236, 253]CrossRefGoogle Scholar
Csanady, G. T. (2001). Air–Sea Interaction. Cambridge: Cambridge University Press. [228]CrossRefGoogle Scholar
Cummins, P. F., Vagle, S., Armi, L. and Farmer, D. M. (2003). Stratified flow over topography: upstream influence and generation of nonlinear internal waves. Proc. R. Soc. Lond., A459, 1467–1487. [74, 336]CrossRefGoogle Scholar
Dalziel, S. (1991). Two-layer hydraulics; a functional approach. J. Fluid Mech., 223, 135–163. [327]CrossRefGoogle Scholar
D'Asaro, E. A. (1988). Generation of submesoscale vortices: a new mechanism. J. Geophys. Res., 93, 6685–6693. [321]CrossRefGoogle Scholar
D'Asaro, E. A. (2001). Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr., 31, 3530–3537. [246]2.0.CO;2>CrossRefGoogle Scholar
D'Asaro, E. A. and Lien, R.-C. (2000). Lagrangian measurements of waves and turbulence in stratified flows. J. Phys. Oceanogr., 30, 641–655. [171, 337]2.0.CO;2>CrossRefGoogle Scholar
Davey, A. and Reid, W. A. (1977). On the stability of stratified viscous Couette flow: Part 1. Constant buoyancy frequency. J. Fluid Mech., 80, 509–526. [90]CrossRefGoogle Scholar
Davis, R. E. (1987). Modelling eddy transport of passive tracers. J. Mar Res., 45, 635–666. [363, 364]CrossRefGoogle Scholar
Davis, R. E. (1991a). Observing the general circulation with floats. Deep-Sea Res., 38, S531–S571. [33, 34, 364]CrossRefGoogle Scholar
Davis, R. E. (1991b). Lagrangian ocean studies. Ann. Rev. Fluid Mech., 23, 43–64. [34, 261, 342, 364]CrossRefGoogle Scholar
Davis, R. E. (1998). Preliminary results from directly measuring mid-depth circulation in the tropical and South Pacific. J. Gephys. Res., 103, 24619–24639. [363]CrossRefGoogle Scholar
Davis, R. E. and Acrivos, A. (1967). The stability of oscillatory internal waves. J. Fluid Mech., 30, 723–736. [154, 155]CrossRefGoogle Scholar
Deacon, M. (1971). Scientists and the Sea, 1650–1900. London: Academic Press. [326]Google Scholar
Deane, G. B. (1997). Sound generation and air entrainment by breaking waves in the surf zone. J. Acoust. Soc. Amer., 102, 2671–2689. [293]CrossRefGoogle Scholar
Deane, G. B. and Stokes, M. D. (1998). Air entrainment processes and bubble size distributions in the surf zone. J. Phys. Oceanogr., 29, 1393–1407. [239]2.0.CO;2>CrossRefGoogle Scholar
Deane, G. B. and Stokes, M. D. (2002). Scale dependence of bubble creation mechanisms in breaking waves. Nature, 418, 839–844. [239]CrossRefGoogle ScholarPubMed
Delisi, D. P. and Dunkerton, T. J. (1989). Laboratory observations of gravity wave critical-layer flows. PAGEOPH, 130, 445–461. [163]CrossRefGoogle Scholar
Denman, K. L. and Gargett, A. E. (1988). Multiple thermoclines are barriers to vertical exchange in the subarctic Pacific during SUPER, May 1984. J. Mar. Res., 46, 77–103. [184]CrossRefGoogle Scholar
Silva, I. P. D., Fernando, H. J. S., Eaton, F. and Herbert, D. (1996). Evolution of Kelvin–Helmholtz billows in nature and laboratory. Earth Planet. Sci. Lett., 143, 217–231. [111]CrossRefGoogle Scholar
Dewey, R. K., Crawford, W. R., Gargett, A. E. and Oakey, N. S. (1987). A microstructure instrument for profiling oceanic turbulence in coastal boundary layers. J. Atmos. Oceanic Technol., 4, 288–297. [173]2.0.CO;2>CrossRefGoogle Scholar
Dhanak, M. R. and Holappa, K. (1999). An autonomous ocean turbulence measurement platform. J. Atmos. Oceanic Technol., 16, 1506–1518. [173]2.0.CO;2>CrossRefGoogle Scholar
Dickson, R. E. and McCave, I. N. (1986). Nepheloid layers on the continental slopes west of the Porcupine Bank. Deep-Sea Res., 33, 791–818. [226]CrossRefGoogle Scholar
Dickson, R. R. (1983). Global summaries and intercomparisons. Flow statistics from long-term current meter moorings. In Eddies in Marine Science, ed. , A. R. Robinson. Berlin: Springer-Verlag, pp. 278–353. [343]Google Scholar
Dickson, R. R., Gould, W. J., Gurbett, P. A. and Killworth, P. D. (1982). A seasonal signal in ocean currents to abyssal depths. Nature, 295, 193–198. [346]CrossRefGoogle Scholar
Dickson, R. R., Meineke, J., Malmberg, S.-A. and Lee, A. J. (1988). The ‘great salinity anomaly’ in the northern North Atlantic. Prog. Oceanogr., 20, 103–151. [367]CrossRefGoogle Scholar
Dillon, T. M. (1982). Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J. Phys. Oceanogr., 87, 9601–9613. [176]Google Scholar
Donelan, M., Longuet-Higgins, M. S. and Turner, J. S. (1972). Periodicity in whitecaps. Nature, 239, 449–451. [236]CrossRefGoogle Scholar
Donlon, C. J., Eifler, W. and Nightindale, T. J. (1999). The thermal skin temperature of the ocean at high wind speed. Proc. IGARSS Conf.Hamberg, Germany. [17]Google Scholar
Dörnbrack, A. (1998). Turbulent mixing by breaking gravity waves. J. Fluid Mech., 375, 113–141. [163]CrossRefGoogle Scholar
Doron, K. and Sutherland, B. R. (2003). Internal waves generated from a turbulent mixed region. Phys. Fluids, 15, 499–498Google Scholar
Doron, P., Bertuccioli, L., Katz, J. and Osborn, T. R. (2001). Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. J. Phys. Oceanogr., 31, 2108–2134. [277]2.0.CO;2>CrossRefGoogle Scholar
Drake, D. E. (1971). Suspended sediment and thermal stratification in the Santa Barbara Channel. Deep-Sea Res., 18, 763–769. [226]Google Scholar
Drazin, P. G. and Howard, L. N. (1966). Hydrodynamic stability of parallel flow of inviscid fluid. In Advances in applied mechanics, ed. , G. Kuerti, vol. 7. New York, Academic Press, pp. 1–89. [90]Google Scholar
Drazin, P. G. and Reid, W. H. (1981). Hydrodynamic Stability. Cambridge: Cambridge University Press. [83, 90, 113, 118, 276]Google Scholar
Duncan, J. H. (1981). An investigation of breaking waves produced by a towed hydrofoil. Proc. R. Soc. Lond., A377, 331–348. [233]CrossRefGoogle Scholar
Dunkerton, T. J. (1997). Shear instability of internal inertia-gravity waves. J. Atmos. Sci., 54, 1628–1641. [149]2.0.CO;2>CrossRefGoogle Scholar
Dunkerton, T. J., Delisi, D. P. and Lelong, M.-P. (1998). Alongslope current generated by obliquely incident internal gravity waves. Geophys. Res. Letts., 25, 3871–3874. [315]CrossRefGoogle Scholar
Dyer, K. K. and Huntley, D. A. (1999). The origin, classification and modelling of sand banks and ridges. Continental Shelf Res., 19, 1285–1330. [281]CrossRefGoogle Scholar
Eckart, C. (1948). An analysis of the stirring and mixing in incompressible fluids. J. Mar. Res., 7, 265–275. [20]Google Scholar
Edwards, K. A., MacCready, P., Moum, J. N., Pawlak, G., Klymak, J. and Perlin, A. (2004). Form drag and mixing due to tidal flow past a sharp point. Submitted to J. Phys. Oceanogr., 34, 1297–1312. [322]2.0.CO;2>CrossRefGoogle Scholar
Egbert, G. D. and Ray, R. D. (2001). Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775–778. [42]CrossRefGoogle Scholar
Ekman, V. W. (1904). On dead water. Sci. Results Norw. North Polar Expedi.1893–96, 5(15). [45]Google Scholar
Ekman, V. W. (1905). On the influence of the Earth's rotation on ocean currents. Arch. Math. Astron. Phys., 2, no. 11. [220]Google Scholar
Eliassen, A. and Palm, E. (1961). On the transfer of energy in stationary mountain waves. Geofs. Publ. Oslo, 22(3), 1–23. [161]Google Scholar
Elliott, A. J. (1984). Measurements of the turbulence in an abyssal boundary layer. J. Phys. Oceanogr., 14, 1778–1786. [221]2.0.CO;2>CrossRefGoogle Scholar
Ellison, T. H. (1957). Turbulent transport of heat and momentum from an infinite rough plane. J. Fluid Mech., 2, 456–466. [182]CrossRefGoogle Scholar
Emery, W. J., Lee, W. G. and Magaard, L. (1984). Geographic and seasonal distribution of Brunt-Väisälä frequency and Rossby radii in the North Pacific and North Atlantic. J. Phys. Oceanogr., 14, 294–317. [114]2.0.CO;2>CrossRefGoogle Scholar
England, M. H. (2001). Tracers and large scale models. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian, vol. 6. London: Academic Press, pp. 3009–3020. [357]Google Scholar
Eriksen, C. C. (1978). Measurements and models of finestructure, internal gravity waves, and wave breaking in the deep ocean. J. Geophys. Res., 83, 2989–3009. [77, 201, 202, 205]CrossRefGoogle Scholar
Eriksen, C. C. (1982). Observations of internal wave reflection off sloping bottoms. J. Geophys. Res., 87, 525–538. [303]CrossRefGoogle Scholar
Eriksen, C. C. (1985). Implications of ocean bottom reflection for internal wave spectra and mixing. J. Phys. Oceanogr., 15, 1145–1156. [307]2.0.CO;2>CrossRefGoogle Scholar
Eriksen, C. C. (1998). Internal wave reflection and mixing at Fieberling Guyot. J. Geophys. Res., 103, 2977–2994. [307, 312]CrossRefGoogle Scholar
Ertel, H. (1942). Ein neuer hydrodynamischer Wirbelsalz. Meteorol. Z., 50, 277–281. [78]Google Scholar
Estrada, M. and Berdalet, E. (1998). Effects of turbulence on phytoplankton. In Physiological Ecology of Harmful Algal Blooms. ed. , D. M. Anderson, , A. D. Cambella and , G. M. Hallegraeff. NATO ASI Series, vol. G41, pp. 601–618. [267]Google Scholar
Etling, D. and Brown, R. A. (1993). Roll vortices in the planetary boundary layer: a review. Boundary Layer Meteorol., 65, 215–248. [349]CrossRefGoogle Scholar
Faller, A. J. and Auer, S. J. (1988). The role of Langmuir circulation in the dispersion of surface tracers. J. Phys. Oceanogr., 18, 1108–1123. [264]2.0.CO;2>CrossRefGoogle Scholar
Faller, A. J. and Caponi, E. A. (1978). Laboratory studies of wind-driven Langmuir circulation. J. Geophys. Res., 83, 3617–3633. [255]CrossRefGoogle Scholar
Farmer, D. M. and Armi, L. (1986). Maximal two-layer flow over a sill and through the combination of a sill and a contraction with barotropic flow. J. Fluid Mech., 164, 53–76. [327, 329]CrossRefGoogle Scholar
Farmer, D. M. and Armi, L. (1999a). Stratified flow over topography: the role of small-scale entrainment and mixing in flow establishment. Proc. R. Soc. Lond., A455, 3221–3258. [334, 335]CrossRefGoogle Scholar
Farmer, D. M. and Armi, L. (1999b). The generation and trapping of solitary waves over topography. Science, 283, 188–190. [336]CrossRefGoogle Scholar
Farmer, D. M. and Freeland, H. (1983). The physical oceanography of fjords. J. Phys. Oceanogr., 12, 147–220. [332, 333]Google Scholar
Farmer, D. M. and Li, M. (1995). Patterns of bubble clouds organised by Langmuir circulation. J. Phys. Oceanogr., 25, 1425–1440. [253, 257]2.0.CO;2>CrossRefGoogle Scholar
Farmer, D. M. and Smith, J. D. (1979). Generation of lee waves over the sill in Knight Inlet. In Fjord Oceanography, ed. , H. J. Freeland, , D. M. Farmer and , C. D. Levings. London: Plenum Press, pp. 259–269. [74, 333]Google Scholar
Farmer, D. M. and Smith, J. D. (1980). Tidal interaction of stratified flow with a sill in Knight Inlet. Deep-Sea Res. A, 27, 239–254. [333]CrossRefGoogle Scholar
Farmer, D. M., Crawford, G. B. and Osborn, T. R. (1987). Temperature and velocity microstructure caused by swimming Fish. Limnol. Oceanogr., 32, 978–983. [268]CrossRefGoogle Scholar
Farmer, D. M, Vagel, S. and Li, M. (2001). Bubble and temperature fields in Langmuir circulations. In Fluid Mechanics and the Environment: Dynamical Approaches, ed. , J. L. Lumley. New York: Springer, pp. 95–105. [267]Google Scholar
Fer, I., Lemmin, U. and Thorpe, S. A. (2001). Cascading of water down the sloping sides of a deep lake in winter. Geophys. Res. Letts., 28, 2093–2096. [318]CrossRefGoogle Scholar
Fer, I., , Lemmin U. and Thorpe, S. A. (2002). Winter cascading of cold water in Lake Geneva. J. Geophys. Res., 107(C6), 10.1029/2001JC000828, 13-1 to 16. [319]CrossRefGoogle Scholar
Ferron, B., Mercier, H., Speer, K., Gargett, A. and Polzin, K. (1998). Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28, 1929–1945. [176, 332]2.0.CO;2>CrossRefGoogle Scholar
Ffield, A. and Gordon, A. L. (1996). Tidal mixing signatures in the Indonesian Seas. J. Phys. Oceanogr., 26, 1924–1937. [75]2.0.CO;2>CrossRefGoogle Scholar
Fincham, A. M., Maxworthy, T. and Spedding, G. R. (1996). Energy dissipation and vortex structure in freely decaying, stratified grid turbulence. Dynamics of Atmospheres Oceans, 23, 155–169. [193, 194, 196]CrossRefGoogle Scholar
Finnigan, J. (2000). Turbulence in plant canopies. Ann. Rev. Fluid Mech., 32, 519–571. [282]CrossRefGoogle Scholar
Fischer, H. B. (1973). Longitudinal dispersion and turbulent mixing in open-channel flow. Ann. Rev. Fluid Mech., 5, 59–78. [287]CrossRefGoogle Scholar
Fjørtoft, R. (1950). Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex. Geofys. Publ. Oslo, 17(6), 1–52. [85]Google Scholar
Flament, P., Armi, L. and Washburn, L. (1985). The evolving structure of an upwelling filament. J. Geophys. Res., 90, 11765–11778. [350]CrossRefGoogle Scholar
Flament, P., Lumpkin, R., Tournadre, J. and Armi, L. (2001). Vortex pairing in an unstable anticyclonic shear flow: discrete subharmonics of one pendulum day. J. Fluid Mech., 440, 401–409. [355]CrossRefGoogle Scholar
Fleury, M. and Lueck, R. G. (1992). Microstructure in and around a double-diffusive interface. J. Phys. Oceanogr., 22, 701–718. [139]2.0.CO;2>CrossRefGoogle Scholar
Forseka, S. U., Fernando, H. J. S. and Heijst, G. J. F. (1998). Evolution of an isolated turbulent region in a stratified fluid. J. Geophys. Res., 103, 24857–24868. [169]CrossRefGoogle Scholar
Foster, T. D. (1971). Intermittent convection. Geophys. Fluid Mech., 2, 201–217. [120]Google Scholar
Foster, T. D. and Carmack, E. C. (1976). Temperature and salinity structure in the Weddell Sea. J. Phys. Oceanogr., 6, 36–44. [137]2.0.CO;2>CrossRefGoogle Scholar
Franz, G. J. (1959). Splashes as sources of sound in liquids. J. Acoust. Soc. Am., 31, 1080–1096. [245]CrossRefGoogle Scholar
Freeland, H., Rhines, P. and Rossby, T. (1975). Statistical observations of the trajectories of neutrally buoyant floats in the North Atlantic. J. Mar. Res., 33, 383–404. [341, 365]Google Scholar
Fringer, O. B. and Street, R. L. (2003). The dynamics of breaking progressive interfacial waves. J. Fluid Mech., 494, 319–353. [109, 146, 201]CrossRefGoogle Scholar
Fritts, D. C., Garten, J. R. and Andreassen, O. (1994). Gravity wave breaking in two and three dimensions. 2. Three-dimensional evolution and instability structure. J. Geophys. Res., 99, 8109–8124. [164]CrossRefGoogle Scholar
Fritts, D. C., Palmer, T. L., Andreassen, O. and Lie, J. (1996a). Evolution and breakdown of Kelvin–Helmholtz billows in stratified compressible flows. Part 1: comparison of two- and three-dimensional flows. J. Atmos. Sci., 53, 3173–3191. [92]2.0.CO;2>CrossRefGoogle Scholar
Fritts, D. C., Garten, J. F. and Andreassen, O. (1996b). Wave breaking and transition to turbulence in stratified shear flows. J. Atmos. Sci., 53, 1057–1085. [164]2.0.CO;2>CrossRefGoogle Scholar
Fritts, D. C., Arendt, S. and Andreassen, Ø. (1998). Vorticity dynamics in a breaking internal gravity wave. Part 2. Vortex interactions and transition to turbulence. J. Fluid Mech., 367, 47–65. [10, 164]CrossRefGoogle Scholar
Ganachaud, A. and Wunsch, C. (2000). Improved estimates of global ocean circulation, heat flux and mixing from hydrographic data. Nature, 408, 453–457. [42]CrossRefGoogle Scholar
Garcez Faria, A. F., Thornton, E. B., Stanton, T. P., Soares, C. V. and Lippman, T. C. (1998). Vertical profiles of longstream currents and related bed shear stress and bottom roughness. J. Geophys. Res., 103, 3217–3232. [298]CrossRefGoogle Scholar
Gargett, A. E. (1978). Microstructure and fine-structure in an upper ocean frontal region. J. Geophys. Res., 83, 5123–5134. [179]CrossRefGoogle Scholar
Gargett, A. E. (1979). Turbulence measurements through a train of breaking internal waves in Knight Inlet, BC. In Fjord Oceanography, NATO Conference Series IV, Marine Sciences, ed. , H. J. Freeland, , D. M. Farmer and , C. D. Levings. New York: Plenum Press, pp. 277–281. [333]Google Scholar
Gargett, A. E. (1988). The scaling of turbulence in the presence of stable stratification. J. Geophys. Res., 93, 5021–5036. [182]CrossRefGoogle Scholar
Gargett, A. E. (1989). Ocean turbulence. Annu. Rev. Fluid Mech., 21, 419–451. [171]CrossRefGoogle Scholar
Gargett, A. E. (1999). Velcro measurements of turbulent kinetic energy dissipation rate, ε. J. Atmos. Oceanic Technol., 16, 1973–1993. [177, 178]2.0.CO;2>CrossRefGoogle Scholar
Gargett, A. E. and Moum, J. N. (1995). Mixing efficiencies in turbulent tidal fronts: results from direct and indirect measurements of density flux. J. Phys. Oceanogr., 25, 2583–2608. [182]2.0.CO;2>CrossRefGoogle Scholar
Gargett, A. E. and Schmitt, R. W. (1982). Observations of salt fingers in the coastal waters of the eastern North Pacific. J. Geophys. Res., 87, 8017–8029. [137]CrossRefGoogle Scholar
Gargett, A. E., Osborn, T. R. and Nasmyth, P. W. (1984). Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech., 144, 231–280. [173, 175, 184, 337]CrossRefGoogle Scholar
Garrett, C. (1982). On the parameterization of diapycnal fluxes due to double-diffusive intrusions. J. Phys. Oceanogr., 12, 952–959. [23]2.0.CO;2>CrossRefGoogle Scholar
Garrett, C. (1983). On the initial streakiness of a dispersing tracer in two- and three-dimensional turbulence. Dyn. Atmos. Oceans, 7, 265–277. [360, 361]CrossRefGoogle Scholar
Garrett, C. (2000). The dynamic ocean. In Perspectives in Fluid Dynamics, ed. , G. K. Batchelor, , H. K. Moffatt and , M. G. Worster. Cambridge: Cambridge University Press, pp. 507–556. [34]Google Scholar
Garrett, C. and Munk, W. H. (1972a). Space-time scales of internal waves. Geophys. Fluid Dyn., 2, 225–264. [64]CrossRefGoogle Scholar
Garrett, C. and Munk, W. (1972b). Oceanic mixing by breaking internal waves. Deep-Sea Res., 19, 823–832. [169]Google Scholar
Garrett, C. J. R. and Munk, W. H. (1975). Space-time scales of internal waves. A progress report. J. Geophys. Res., 80, 291–297. [64, 67]CrossRefGoogle Scholar
Garrett, C., MacCready, P. and Rhines, P. (1993). Bounday mixing and arrested Ekman layers: rotating stratified flow near a sloping boundary. Ann. Rev. Fluid Mech., 25, 291–323. [317]CrossRefGoogle Scholar
Gaspar, P. and Wunsch, C. (1989). Estimates from altimeter data of barotropic Rossby waves in the Northwaestern Atlantic. J. Phys. Oceanogr., 19, 1821–1844. [367]2.0.CO;2>CrossRefGoogle Scholar
Gemmrich, J. R. and Farmer, D. M. (1999). Observations of the scale and occurrence of breaking surface waves. J. Phys. Oceanogr., 29, 2595–2606. [237, 239]2.0.CO;2>CrossRefGoogle Scholar
Gemmrich, J. R. and Farmer, D. M. (2004). Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 34, 1067–1086. [237]2.0.CO;2>CrossRefGoogle Scholar
Gemmrich, J. R. and Haren, H. (2001). Thermal fronts generated by internal waves propagating obliquely along the continental slope. J. Phys. Oceanogr., 31, 649–655. [315]2.0.CO;2>CrossRefGoogle Scholar
George, R., Flick, R. E. and Guza, R. T. (1994). Observations of turbulence in the surf zone. J. Geophys. Res., 99, 801–810. [297]CrossRefGoogle Scholar
Gerkema, T. (2002). Application of an internal tide generation model to baroclinic Spring-Neap cycle. J. Geophys. Res., 107(C9) D10, 10.1029/2001 JC000932. [165]CrossRefGoogle Scholar
Gerkema, T. and Shira, V. (2005). Near-inertial waves on the non-traditional beta plane. J. Geophys. Res. 110(C1) 10.1029/2004JC002519. [70]CrossRefGoogle Scholar
Geyer, W. R. and Signell, R. P. (1990). Measurements of tidal flow around a headland with shipboard acoustic Doppler current profiler. J. Geophys. Res., 95, 3189–3197. [322]CrossRefGoogle Scholar
Ghisalberti, M. and Nepf, H. (2002). Mixing layers and coherent structures in vegetated acquatic flows. J. Geophys. Res., 107(C2), 10.1029/2001JC000871. [282]CrossRefGoogle Scholar
Gibson, C. (1988). Evidence and consequences of fossil turbulence in the ocean. In Small-Scale Turbulence and Mixing in the Ocean, ed. , J. C. J. Nihoul and , B. M. Jamart. Amsterdam: Elsevier, pp. 319–334. [184]Google Scholar
Gibson, C. H. and Swartz, W. H. (1963). Detection of conductivity fluctuations in a turbulent flow field. J. Fluid Mech., 16, 357–364. [180]CrossRefGoogle Scholar
Gibson, C. H. and Thomas, W. H. (1995). Effects of turbulence intermittency on growth inhibition of a red tide dinoflagellateGonyaulax polyedra Stein. J. Geophys. Res., 100, 24841–24846. [268]CrossRefGoogle Scholar
Gilbert, D. and Garrett, C. J. R. (1989). Implications for ocean mixing of internal wave scattering off irregular topography. J. Phys. Oceanogr., 19, 1716–1729. [311]2.0.CO;2>CrossRefGoogle Scholar
Gill, A. E. (1982). Atmosphere–Ocean Dynamics. London: Academic Press. [3, 7, 8, 16, 45, 63, 65, 73, 114, 219, 229, 314, 326, 348, 377]Google Scholar
Gill, A. E., Green, J. S. A. and Simmons, A. J. (1974). Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res., 21, 499–528. [65, 345]Google Scholar
Gnanadesikan, A. (1999). A simple predictive model for the structure of the ocean pycnocline. Science, 283, 2077–2079. [44]CrossRefGoogle ScholarPubMed
Goldstein, S. (1931). On the stability of superposed streams of fluids of different densities. Proc. R. Soc. Lond., A132, 524–548. [82]CrossRefGoogle Scholar
Goodman, L. (1990). Acoustic scattering from ocean microstructure. J. Geophys. Res., 95, 11557–11573. [188]CrossRefGoogle Scholar
Graf, G. (1989). Benthic-pelagic coupling in a deep-sea benthic community. Nature, 341, 437–439. [219]CrossRefGoogle Scholar
Graf, W. H. (1998). Fluvial Hydrodynamics. Chichester: J. Wiley and Sons. [279]Google Scholar
Grant, H. L., Moilliet, A. and Vogel, W. M. (1968). Some observations of turbulence in and above the thermocline. J. Fluid Mech., 34, 443–448. [172]CrossRefGoogle Scholar
Grant, H. L., Stewart, R. W. and Moilliet, A. (1962). Turbulence spectra from a tidal channel. J. Fluid Mech., 12, 241–268. [28]CrossRefGoogle Scholar
Grant, W. D. and Madsen, O. S. (1986). The continental shelf bottom boundary layer. Ann. Rev. Fluid Mech., 18, 265–305. [281]CrossRefGoogle Scholar
Green, T. and Houk, D. F. (1979). The mixing of rain with near-surface water. J. Fluid Mech., 90, 569–588. [243, 245]CrossRefGoogle Scholar
Gregg, M. C. (1976). Temperature and salinity microstructure in the Pacific Equatorial Undercurrent. J. Geophys. Res., 81, 1180–1196. [179]CrossRefGoogle Scholar
Gregg, M. C. (1980). Microstructure patches in the thermocline. J. Phys. Oceanogr., 10, 915–943. [186, 187]2.0.CO;2>CrossRefGoogle Scholar
Gregg, M. C. (1987). Diapycnal mixing in a thermocline: a review. J. Geophys. Res., 92, 5249–5286. [187]CrossRefGoogle Scholar
Gregg, M. C. (1989). Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 9686–9698. [205]CrossRefGoogle Scholar
Gregg, M. C. (1991). The study of mixing in the ocean: a brief history. Oceanography, April 1991, 39–45. [132]CrossRefGoogle Scholar
Gregg, M. C. (1999). Uncertainties and limitations in measuring ε and χT. J. Atmos. Oceanogr. Technol., 16, 1483–1490. [174, 175, 179]2.0.CO;2>CrossRefGoogle Scholar
Gregg, M. C. and Özsoy, E. (2002). Flow, water mass changes, and hydraulics in the Bosphorus. J. Geophys. Res., 107(C3), 10.1029/2000JC000485, (2002), 2-1–2-23. [329, 330]CrossRefGoogle Scholar
Gregg, M. C. and Sanford, T. B. (1988). The dependence of turbulent dissipation on stratification in a diffusively stable thermocline. J. Geophys. Res., 93, 12381–12392. [65, 184, 185]CrossRefGoogle Scholar
Gregg, M. C., D'Asaro, E. A., Shay, T. J. and Larson, N. (1986). Observations of persistent mixing and near-inertial internal waves. J. Phys. Oceanogr., 16, 856–885. [149, 173, 175, 182, 187]2.0.CO;2>CrossRefGoogle Scholar
Gregg, M. C., Özsoy, E. and Latif, M. A. (1999). Quasi-steady exchange flow in the Bosphorus. Geophys. Res. Letts., 26, 83–86. [329]CrossRefGoogle Scholar
Gregg, M. C., Sanford, T. B. and Winkel, D. P. (2003). Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513–515. [206, 371]CrossRefGoogle ScholarPubMed
Griffiths, R. W. and Hopfinger, E. J. (1984). The structure of mesoscale turbulence and horizontal spreading at ocean fronts. Deep-Sea Res., 31, 245–269. [195, 198]CrossRefGoogle Scholar
Grimshaw, R. H. J. (1978). Long, non-linear internal waves in channels of arbitrary cross-section. J. Fluid Mech., 86, 415–431. [87]CrossRefGoogle Scholar
Gross, T. F., Williams, A. J. III and Nowell, A. R. M. (1988). A deep-sea sediment transport storm. Nature, 331, 518–521. [226]CrossRefGoogle Scholar
Grue, J., Jensen, A., Rusås, P.-O. and Sveen, J. K. (2000). Breaking and broadening of internal solitary waves. J. Fluid Mech., 413, 181–217. [149]CrossRefGoogle Scholar
Guizien, K., Dohmen-Janssen, M. and Vittori, G. (2003). IDV bottom boundary layer modelling under combined wave and current: turbulent separation and phase lag effects. J. Geophys. Res., 108(C1), 3016, doi:10.1029/2001.JC001292. [277]CrossRefGoogle Scholar
Haidvogel, D. B. and Keffer, T. (1984). Tracer dispersal by mid-ocean mesoscale eddies, I. Emsamble statistics. Dyn. Atmos. Oceans, 8, 1–40. [360]CrossRefGoogle Scholar
Haigh, S. P. and Lawrence, G. A. (1999). Symmetric and non-symmetric Holmboe instabilities in an inviscid flow. Phys. Fluids, 11, 1459–1468. [110]CrossRefGoogle Scholar
Handler, R. A., Smith, G. B. and Leighton, R. I. (2001). The thermal structure of an air-water interface at low wind speeds. Tellus, 53A, 233–244. [255]CrossRefGoogle Scholar
Hara, T. and Mei, C. C. (1990). Centifugal instability of an oscillatory flow over periodic ripples. J. Fluid Mech., 217, 1–32. [276]CrossRefGoogle Scholar
Hasse, L. and Brown, R. A. (2001). The influence of mesoscale atmospheric processes. In Wind Stress over the Ocean, ed. , I. S. F. Jones and , Y. Toba. Cambridge: Cambridge University Press, pp. 218–231. [349]Google Scholar
Hasselmann, K. (1967). A criterion for nonlinear wave stability. J. Fluid Mech., 30, 737–739. [68]CrossRefGoogle Scholar
Haurwitz, B., Stommel, H. and Munk, W. H. (1959). On the thermal unrest in the ocean. In The Atmosphere and the Sea in Motion, Rossby Memorial Volume, ed. , B. Bolin. New York: Rockefeller Institute Press and Oxford University Press, pp. 74–94. [47]Google Scholar
Haury, L. R., Briscoe, M. G. and Orr, M. H. (1979). Tidally generated internal wave packets in Massachusetts Bay. Nature, 278, 312–317. [286]CrossRefGoogle Scholar
Haynes, P. (2001). Vertical shear as a route to mixing. In From stirring to mixing in a stratified ocean. Proceedings of ‘Aha Huliko'a Hawaiian Winter Workshop, ed. , P. Müller and , D. Henderson. SOEST University of Hawaii at Manoa Special Publication, pp. 73–80. [19]Google Scholar
Haynes, P. and Anglade, J. (1997). The vertical-scale cascade in atmospheric tracers due to large-scale differential advection. J. Atmos. Sci., 54, 1121–1136. [19]2.0.CO;2>CrossRefGoogle Scholar
Haynes, P. and McIntyre, M. (1987). On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828–840. [78]2.0.CO;2>CrossRefGoogle Scholar
Hazel, P. (1972). Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech., 51, 39–61. [90, 91]CrossRefGoogle Scholar
Heathershaw, A. D. (1979). The turbulent structure of the bottom boundary layer in a tidal current. Geophys. J. R. Astr. Soc., 58, 395–430. [218]CrossRefGoogle Scholar
Heathershaw, A. D. and Thorne, P. D. (1985). Sea-bed noises reveal roles of turbulent bursting phenomena in sediment transport by tidal currents. Nature, 316, 339–342. [279]CrossRefGoogle Scholar
Heezen, B. C. and Hollister, C. D. (1971). The Face of the Deep. Oxford: Oxford University Press, p. 371. [372]Google Scholar
Helfrich, K. R. (2001). Dispersion from hydrothermal vents. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turikian, vol. 2. London: Academic Press, pp. 733–741. [116]Google Scholar
Helfrich, K. R. and Battisti, T. (1991). Experiments on baroclinic vortex shedding from hydrothermal plumes. J. Geophys. Res., 96, 12511–12518. [125, 127]CrossRefGoogle Scholar
Helmholtz, H. (1868). Über discontinuirliche Flüssigkeitsbewegungen. Monats. Königl. Preuss. Akad. Wiss. Berlin, 23, 215–228. [81]Google Scholar
Henyey, F. S., Wright, J. and Flatté, S. M. (1986). Energy and action flow through the internal wave field: an eikonal approach. J. Geophys. Res., 91, 8487–8495. [206]CrossRefGoogle Scholar
Hibiya, T. and Nagasawa, M. (2004). Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Letts., 31 (1), L01311, doi:10.1029/2003GL017998, 2004. [42, 70, 156, 206, 325, 371]CrossRefGoogle Scholar
Hickey, B., Baker, E. and Kachel, N. (1986). Suspended particle movement in and around Quinault submarine canyon. Marine Geology, 71, 35–83. [226]CrossRefGoogle Scholar
Hill, A. E., Souza, A. J., Jones, K., Simpson, J. H., McCandliss, R., Shapiro, G. I., Wilson, H. and Leftley, J. (1998). The Malin slope cascade in winter 1996. J. Mar. Res., 56, 87–106. [318]CrossRefGoogle Scholar
Hinze, J. O. (1959). Turbulence. New York: McGraw-Hill. [27, 172, 175]Google Scholar
Hoare, R. A. (1966). Problems of heat transfer in Lake Vanda, a density stratified Antarctic lake. Nature, 210, 787–789. [137]CrossRefGoogle Scholar
Hogg, A., Ivey, G. and Winters, K. (2001a). Hydraulics and mixing in controlled exchange flows. J. Geophys. Res., 106, 959–972. [330]CrossRefGoogle Scholar
Hogg, A., Winters, K. and Ivey, G. (2001b). Linear internal waves and the control of stratified exchange flows. J. Fluid Mech., 447, 357–375. [331]CrossRefGoogle Scholar
Hogg, A. McC. and Ivey, G. N. (2003). The Kelvin–Helmholtz instability transition in stratified exchange flows. J. Fluid Mech., 477, 339–362. [93, 110]CrossRefGoogle Scholar
Hogg, N., Biscaye, P., Gardner, W. and Schmitz, W. J. (1982). On the transport and modification of Antarctic Bottom Water in the Vema Channel. J. Mar. Res., 40 (supplement), 231–263. [208]Google Scholar
Hogg, N. G. (1974). The preconditioning phase of MEDOC 1969. Part II. Topographic effects. Deep-Sea Res., 20, 429–448. [130]Google Scholar
Holbrook, W. S., Páramo, P., Pearse, S. and Schmitt, R. W. (2003). Thermohaline fine structure in an oceanographic front from seismic reflection profiling. Science, 301, 821–824. [189]CrossRefGoogle Scholar
Hollister, C. D. and McCave, I. N. (1984). Sedimentation under deep-sea storms. Nature, 309, 220–225. [215, 225, 372]CrossRefGoogle Scholar
Holloway, G. and Gargett, A. (1987). The influence of salt fingering for towed microstructure observations. J. Geophys. Res., 92(C2), 1963–1965. [210]CrossRefGoogle Scholar
Holmboe, J. (1962). On the behayiour of symmetric waves in stratified shear layers. Geophys. Publ., 24, 67–113. [90, 91, 109]Google Scholar
Holt, J. T. (1998). Experiments on Kelvin–Helmholtz billows influenced by boundaries. Geophys. Astrophys. Fluid Dynamics, 89, 205–233. [99, 101]CrossRefGoogle Scholar
Hopfinger, E. J. (1987). Turbulence in stratified fluids: a review. J. Geophys. Res., 92, 5287–5303. [211]CrossRefGoogle Scholar
Hopfinger, E., Kurniawan, A., Graf, W. H. and Lemmin, U. (2004). Sediment erosion by Görtler vortices: the scour-hole problem. J. Fluid Mech., 520, 327–342. [279]CrossRefGoogle Scholar
Hornung, H. G., Wellert, C. and Turner, J. S. (1995). The flow field downstream of a hydraulic jump. J. Fluid Mech., 287, 299–316. [233]CrossRefGoogle Scholar
Howard, L. N. (1961). Note on a paper by John W. Miles. J. Fluid Mech., 10, 509–512. [82, 88, 89]CrossRefGoogle Scholar
Howard, L. N. (1964). Convection at high Rayleigh number. In Proceedings of the 11th International Congress Applied Mechanics, Munich, ed. , H. Görtler. Berlin: Springer-Verlag, pp. 1109–1115. [120]Google Scholar
Huang, R. X. (1999). Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727–746. [116, 216, 219]2.0.CO;2>CrossRefGoogle Scholar
Hughes, C. W. (1995). Rossby waves in the Southern Ocean: a comparison of TOPEX/POSEIDON altimetry with model predictions. J. Geophys. Res., 100, 15933–15950. [365]CrossRefGoogle Scholar
Hunt, G. N. (1985). Radioactivity in coastal and surface waters of the UK. Aquatic Environment Monitoring Report, MAFF Directorate of Fisheries Research, Lowestoft, 12: 46 pp. [289]Google Scholar
Hunt, J. C. R. and Graham, J. M. R. (1978). Free stream turbulence near plane boundaries. J. Fluid Mech., 84, 209–235. [230]CrossRefGoogle Scholar
Hunt, J. C. R. and Snyder, W. H. (1980). Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid Mech., 96, 671–704. [323, 324]CrossRefGoogle Scholar
Huppert, H. E. (2000). Geological fluid mechanics. In Perspectives in Fluid Dynamics, ed. , G. K. Batchelor, , H. K. Moffatt and , M. G. Worster. Cambridge: Cambridge University Press, pp. 447–506. [6]Google Scholar
Huppert, H. E. and Linden, P. F. (1979). On heating a stable salinity gradient from below. J. Fluid Mech., 95, 431–464. [137]CrossRefGoogle Scholar
Huppert, H. E. and Turner, J. S. (1978). Melting icebergs. Nature, 271, 46–48. [140]CrossRefGoogle Scholar
Huppert, H. E. and Turner, J. S. (1980). Iceblocks melting into a salinity gradient. J. Fluid Mech., 100, 367–384. [140]CrossRefGoogle Scholar
Huppert, H. E. and Turner, J. S. (1981). Double-diffusive convection. J. Fluid Mech., 106, 299–329. [132, 133]CrossRefGoogle Scholar
Imawaki, S. and Takano, K. (1982). Low-frequency kinetic energy spectrum in the deep western North Pacific. Science, 216, 1407–1408. [344]CrossRefGoogle ScholarPubMed
Imberger, J. (1998). Flux paths in a stratified lake: a review. In Physical Processes in Lakes and Oceans, ed. , J. Imberger. Washington, DC: American Geophysical Union, pp. 1–17. [339]Google Scholar
Inall, M. E., Rippeth, T. P. and Sherwin, T. (2000). The impact of non-linear waves on the dissipation of internal tidal energy at the shelf break. J. Geophys. Res., 105, 8687–8705. [286]CrossRefGoogle Scholar
Inall, M., Cottier, F., Griffiths, C. and Rippeth, T. (2004). Sill dynamics and energy transformation in a jet fjord. Ocean Dyn., 54, 307–314. [334]CrossRefGoogle Scholar
Inman, D. L., Tait, R. J. and Nordstrom, C. E. (1971). Mixing in the surf zone. J. Geophys. Res., 76, 3493–3514. [298]CrossRefGoogle Scholar
Itsweire, E. L., Kosiff, J. R., Briggs, D. A. and Ferziger, J. H. (1993). Turbulence in stratified shear flows: implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr., 23, 1508–1522. [182, 184]2.0.CO;2>CrossRefGoogle Scholar
Ivey, G. N. and Corcos, G. M. (1982). Boundary mixing in a stratified fluid. J. Fluid Mech., 121, 1–26. [193]CrossRefGoogle Scholar
Ivey, G. N. and Noakes, R. I. (1989). Vertical mixing due to breaking of critical waves on sloping boundaries. J. Fluid Mech., 204, 479–500. [307, 309, 313]CrossRefGoogle Scholar
Ivey, G. N., Winters, K. B. and Silva, I. P. D. (2000). Turbulent mixing in a sloping benthic boundary layer energised by internal waves. J. Fluid Mech., 418, 59–76. [307]CrossRefGoogle Scholar
Jackson, R. G. (1976). Sedimentological and fluid-dynamic implications of the turbulent bursting phenomenon in geophysical flows. J. Fluid Mech., 77, 531–560. [217]CrossRefGoogle Scholar
Jenkins, W. J. (1980). Tritium and 3He in the Sargasso Sea. J. Mar. Res., 38, 533–569. [357]Google Scholar
Jensen, B. L., Sumer, B. M. and Fredsøe, J. (1989). Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech., 206, 265–297. [277]CrossRefGoogle Scholar
Jessup, A. T., Zappa, C. J., Loewen, M. R. and Hesany, V. (1997). Infrared remote sensing of breaking waves. Nature, 385, 52–55. [1]CrossRefGoogle Scholar
Jevons, W. S. (1857). On the cirrus form of cloud. London–Edinburgh–DublinPhilos. Mag. J. Sci., 4th series, 14, 22–35. [132]CrossRefGoogle Scholar
Jiménez, J. (2000). Turbulence. In Perspectives in Fluid Dynamics, ed. , G. K. Batchelor, , H. K. Moffatt and , M. G. Worster. Cambridge: Cambridge University Press, pp. 231–288. [13]Google Scholar
Jiménez, J. (2004). Turbulent flows over rough walls. Ann. Rev. Fluid Mech., 36, 173–196. [216]CrossRefGoogle Scholar
Johnson, G. C., Lueck, R. G. and Sanford, T. B. (1994). Stress on the Mediterranean outflow plume: Part 2. Turbulent dissipation and shear measurements. J. Phys. Oceanogr., 24, 2084–2092. [173, 320]2.0.CO;2>CrossRefGoogle Scholar
Jonas, T., Terzhevik, A. Y., Minonov, D. and Wüest, A. (2003a). Radiatively driven convection in an ice-covered lake investigated using temperature microstructure techniques. J. Geophys. Res., 108, 3183, doi:10.1029/2002JC001316. [120]CrossRefGoogle Scholar
Jonas, T., Stips, A., Eugster, W. and Wüest, A. (2003b). Observations of a quasi shear-free lacustrine convective boundary layer: stratification and its implications on turbulence. J. Geophys. Res., 108(C10), doi: 10.1029/2002JC001440. [249]CrossRefGoogle Scholar
Jones, I. S. F. and Toba, Y. (2001). Wind Stress over the Ocean. Cambridge: Cambridge Univesity Press. [228]CrossRefGoogle Scholar
Jones, W. L. (1967). Propagation of internal gravity waves in fluids with shear flows and rotation. J. Fluid Mech., 30, 439–448. [162]CrossRefGoogle Scholar
Jones, W. L. (1968). Reflection and stability of waves in stably stratified fluid with shear flow: a numerical study. J. Fluid Mech., 34, 609–624. [162]CrossRefGoogle Scholar
Joule, J. P. (1850). On the mechanical equivalent of heat. Phil. Trans. R. Soc. Lond., 140(1), 61–82; and Scientific Papers, published by Taylor and Francis for the Physical Society, London (1884), pp. 298–328. [4, 5]CrossRefGoogle Scholar
Joyce, T. M. (1974). Fine-structure contamination of moored sensors: a numerical experiment. J. Phys. Oceanogr., 4, 183–190. [191]2.0.CO;2>CrossRefGoogle Scholar
Joyce, T. M. and Desaubies, Y. J. F. (1977). Discrimination between internal waves and temperature finestructure. J. Phys. Oceanogr., 7, 22–32. [191]2.0.CO;2>CrossRefGoogle Scholar
Joyce, T. M., Zenk, W. and Toole, J. M. (1978). The anatomy of the Antarctic polar front in the Drake Passage. J. Geophys. Res., 83, 6093–6113. [353]CrossRefGoogle Scholar
Joyce, T. M., Warren, B. A. and Talley, L. D. (1986). The geothermal heating of the abyssal subarctic Pacific. Deep-Sea Res., 33, 1003–1015. [219]CrossRefGoogle Scholar
Kantha, L. H. and Clayson, C. (2000). Small Scale Processes in Geophysical Flows. San Diego: Academic Press. [19, 266]Google Scholar
Kawaniski, K. and Yokosi, S. (1997). Characteristics of suspended sediment and turbulence in a tidal boundary layer. Continental Shelf Res., 17, 859–875. [280]CrossRefGoogle Scholar
Kelland, P. (1840). On the theory of waves. Rep. Br. Assoc. Adv. Sci., Part ii, 50–52. [87]Google Scholar
Kelvin, Lord (1871). Influence of wind and capillarity on waves in water supposed frictionless. Mathematical and Physical Papers, 4, 76–85. [81]Google Scholar
Kenney, B. C. (1993). Observations of coherent bands of algae in a surface shear layer. Limnol. Oceanogr., 38, 1059–1067. [255]CrossRefGoogle Scholar
Kerr, R. C. (1991). Erosion of a stable density gradient by a sediment-driven convection. Nature, 353, 423–425. [320]CrossRefGoogle Scholar
Kibel', I. A. (1940). Prilozhenic k meteorologii uravnenii mekhaniki baraklinnoi zhidkosti. Izv. Akad. Naukl. SSSR Ser. Geogr. Geofiz, No. 5. [348]
Kirwan, A. D., McNally, G. J., Reyna, E. and Merrell, W. J. (1978). The near-surface circulation of the eastern North Pacific. J. Phys. Oceanogr., 8, 937–945. [261, 362]2.0.CO;2>CrossRefGoogle Scholar
Klaassen, G. P. and Peltier, W. R. (1985). The onset of turbulence in finite amplitude Kelvin–Helmholtz billows. J. Fluid Mech., 155, 1–35. [92, 101]CrossRefGoogle Scholar
Klaassen, G. P. and Peltier, W. R. (1989). The role of transverse secondary instabilities in the evolution of free shear layers. J. Fluid Mech., 202, 367–402. [92]CrossRefGoogle Scholar
Klaassen, G. P. and Peltier, W. R. (1991). The influence of secondary instability in free shear layers. J. Fluid Mech., 227, 71–106. [92, 101]CrossRefGoogle Scholar
Klostermeyer, J. (1984). Observations indicating parametric instabilities in internal gravity waves at thermospheric heights. Geophys. Astrophys. Fluid Dyn., 29, 117–138. [156]CrossRefGoogle Scholar
Klostermeyer, J. (1990). On the role of parametric instability of internal gravity waves in atmospheric radar observations. Radio Sci., 25, 983–995. [156]CrossRefGoogle Scholar
Klymak, J. M. and Gregg, M. C. (2001). Three-dimensional nature of flow near a sill. J. Geophys. Res., 106, 22295–22311. [336, 337]CrossRefGoogle Scholar
Koop, C. G. (1981). A preliminary investigation of the interaction of internal waves with a steady shearing motion. J. Fluid Mech., 113, 347–386. [162]CrossRefGoogle Scholar
Koop, C. G. and Browand, F. K. (1979). Instability and turbulence in a stratified fluid with shear. J. Fluid Mech., 93, 135–159. [93, 103]CrossRefGoogle Scholar
Koop, C. G. and McGee, B. (1986). Measurements of internal gravity waves in a continuously stratified shear flow. J. Fluid Mech., 172, 453–480. [162]CrossRefGoogle Scholar
Kranenburg, C. (1982). Stability conditions for gradient transport models of transient density – stratified shear flow. Geophys. Astrophys. Fluid Dyn., 13, 3–23. [193]Google Scholar
Krauss, E. B. and Turner, J. S. (1967). A one-dimensional model of the seasonal thermocline. II. The general theory and its consequences. Tellus, 19, 98–106. [266]Google Scholar
Kraynik, A. M. (1988). Foam flows. Ann. Rev. Fluid Mech., 20, 325–357. [243]CrossRefGoogle Scholar
Kumar, S., Gupta, R. and Banerjee, S. (1998). An experimental investigation of the characteristics of free-surface turbulence in channel flow. Phys. Fluids, 10(2), 437–456. [285]CrossRefGoogle Scholar
Kunze, E. A. (1990). The evolution of salt fingers in inertial wave shear. J. Mar. Res., 48, 471–504. [137]CrossRefGoogle Scholar
Kunze, E. (2001). Vortical modes. In Encylopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian. vol. 6. London: Academic Press, pp. 3174–3178. [78]Google Scholar
Kunze, E. and Sanford, T. B. (1993). Submesoscale dynamics near a seamount. J. Phys. Oceanogr., 23, 2567–2601. [78, 211]2.0.CO;2>CrossRefGoogle Scholar
Kunze, E., Williams, A. J. III and Schmitt, R. W. (1987). Optical microstructure in the thermohaline staircase east of Barbados. Deep-Sea Res., 34, 1697–1704. [137, 138]CrossRefGoogle Scholar
Kunze, E. A., Williams, A. J. III and Briscoe, M. G. (1990a). Observations of shear and vertical stability from a neutrally buoyant float. J. Geophys. Res., 95, 16127–18142. [20, 211]Google Scholar
Kunze, E., Briscoe, M. G. and Williams, A. J. III (1990b). Interpreting shear and strain from a neutrally buoyant float. J. Geophys. Res., 95, 18111–18125. [205]CrossRefGoogle Scholar
Kunze, E., Rosenfeld, L. K., Carter, G. S. and Gregg, M. C. (2002). Internal waves in Monteray Canyon. J. Phys. Oceanogr., 32, 1890–1913. [322]2.0.CO;2>CrossRefGoogle Scholar
Lamarre, E. and Melville, W. K. (1994). Void-fraction measurements and sound-speed fields in bubble plumes generated by breaking waves. J. Acoust. Soc. Amer., 95, 1317–1329. [233]CrossRefGoogle Scholar
Lamb, H. (1932). Hydrodynamics, 6th edn. Cambridge: Cambridge University Press. [87, 274]Google Scholar
Lamb, K. G. (2003). Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores. J. Fluid Mech., 478, 81–100. [303]CrossRefGoogle Scholar
Langmuir, I. (1938). Surface motion of water induced by wind. Science, 87, 119–123. [251]CrossRefGoogle ScholarPubMed
Porta, A., Voth, G. S., Crawford, A. M., Alexander, J. and Bodenschatz, E. (2001). Fluid particle accelerations in fully developed turbulence. Nature, 409, 1017–1019. [369]CrossRefGoogle ScholarPubMed
Lasheras, J. C. and Choi, H. (1988). Three-dimensional instability of a plane, free shear layer. An experimental study of the formation and evolution of streamwise vortices. J. Fluid Mech., 189, 53–86. [105]CrossRefGoogle Scholar
Law, C. S., Martin, A. P., Liddicoat, M. I., Watson, A. J., Richards, K. J. and Woodward, E. M. S. (2001). A Lagrangian SF6 study of an anticyclonic eddy in the North Atlantic: patch evolution, vertical mixing and nutrient supply to the mixed layer. Deep-Sea Res., Part II, 48, 705–724. [265]CrossRefGoogle Scholar
Law, C. S., Abraham, E. R., Watson, A. J. and Liddicoat, M. I. (2003). Vertical eddy diffusion and nutrient supply to the surface mixed layer of the Antarctic Circumpolar Current. J. Geophys. Res., 108(C8), doi:10.1029/2002JC001604, 2003. [265]CrossRefGoogle Scholar
Lawrence, G. A., Browand, F. K. and Redekopf, L. G. (1991). The stability of a sheared density interface. Phys. Fluids, A3, 2360–2370. [109, 110]CrossRefGoogle Scholar
Lawson, K. and Larson, N. G. (2001). CTD. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian. London: Academic Press, vol. 1, pp. 579–588. [6]Google Scholar
Lazier, J. R. N. (1973). Temporal changes in some fresh water temperature structures. J. Phys. Oceanogr., 3, 226–229. [59, 61, 149]2.0.CO;2>CrossRefGoogle Scholar
Lazier, J. R. N. and Sandstrom, H. (1978). Migrating thermal structure in a freshwater thermocline. J. Phys. Oceanogr., 8, 1070–1079. [59]2.0.CO;2>CrossRefGoogle Scholar
Lazier, J. R. N., Pickart, R. S. and Rhines, P. B. (2001). Deep convection. In Ocean Circulation and Climate, ed. , G. Siedler, , J. Church and , J. Gould. London: Academic Press. [131]Google Scholar
Leaman, K. D. (1976). Observations of vertical polarization and energy flux of near-inertial waves. J. Phys. Oceanogr., 6, 894–908. [65, 73]2.0.CO;2>CrossRefGoogle Scholar
Ledwell, J. R. and Bratkovich, A. (1995). A tracer study of mixing in the Santa Cruz basin. J. Gephys. Res., 100, 20681–20704. [292]CrossRefGoogle Scholar
Ledwell, J. R. and Hickey, B. M. (1995). Evidence of enhanced boundary mixing in the Santa Monica Basin. J. Geophys. Res., 100, 20665–20679. [292]CrossRefGoogle Scholar
Ledwell, J. R., Watson, A. J. and Laws, C. S. (1993). Evidence of slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701–703. [40]CrossRefGoogle Scholar
Ledwell, J. R., Watson, A. J. and Laws, C. S. (1998). Mixing of a tracer in the pycnocline. J. Geophys. Res., 108, 21499–21529. [40, 206, 207, 359, 360]CrossRefGoogle Scholar
Ledwell, J. R., Montgomery, E. T., Polzin, K. L., St Laurant, L. C., Schmitt, R. W. and Toole, J. M. (2000). Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179–182. [41]CrossRefGoogle ScholarPubMed
Legg, S. (2003). Internal tides generated on a corrugated continental slope: Part 1: cross-slope barotropic forcing. J. Phys. Oceanogr., 34, 156–173. [311]2.0.CO;2>CrossRefGoogle Scholar
Legg, S. and Adcroft, A. (2003). Internal wave breaking at concave and convex continental slopes. J. Phys. Oceanogr., 33, 2224–2246. [307, 311, 313]2.0.CO;2>CrossRefGoogle Scholar
Leibovich, S. (1983). The form and dynamics of Langmuir circulation. Ann. Rev. Fluid Dyn., 15, 391–427. [251, 255]CrossRefGoogle Scholar
Lelong, M.-P. and Dunkerton, T. J. (1998). Inertia-gravity wave breaking in three-dimensions, I: convectively stable waves. J. Atmos. Sci., 55, 2473–2488. [149]2.0.CO;2>CrossRefGoogle Scholar
Lelong, M.-P. and Riley, J. J. (1991). Internal wave – vortical mode interactions in strongly stratified flows. J. Fluid Mech., 232, 1–19. [78]CrossRefGoogle Scholar
Méhauté, B. and Khangaonkar, T. (1990). Dynamic interaction of intense rain with water waves. J. Phys. Oceanogr., 20, 1805–1812. [244]2.0.CO;2>CrossRefGoogle Scholar
Lentz, S. J. and Trowbridge, J. H. (1991). The bottom boundary layer over the northern California shelf. J. Phys. Oceanogr., 21, 1186–1201. [316]2.0.CO;2>CrossRefGoogle Scholar
Levine, E. R. and Lueck, R. G. (1999). Turbulence measurements from an autonomous underwater vehicle. J. Atmos. Oceanic Technol., 16, 1533–1544. [173]2.0.CO;2>CrossRefGoogle Scholar
Li, L. and Dalrymple, R. A. (1998). Instabilities in the undertow. J. Fluid Mech., 369, 175–190. [299]Google Scholar
Li, M. and Garrett, C. (1993). Cell merging and the jet/downwelling ratio in Langmuir circulation. J. Mar. Res., 51, 737–796. [256]CrossRefGoogle Scholar
Li, M. and Garrett, C. (1997). Mixed-layer deepening due to Langmuir circulation. J. Phys. Oceanogr., 27, 121–132. [265]2.0.CO;2>CrossRefGoogle Scholar
Li, M., Zahariev, K. and Garrett, C. (1995). The role of Langmuir circulation in the deepening of the ocean surface mixed layer. Science, 270, 1955–1957. [265]CrossRefGoogle Scholar
Lien, R.-C. and Gregg, M. C. (2001). Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res., 106, 4575–4591. [9, 151]CrossRefGoogle Scholar
Lien, R.-C. and Sanford, T. B. (2000). Spectral characteristics of velocity and vorticity fluxes in an unstratified turbulent boundary layer. J. Geophys. Res., 105, 8659–8672. [270]CrossRefGoogle Scholar
Lien, R.-C., D'Asaro, E. A. and McPhaden, M. J. (2002). Internal waves and turbulence in the Upper Central Equatorial Pacific: Lagrangian and Eulerian observations. J. Phys. Oceanogr., 32, 2619–2639. [267]CrossRefGoogle Scholar
Lilly, D. K. (1983). Stratified turbulence and the meso-scale variability of the atmosphere. J. Atmos. Sci., 40, 749–761. [211, 342]2.0.CO;2>CrossRefGoogle Scholar
Lilly, J. M., Rhines, P. B., Visbeck, M., Davis, R., Lazier, J. R. N., Schott, F. and Farmer, D. (1999). Observing deep convection in the Labrador Sea during winter 1994/5. J. Phys. Oceanogr., 29, 2065–2098. [7, 131]2.0.CO;2>CrossRefGoogle Scholar
Linden, P. F. (1974). Salt fingers in a steady shear flow. Geophys. Fluid Dyn., 6, 1–27. [132]CrossRefGoogle Scholar
Linden, P. F. (1975). The deepening of a mixed layer in a stratified fluid. J. Fluid Mech., 71, 385–405. [72]CrossRefGoogle Scholar
Linden, P. F. and Shirtcliffe, T. G. L. (1978). The diffusive interface in double-diffusive convection. J. Fluid Mech., 87, 417–432. [137]CrossRefGoogle Scholar
Liu, Y. N., Maxworthy, T. and Spedding, G. R. (1987). Collapse of a turbulent front in a stratified fluid 1. Nominally two-dimensional evolution in a narrow tank. J. Geophys. Res., 92, 5427–5433. [193]CrossRefGoogle Scholar
Loder, J. W., Drinkwater, K. F., Oakey, N. S. and Horne, E. P. W. (1994). Circulation, hydrographic structure and mixing at tidal fronts: the view from Georges Bank. Phil. Trans. R. Soc. Lond., A302, 447–460. [283]Google Scholar
Lohrmann, A., Hacket, B. and Roed, L. P. (1990). High-resolution measurements of turbulence, velocity and stress using a pulse-to-pulse coherent sonar. J. Atmosph. Oceanic Technol., 7, 19–37. [178]2.0.CO;2>CrossRefGoogle Scholar
Long, R. R. (2003). Do tidal channel turbulence measurements support k-5/3?Environmental Fluid Mech., 3, 109–127. [28]CrossRefGoogle Scholar
Longuet-Higgins, M. S. (1965). Planetary waves on a rotating sphere II. Proc. R. Soc. Lond., A284, 40–68. [341]CrossRefGoogle Scholar
Longuet-Higgins, M. S. (1970). Longshore currents generated by obliquely incident sea waves: 1. J. Geophys. Res., 75, 6783–6789. [297]Google Scholar
Longuet-Higgins, M. S. (1981). Oscillatory flow over steep sand ripples. J. Fluid Mech., 107, 1–36. [271, 273]CrossRefGoogle Scholar
Lorke, A. and Wüest, A. (2002). Probability density of displacement and overturning length scales under diverse stratification. J. Geophys. Res., 107(C12), doi:10.1029/2001JC001154, 2002. [177]CrossRefGoogle Scholar
Love, A. E. H. (1891). Wave motion in a heterogeneous heavy liquid. Proc. Lond. Math Soc., 22, 307–316. [45]Google Scholar
Lozovatsky, I. D., Morosov, E. G. and Fernando, H. J. S. (2003). Spatial decay of energy density of tidal internal waves. J. Geophys. Res., 108(C6, 32), doi:10.1029/2001JC001169. [325, 371]CrossRefGoogle Scholar
Lu, Y. and Lueck, R. G. (1999). Using broadband ADCP in a tidal channel. Part II: turbulence. J. Atmos. Oceanic Technol., 14, 1568–1579. [178]2.0.CO;2>CrossRefGoogle Scholar
Ludlam, F. (1967). Characteristics of billow clouds and their relation to clear air turbulence. Quart. J. R. Meteorol. Soc., 93, 419–435. [83]CrossRefGoogle Scholar
Lueck, R. G. and Lu, Y. (1997). The logarithmic layer in a tidal channel. Continental Shelf Res., 17, 1785–1861. [271]CrossRefGoogle Scholar
Lueck, R. G. and Mudge, T. D. (1997). Topographically induced mixing around a shallow seamount. Science, 276, 1831–1833. [311]CrossRefGoogle Scholar
Lueck, R. G. and Osborn, T. R. (1985). Turbulence measurements in a submarine canyon. Continental Shelf Res., 4, 681–698. [322]CrossRefGoogle Scholar
Lueck, R. and Reid, R. (1984). On the production and dissipation of mechanical energy in the ocean. J. Geophys. Res., 89, 3439–3445. [345]CrossRefGoogle Scholar
Lueck, R. G., Huang, D., Newman, D. and Box, J. (1997). Turbulence measurement with a moored instrument. J. Atmos. Oceanic Technol., 14, 143–161. [173]2.0.CO;2>CrossRefGoogle Scholar
Lumkin, R., Treguier, A.-M. and Speer, K. (2002). Lagrangian eddy scales in the North Atlantic Ocean. J. Phys. Oceanogr., 32, 2425–2440. [363]CrossRefGoogle Scholar
Lupton, J. E. (1995). Hydrothermal plumes: near and far field. In Seafloor Hydrothermal Systems. Physical, Chemical, Biological and Geological Interactions, vol. 91. Washington D. C.: AGU Geophys. Monograph, pp. 317–346. [116, 128]Google Scholar
Lupton, J. E. and Craig, H. (1981). A major 3He source on the East Pacific Rise. Science, 214, 13–18. [126]CrossRefGoogle Scholar
McCave, I. N. (1984). Size spectra and aggregation of suspended particles in the deep ocean. Deep-Sea Res., 31, 329–352. [225, 282]CrossRefGoogle Scholar
McCave, I. N., Hollister, C. D. and Newell, A. R. M. (editors) (1988). Deep Ocean Sediment Transport: High Energy Benthic Boundary Layer Collected Reprints. Woods Hole Oceanographic Institution. [215]Google Scholar
McClean, J. L., Poulain, P.-M. and Pelton, J. W. (2002). Eulerian and Lagrangian statistics from surface drifters and high-resolution POP simulation in the North Atlantic. J. Geophys. Res., 22, 2472–2491. [362]Google Scholar
McComas, C. H. and Bretherton, F. P. (1977). Resonant interactions of oceanic internal waves. J. Geophys. Res., 82, 1397–1412. [68]CrossRefGoogle Scholar
MacCready, P. M. and Pawlak, G. (2001). Stratified flow along a corrugated slope: separation drag and wave drag. J. Phys. Oceanogr., 31, 2824–2839. [322]2.0.CO;2>CrossRefGoogle Scholar
McDougall, T., Thorpe, S. and Gibson, C. (1988). Small-scale turbulence and mixing in the ocean: a glossary. In Small-Scale Turbulence and Mixing in the Ocean, ed. , J. C. J. Nihoul and , B. M. Jamert. Amsterdam: Elsevier, pp. 3–9. [135]Google Scholar
McDowell, S. E. and Rossby, H. T. (1978). Mediterranean water: an intense eddy of the Bahamas. Science, 202, 1085–1087. [352]CrossRefGoogle ScholarPubMed
McEwan, A. D. (1983). Internal mixing in stratified fluids. J. Fluid Mech., 128, 59–80. [154]CrossRefGoogle Scholar
McEwan, A. D. and Robinson, R. M. (1975). Parametric instability of internal gravity waves. J. Fluid Mech., 67, 667–687. [154]CrossRefGoogle Scholar
McIntyre, M. E. (1992). On the role of wave propagation and wave breaking in atmosphere-ocean dynamics. In Theoretical and Applied Mechanics, ed. , S. R. Bodner, , J. Singer, , A. Solan and , Z. Hashin. Elsevier Sci Pubs. B. V. IUTAM Proceedings, pp 281–303. [144]Google Scholar
McIntyre, M. E. (2000). On global-scale atmospheric circulations. In Perspectives in Fluid Dynamics, ed. , G. K. Batchelor, , H. K. Moffatt and , M. G. Worster. Cambridge: Cambridge University Press, pp. 557–624. [144]Google Scholar
MacKinnon, J. A. and Gregg, M. C. (2003a). Shear and baroclinic energy flux on the summer New England Shelf. J. Phys. Oceanogr., 33, 1462–1475. [149]2.0.CO;2>CrossRefGoogle Scholar
MacKinnon, J. A. and Gregg, M. C. (2003b). Mixing on the late-summer New England shelf – solibores, shear and stratification. J. Phys. Oceanogr., 33, 1476–1492. [205, 287]2.0.CO;2>CrossRefGoogle Scholar
McPhee, M. G. (2002). Turbulent stress at the ice-ocean interface and bottom hydrographic roughness during SHEBA drift. J. Geophys. Res., 107(C10), doi:10.1029/2000JC000633, 2002. [228]CrossRefGoogle Scholar
McPhee, M. G. and Stanton, T. P. (1996). Turbulence in the statically unstable boundary layer under Arctic leads. J. Geophys. Res., 101(C3), 6409–6428. [228]CrossRefGoogle Scholar
McWilliams, J. C. (1976). Maps of the Mid-Ocean Dynamics Experiment. J. Phys. Oceanogr., 6, 810–846. [341]2.0.CO;2>CrossRefGoogle Scholar
McWilliams, J. C. and Chow, H. H. S. (1981). Equilibrium geostrophic turbulence, I. A reference solution on a β plane. J. Phys. Oceanogr., 11, 921–949. [343]2.0.CO;2>CrossRefGoogle Scholar
McWilliams, J. C., Sullivan, P. P. and Moeng, C.-H. (1997). Langmuir turbulence in the ocean. J. Fluid Mech. 334, 31–58. [256, 266]CrossRefGoogle Scholar
Magaad, L. and McKee, W. D. (1973). Semi-diurnal tidal currents at ‘Site D’. Deep-Sea Res., 20, 997–1009. [165]Google Scholar
Malarkey, J. and Davies, A. G. (2002). Discrete vortex modelling of oscillatory flow over ripples. Appl. Ocean Res., 24, 127–145. [273, 275]CrossRefGoogle Scholar
Marmorino, G. O. (1987). Observations of small-scale mixing processes in the seasonal thermocline. Part II: wave breaking. J. Phys. Oceanogr., 17, 1348–1355. [95, 197]2.0.CO;2>CrossRefGoogle Scholar
Marmorino, G. O., Rosenblum, L. J. and Trump, C. L. (1987). Fine-scale temperature variability: the influence of near-inertial waves. J. Geophys. Res., 92, 13049–13062. [148, 149, 165, 166]CrossRefGoogle Scholar
Marsigli, L. M. (1681). Osservazioni intorno al Bosforo Tracio o vero Canale di Constantantinopli, rappresentate in lettera alla Sacra Real Maesta Cristina Regina di Svezia, Roma. (Reprinted in Boll. Pesca. Piscic. Idrobiol., 11, 734–758, and as Internal observations on the Thracian Bosphorus, or true channel of Constantinople, represented in 1681 by letters to Her Majesty, Queen Christina of Sweden, in Oceanography, Concepts and History, ed. M. Deacon, Stroudsburg, Pa., pp. 34–44 (1978)). [326]Google Scholar
Masson, D. G., Kenyon, N. K. and Weaver, P. P. E. (1996). Slides, debris flows, and turbidity currents. In Oceanography, ed. , C. P. Summerhayes and , S. A. Thorpe. London: Manson Publishing, pp. 136–151. [319]Google Scholar
Matsunaga, N., Takehara, K. and Awaya, Y. (1994). The offshore vortex train. J. Fluid Mech., 276, 113–124. [299, 300]CrossRefGoogle Scholar
Matthews, P. C. (1988). A model for the onset of penetrative convection. J. Fluid Mech., 188, 571–583. [120]CrossRefGoogle Scholar
Matthews, P. C. and Heaney, S. I. (1987). Solar heating and its influence on mixing in ice-covered lakes. Freshwater Biol., 18, 135–149. [120]CrossRefGoogle Scholar
Maxey, M. R. (1987). The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech., 174, 441–465. [280]CrossRefGoogle Scholar
Maxworthy, T. (1979). A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. J. Geophys. Res., 84, 338–346. [74, 286, 328, 336]CrossRefGoogle Scholar
Maxworthy, T. (1980). On the formation of non-linear internal waves from the gravitational collapse of mixed regions in two and three dimensions. J. Fluid Mech., 96, 47–64. [76]CrossRefGoogle Scholar
Maxworthy, T. and Narimousa, S. (1994). Unsteady turbulent convection into a homogeneous rotating fluid with oceanographic applications. J. Phys. Oceanogr., 24, 865–887. [128]2.0.CO;2>CrossRefGoogle Scholar
Melville, W. K. (1996). The role of surface-wave breaking in air-sea interaction. Ann. Rev. Fluid Mech., 28, 279–321. [231]CrossRefGoogle Scholar
Melville, W. K. and Matusov, P. (2002). Distribution of breaking waves at the ocean surface. Nature, 417, 58–63. [237, 240]CrossRefGoogle ScholarPubMed
Melville, W. K., Veron, F. and White, C. J. (2002). The velocity field under breaking waves: coherent structures and turbulence. J. Fluid Mech., 454, 203–234. [233, 235, 293]CrossRefGoogle Scholar
Merrifield, M. A. and Holloway, P. E. (2002). Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res., 107(C8), 10.1029/2001JC000996. [42]CrossRefGoogle Scholar
Meunier, P. and Villermaux, E. (2003). How vortices mix. J. Fluid Mech., 476, 213–222. [22]CrossRefGoogle Scholar
Michallet, H. and Ivey, G. N. (1999). Experiments on mixing due to internal solitary waves breaking on uniform slopes. J. Geophys. Res., 104, 13467–13477. [303]CrossRefGoogle Scholar
Miles, J. (1961). On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496–508. [82, 88]CrossRefGoogle Scholar
Miller, R. L. (1976). Role of vortices in surf zone prediction: sedimentation and wave forces. In Beach and Nearshore Sedimentation, ed. , R. A Davis and , R. L. Ethington. Soc. Economic Palaentologists and Mineralogists, Special Publication 24, pp. 92–114. [293]Google Scholar
Moisander, P. H.Henck, J. L., Kononen, K. and Paerl, H. W. (2002). Small-scale shear effects on heterocystous cyanobacteria. Limnol. & Oceanogr., 47, 108–119. [268]CrossRefGoogle Scholar
Monin, A. S. and Ozmidov, R. V. (1985). Turbulence in the Ocean. Dordrecht: D. Reidel Pub. Corp. [173]CrossRefGoogle Scholar
Mortimer, C. H. (1955). Some effects of the Earth's rotation on water movement in stratified lakes. Int. Assoc. Appl. Limnology, 12, 66–77. [46, 47]Google Scholar
Morton, B. R., Taylor, G. I. and Turner, J. S. (1956). Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond., A234, 1–13. [123]CrossRefGoogle Scholar
Moum, J. N. (1996a). Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res., 101, 14095–14109. [178]CrossRefGoogle Scholar
Moum, J. N. (1996b). Efficiency of mixing in the main thermocline. J. Geophys. Res., 101, 12057–12069. [182]CrossRefGoogle Scholar
Moum, J. N. and Nash, J. D. (2000). Topographically induced drag and mixing at a small bank on the continental slope. J. Phys. Oceanogr., 30, 2049–2054. [323]2.0.CO;2>CrossRefGoogle Scholar
Moum, J. N. and Smyth, W. D. (2001). Upper ocean mixing processes. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian, vol. 6. London: Academic Press, pp. 3093–3100. [248]Google Scholar
Moum, J. N., Gregg, M. C., Lien, R. C. and Carr, M. E. (1995). Comparison of turbulent kinetic energy dissipation rate estimates from two ocean microstructure profilers. J. Atmosph. Oceanic Technol., 12, 346–366. [173]2.0.CO;2>CrossRefGoogle Scholar
Moum, J. N., Caldwell, D. R., Nash, J. D. and Gunderson, G. D. (2002). Observations of boundary mixing over the continental slope. J. Phys. Oceanogr., 32, 2113–2130. [173, 227, 308]2.0.CO;2>CrossRefGoogle Scholar
Moum, J. M., Farmer, D. M., Smyth, W. D., Armi, L. and Vagle, S. (2003). Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceanogr., 33, 2093–2112. [2, 7, 147, 287]2.0.CO;2>CrossRefGoogle Scholar
Mowbray, D. E. and Rarity, B. S. H. (1967). A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech., 28, 1–16. [50, 56, 57]CrossRefGoogle Scholar
Muench, R. D., Fernando, H. J. S. and Stegen, G. R. (1990). Temperature and salinity staircases in the northwestern Weddell Sea. J. Phys. Oceanogr., 20, 295–306. [137]2.0.CO;2>CrossRefGoogle Scholar
Müller, P. (1984). Small-scale vortical motions. In ‘Aha Huloko'a, Proceedings of Hawaiian Winter Workshop, Jan. 17–20, 1984. Hawaii Institute of Geophysics Special Publication, pp. 249–262. [77, 78]Google Scholar
Müller, P. and Briscoe, M. (2000). Diapycnal mixing and internal waves. Oceanography, 13, 98–103. [304]CrossRefGoogle Scholar
Müller, P. and Liu, X. (2000a). Scattering of internal waves at finite topography in two dimensions. Part 1 Theory and case studies. J. Phys. Oceanogr., 30, 532–549. [311]2.0.CO;2>CrossRefGoogle Scholar
Müller, P. and Liu, X. (2000b). Scattering of internal waves at finite topography in two dimensions. Part 2. Spectral calculations and boundary mixing. J. Phys. Oceanogr., 30, 550–563. [311]2.0.CO;2>CrossRefGoogle Scholar
Müller, P. and Siedler, G. (1976). Consistency relations for internal waves. Deep-Sea Res., 23, 613–628. [62]Google Scholar
Müller, P., Olbers, D. J. and Willebrandt, J. (1978). The IWEX spectrum. J. Geophys. Res., 83, 479–500. [62, 64, 77]CrossRefGoogle Scholar
Müller, P., Holloway, G., Henyey, F. and Pomphrey, N. (1986). Nonlinear interactions among internal gravity waves. Rev. Geophys. Space Phys., 24, 493–536. [68]CrossRefGoogle Scholar
Müller, P., Lien, R.-C. and Williams, R. (1988). Estimates of potential vorticity at small scales in the ocean. J. Phys. Oceanogr., 18, 401–416. [211]2.0.CO;2>CrossRefGoogle Scholar
Munk, W. (1966). Abyssal recipes. Deep-Sea Res., 13, 207–230. [38, 40, 45, 49, 83, 209, 292]Google Scholar
Munk, W. (1977). Once again: once again – tidal friction. Progress Oceanogr., 40, 7–35. [65, 270]CrossRefGoogle Scholar
Munk, W. (1981). Internal waves and small scale processes. In Evolution in Physical Oceanograph, ed. , F. Warren and , C. Wunsch. Cambridge, MA: MIT Press, pp. 236–263. [65]Google Scholar
Munk, W. (2003). Ocean freshening, sea level rising. Science, 300, 2041–2042. [7]CrossRefGoogle ScholarPubMed
Munk, W. and Wunsch, C. (1998). Abyssal recipes II, energetics of tidal and wind motion. Deep-Sea Res. Part 1, 45, 1977–2010. [38, 39, 40, 41, 65, 73, 126, 345, 371]CrossRefGoogle Scholar
Munk, W., Worcester, P. and Wunsch, C. (1995). Ocean Acoustic Tomography. Cambridge: Cambridge University Press. [342]CrossRefGoogle Scholar
Munk, W., Armi, L., Fischer, K. and Zachariasen, F. (2000). Spirals on the sea. Proc. R. Soc. Lond., A456, 1217–1280. [113, 349]CrossRefGoogle Scholar
Murray, J. and Pullar, L. (1910). Bathymetrical Survey of the Scottish Fresh-Water Lochs., vols. 1–6. Edinburgh: Challenger Office. [46]Google Scholar
Nadaoka, K., Hino, M. and Koyano, Y. (1989). Structure of the turbulent flow field under breaking waves in the surf zone. J. Fluid Mech., 204, 359–387. [293, 295]CrossRefGoogle Scholar
Nagasawa, M., Niwa, Y. and Hibiya, T. (2000). Spatial and temporal distributions of the wind-generated internal wave energy available for deep water mixing in the North Pacific. J. Geophys. Res., 105, 13933–13943. [40, 73]CrossRefGoogle Scholar
Nagasawa, M., Hibiya, T., Niwa, Y. Watanabe, M., Isoda, Y., Takagi, S. and Kamei, Y. (2002). Distribution of fine-scale shear in the deep waters of the North Pacific obtained using expendable current profilers. J. Geophys. Res., 107(C12), doi:10.1029/2002JC001376. [42]CrossRefGoogle Scholar
Nash, J. D. and Moum, J. N. (1999). Estimating salinity variance dissipation rates from conductivity microstructure measurements. J. Atmosph. Oceanic Technol., 16, 263–274. [180]2.0.CO;2>CrossRefGoogle Scholar
Nash, J. D. and Moum, J. N. (2001). Internal hydraulic flows on the continental shelf: high drag states over a small bank. J. Geophys. Res., 106, 4593–4611. [323]CrossRefGoogle Scholar
Nash, J. D., Kunze, E., Toole, J. M. and Schmitt, R. W. (2004). Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 1117–1134. [310]2.0.CO;2>CrossRefGoogle Scholar
Nasmyth, P. W. (1973). Turbulence and microstructure in the upper ocean. Mem. Soc. Roy. Sci. Liege, Series 6, 4, 47–56. [175]Google Scholar
Naveira Garabato, A. C., Polzin, K. L., King, B. A., Haywood, K. J. and Visbeck, M. (2004). Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210–213. [41, 206]CrossRefGoogle Scholar
Neal, V. T., Neshyba, S. and Denner, W. (1969). Thermal stratification in the Arctic Ocean. Science, 166, 373–374. [137]CrossRefGoogle ScholarPubMed
Nepf, H. M. and Geyer, W. R. (1996). Intratidal variations in stratification and mixing in the Hudson estuary. J. Geophys. Res., 101, 12079–12086. [290]CrossRefGoogle Scholar
New, A. I. (1988). Internal tidal mixing in the Bay of Biscay. Deep-Sea Res., 35, 691–709. [74]CrossRefGoogle Scholar
New, A. I. and Pingree, R. D. (1990). Evidence of internal tidal mixing near the shelf break. Deep-Sea Res., 37, 1783–1803. [75]CrossRefGoogle Scholar
Nicolaou, D., Liu, R. and Stevenson, T. N. (1993). The evolution of thermocline waves from an oscillatory disturbance. J. Fluid Mech., 254, 401–416. [64]CrossRefGoogle Scholar
Niiler, P. P. and Krauss, E. B. (1977). One-dimnsional models of the upper ocean. In Modelling and Prediction of the Upper Layers of the Ocean, ed. , E. B. Krauss. New York: Pergamon, pp. 143–172. [266]Google Scholar
Nimmo Smith, W. A. M. (2000). Dispersion of material by wind and tide in shallow seas. Dissertation presented for the degree of Doctor of Philosophy, Southampton University, 149 pp. [299, 301]
Nimmo Smith, W. A. M., Thorpe, S. A. and Graham, A. (1999). Surface effects of bottom-generated turbulence in a shallow sea. Nature, 400, 251–254. [283, 284]CrossRefGoogle Scholar
Nimmo Smith, W. A. M., Atsavapranee, P., Katz, J. and Osborn, T. R. (2002). PIV measurements in the bottom boundary layer of the coastal ocean. Exp. Fluids, 33, 962–971. [15, 277]CrossRefGoogle Scholar
Nimmo Smith, W. A. M., Katz, J. and Osborn, T. R. (2005). On the structure of turbulence in the bottom boundary layer of the coastal ocean. Submitted to J. Phys. Oceanogr., 35, 72–93. [277, 278]CrossRefGoogle Scholar
Niwa, Y. and Hibiya, T. (2001a). Spatial distribution of the M2 internal tide in the North Pacific predicted using a three-dimensional numerical model. J. Geodetic Soc. Japan, 47, 711–718. [42, 75, 76]Google Scholar
Niwa, Y. and Hibiya, T. (2001b). Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J. Geophys. Res., 106, 22441–22449. [3, 42, 75]CrossRefGoogle Scholar
Noyes, T. J., Guza, R. T., Elgar, S. and Herbers, T. H. C. (2004). Field observations of shear waves in the surf zone. J. Geophys. Res., 109(C1), doi:10.1029/2002JC001761, 2004. [298]CrossRefGoogle Scholar
Oakey, N. S. (1982). Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256–271. [175, 179, 182]2.0.CO;2>CrossRefGoogle Scholar
Oakey, N. S. (1985). Statistics of mixing parameters in the upper ocean during JASIN Phase 2. J. Phys. Oceanogr., 15, 1662–1675. [246]2.0.CO;2>CrossRefGoogle Scholar
Oakey, N. S. (1988). Estimates of mixing inferred from temperaure and velocity microstructure. In Small-Scale Turbulence and Mixing in the Ocean, ed. , J. Nihoul and , B. Jamart. Amsterdam: Elsevier, pp. 239–248. [183, 209]Google Scholar
Oakey, N. S. (1990). Turbulent kinetic energy dissipation and mixing at the Georges Bank tidal front. EOS, 71, 96. [283]Google Scholar
Oakey, N. S. and Elliott, J. A. (1977). Vertical temperature gradient structure across the Gulf Stream. J. Geophys. Res., 82, 1369–1380. [173]CrossRefGoogle Scholar
Oakey, N. S. and Elliott, J. A. (1980). The variability of temperature gradient microstructure observed in the Denmark Strait. J. Geophys. Res., 85, 1933–1944. [331]CrossRefGoogle Scholar
Odell, G. and Kovasnay, L. (1971). A new type of water channel with density stratification. J. Fluid Mech., 50, 535–544. [162]CrossRefGoogle Scholar
Okubo, A. (1971). Oceanic diffusion diagrams. Deep-Sea Res., 18, 789–802. [260, 262]Google Scholar
Oliver, H. and Oliver, S. (2003). Meteorologist's profile – John Dalton. Weather, 58, 206–211. [4]CrossRefGoogle Scholar
Oltman-Shay, J., Howd, P. A. and Birkemairer, W. A. (1989). Shear instabilities of the mean longshore current. 2. Field observations. J. Geophys. Res., 94, 18031–18042. [298]CrossRefGoogle Scholar
Oort, A. H., Anderson, L. A. and Peixoto, P. (1994). Estimates of the energy cycle of the oceans. J. Geophys. Res., 99, 7665–7688. [40, 345, 377]CrossRefGoogle Scholar
Orlanski, I. and Bryan, K. (1969). Formation of the thermocline step structure by large-amplitude internal gravity waves. J. Geophys. Res., 74, 6975–6983. [146]CrossRefGoogle Scholar
Osborn, T. R. (1974). Vertical profiling of velocity microstructure. J. Phys. Oceanogr., 4, 109–115. [174]2.0.CO;2>CrossRefGoogle Scholar
Osborn, T. R. (1980). Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 83–89. [181]2.0.CO;2>CrossRefGoogle Scholar
Osborn, T. R. and Cox, C. S. (1972). Oceanic fine structure. Geophys. Fluid Dyn., 3, 321–345. [181]CrossRefGoogle Scholar
Osborn, T. R. and Lueck, R. G. (1985). Turbulence measurements from a submarine. J. Phys. Oceanogr., 15, 1502–1520. [173]2.0.CO;2>CrossRefGoogle Scholar
Osborn, T. R., Farmer, D. M., Vagle, S., Thorpe, S. A. and Cure, M. (1992). Measurements of bubble plumes and turbulence from a submarine. Atmosphere Ocean, 30, 419–440. [173]CrossRefGoogle Scholar
Osterkamp, T. E. (2001). Sub-sea permafrost. In Encyclopedia of Ocean Scences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian, vol. 5. London: Academic Press, pp. 2902–2912. [122]Google Scholar
Özkan-Haller, H. T. and Kirby, J. T. (1999). Non-linear evolution of shear instabilities in the longshore current and comparison of observations and computations. J. Geophys. Res., 104, 25953–25984. [17, 299]CrossRefGoogle Scholar
Ozmidov, R. V. (1965). On some features of energy spectra of oceanic turbulence. Doklady Ak. Nauk. SSSR, 161, 828–831. [261]Google Scholar
Pak, H., Zaneveld, R. V. and Kitchen, J. (1980). Intermediate nepheloid layers observed off Oregon and Washington. J. Geophys. Res., 85, 6697–6708. [226]CrossRefGoogle Scholar
Paka, V. T., Nabatoz, V. N., Lozovatsky, I. D. and Dillon, T. M. (1999). Oceanic microstructure measurements bt BAKLAN and GRIF. J. Atmos. Oceanic. Technol., 16, 1519–1532. [173, 180]2.0.CO;2>CrossRefGoogle Scholar
Pan, Y. and Banerjee, S. (1995). A numerical study of free-surface turbulence in channel flow. Phys. Fluids, 7, 1649–1664. [285]CrossRefGoogle Scholar
Park, Y.-G., Whitehead, J. A. and Gnanadeskian, A. (1994). Turbulent mixing in stratified fluids: layer formation and energetics. J. Fluid Mech., 279, 279–311. [193]CrossRefGoogle Scholar
Paulson, C. A. and Simpson, J. J. (1981). The temperature difference across the cool skin of the ocean. J. Geophys. Res., 86, 11044–11054. [17]CrossRefGoogle Scholar
Pawlak, G. and Armi, L. (1998). Vortex dynamics in a spatially accelerating shear layer. J. Fluid Mech., 376, 1–35. [93, 94, 99, 100, 334, 336]CrossRefGoogle Scholar
Pawlak, G. and Armi, L. (2000). Mixing and entrainment in developing stratified currents. J. Fluid Mech., 424, 45–73. [93, 99, 334]CrossRefGoogle Scholar
Peregrine, D. H. (1983). Breaking waves on beaches. Ann. Rev. Fluid Mech., 15, 149–178. [293]CrossRefGoogle Scholar
Peregrine, D. H. (1998). Surf zone currents. Theoret. Comput. Fluid Dynamics, 10, 295–309. [299]CrossRefGoogle Scholar
Peters, H. and Gregg, M. C. (1988). Some dynamical and statistical properties of Equatorial turbulence. In Small-Scale Turbulence and Mixing in the Ocean, ed. , J. C. J. Nihoul and , B. M. Jamart. Amsterdam: Elsevier Oceanography Series, Elsevier, pp. 185–200. [182, 187]Google Scholar
Peters, H., Gregg, M. C. and Toole, J. M. (1988). On the parametrization of equatorial turbulence. J. Geophys. Res., 93, 1199–1218. [176, 204]CrossRefGoogle Scholar
Pettersson, O. (1909). Gezeitenähnliche Bewegungen des Tiefenwassers. Publ. de Circonstances, Cons. Int. Explor. Mer, Copenhagen, 47, 1–21. [46]Google Scholar
Phillips, O. M. (1966). The Dynamics of the Upper Ocean. Cambridge: Cambridge University Press. [xii, 49, 67, 303]Google Scholar
Phillips, O. M. (1970). On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res., 17, 435–443. [316, 317]Google Scholar
Phillips, O. M. (1971). On spectra measured in an undulating layered medium. J. Phys. Oceanogr., 1, 1–6. [191]2.0.CO;2>CrossRefGoogle Scholar
Phillips, O. M. (1972). Turbulence in a stratified fluid: is it stable?Deep-Sea Res., 19, 79–81. [193]Google Scholar
Phillips, O. M. (1985). Spectral and statistical properties of the equilibrium range of wind-generated gravity waves. J. Fluid Mech., 156, 505–531. [237]CrossRefGoogle Scholar
Piat, J.-F. and Hopfinger, E. J. (1981). A boundary layer topped by a density interface. J. Fluid Mech., 113, 411–432. [72]CrossRefGoogle Scholar
Pingree, R. D. (1996). A shallow subtropical subducting westward propagating eddy (Swesty). Phil. Trans. R. Soc. Lond., A354, 979–1026. [355]CrossRefGoogle Scholar
Pingree, R. D. and Cann, B. (1992). Three anticyclonic Slope Water Oceanic eDDIES (SWODDIES) in the southern Bay of Biscay in 1990. Deep-Sea Res., 39, 1147–1175. [352]CrossRefGoogle Scholar
Pingree, R. D. and Cann, B. (1993). A shallow MEDDY (a SMEDDY) from the secondary Mediterranean salinity maximum. J. Geophys. Res., 98, 20169–20185. [352]CrossRefGoogle Scholar
Pingree, R. D. and Maddock, L. (1977). Tidal eddies and coastal discharge. J. Mar. Biol. Assoc. UK, 57, 869–875. [322]CrossRefGoogle Scholar
Plueddemann, A. J., Smith, J. A., Farmer, D. M., Weller, R. A., Crawford, W. R., Pinkel, R., Vagel, S. and Gnansadesikan, A. (1996). Structure and variability of Langmuir circulation during surface waves Process Program. J. Geophys. Res., 101, 3525–3543. [251]CrossRefGoogle Scholar
Pollard, R. T. and Millard, R. C. (1970). Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res., 17, 813–821. [70]Google Scholar
Pollard, R. T., Rhines, P. B. and Thompson, R. O. R. Y. (1973). The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 3, 381–404. [266]Google Scholar
Polzin, K. (1996). Statistics of the Richardson number: mixing models and fine structure. J. Phys. Oceanogr., 26, 1409–1425. [202, 205]2.0.CO;2>CrossRefGoogle Scholar
Polzin, K. and Ferrari, R. (2004). Isopycnal dispersion in NATRE. J. Phys. Oceanogr., 34. [290, 361]2.0.CO;2>CrossRefGoogle Scholar
Polzin, K. L., Toole, J. M. and Schmitt, R. W. (1995). Finescale parameterisations of turbulent dissipation. J. Phys. Oceanogr., 25, 306–328. [169]2.0.CO;2>CrossRefGoogle Scholar
Polzin, K., Speer, K. G., Toole, J. M. and Schmitt, R. W. (1996). Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature, 380, 54–56. [332]CrossRefGoogle Scholar
Polzin, K. L., Toole, J. M., Ledwell, J. R. and Schmitt, R. W. (1997). Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93–96. [2, 41, 76, 208]CrossRefGoogle ScholarPubMed
Polzin, K., Kunze, E., Hummon, J. and Firing, E. (2002). The finescale response of lowered ADCP velocity profiles. J. Atmos. Oceanic Technol., 19, 205–224. [206]2.0.CO;2>CrossRefGoogle Scholar
Polzin, K. L., Kunze, E., Toole, J. M. and Schmitt, R. W. (2003). The partition of finescale energy into internal waves and subinertial motions. J. Phys. Oceanogr., 33, 234–248. [211, 361]2.0.CO;2>CrossRefGoogle Scholar
Poon, Y. K., Tang, S. and Wu, J. (1992). Interactions between rain and wind waves. J. Phys. Oceanogr., 22, 976–987. [243, 244]2.0.CO;2>CrossRefGoogle Scholar
Posmentier, E. S. (1977). The generation of salinity fine structure by vertical diffusion. J. Phys. Oceanogr., 7, 298–301. [193]2.0.CO;2>CrossRefGoogle Scholar
Pouliquen, O., Chomaz, J. M. and Huerre, P. (1994). Propagating Holmboe waves at the interface between two immiscible fluids. J. Fluid Mech., 266, 277–302. [109]CrossRefGoogle Scholar
Powell, M. D., Vickery, P. J. and Reinhold, T. A. (2003). Reduced drag coefficients in high wind speeds in tropical cyclones. Nature, 422, 278–283. [228]CrossRefGoogle Scholar
Pratt, L., Deese, H., Murray, S. and Johns, W. (2000). Continuous dynamical modes in straits having arbitrary cross sections, with applications to the Bab al Mandab. J. Phys. Oceaogr., 30, 2515–2534. [90, 330]2.0.CO;2>CrossRefGoogle Scholar
Price, J. F., Weller, R. A. and Pinkel, R. (1986). Diurnal cycle: observations and models of the upper ocean response to diurnal heating, cooling and wind mixing. J. Geophys. Res., 91, 8411–8427. [249, 266]CrossRefGoogle Scholar
Prosperetti, A., Crum, L. A. and Pumphrey, H. C. (1989). The underwater noise of rain. J. Geophys. Res., 94, 3255–3259. [245]CrossRefGoogle Scholar
Pruppacher, H. R. and Klett, J. D. (1978). The Microphysics of Clouds and Precipitation. Dordrecht: Riedel. [282]CrossRefGoogle Scholar
Quadfasel, D., Kudrass, H. and Frische, A. (1990). Deep-water renewal by turbidity currents in the Sulu Sea. Nature, 348, 320–322. [319]CrossRefGoogle Scholar
Radko, T. (2003). A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech., 497, 365–380. [139, 140]CrossRefGoogle Scholar
Rahmstorf, S. (2001). Abrupt climate change. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turikian, vol. 1. London: Academic Press, pp. 1–6. [367]Google Scholar
Rainville, L. and Pinkel, R. (2005). Observations of the propagation and nonlinear interaction of the internal tide generated at the Hawaiian Ridge. Submitted to J. Phys. Oceanogr. [70]Google Scholar
Rankin, K. I. and Hires, R. I. (2000). Laboratory measurements of bottom shear stress on a mobile bed. J. Geophys. Res., 105, 17011–17019. [273]CrossRefGoogle Scholar
Rapp, R. J. and Melville, W. K. (1990). Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. Lond., A331, 735–800. [233, 234]CrossRefGoogle Scholar
Raubenheimer, B., Elgar, S. and Guza, R. T. (2004). Observations of swath zone velocities. A note on fiction coefficients. J. Geophys. Res., 107 (C1), doi:10.1029/2029/2003JC00187. [297]Google Scholar
Ray, R. D. and Cartwright, D. E. (1998). Ocean self-attraction and loading in numerical tidal models. Mar. Geol., 21, 181–192. [70]Google Scholar
Ray, R. D. and Mitchem, G. T. (1997). Surface manifestations of internal tides in the deep ocean: observations from altimetry and island gauges. Progress in Oceanogr., 40, 135–162. [55]CrossRefGoogle Scholar
Rayleigh, Lord (1880). On the stability, or instability, of certain fluid motions. Proc. London Math. Soc., 10, 4–13. [83]Google Scholar
Rayleigh, Lord (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170–177. [10]Google Scholar
Rayleigh, Lord (1916). On convection currents in a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag., 32, 529–546. [115]CrossRefGoogle Scholar
Redondo, J. M., du Madron, X., Medina, P., Sanchuz, M. A. and Schaaff, E. (2001). Comparison of sediment resuspension measurements in sheared and zero-mean turbulent flows. Continental Shelf Res., 21, 2095–2103. [279]CrossRefGoogle Scholar
Reverdin, G., Niiler, P. P. and Valdimarsson, H. (2003). North Atlantic ocean surface currents. J. Geophys. Res., 108 (C1), 3002 doi:10.1029/2001JC001020. [344]CrossRefGoogle Scholar
Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond., 174, 935–982; and Scientific Papers (1901), 2, 51–105. [2, 81, 82, 368]CrossRefGoogle Scholar
Reynolds, O. (1895). On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. R. Soc. Lond., A186, 123–164; and Scientific Papers (1901), 2, 535–577. [22, 368]CrossRefGoogle Scholar
Reynolds, O. (1900). On the action of rain to calm the sea. Papers on Mech. and Phys. Subjects, 1, 86–88. Cambridge University Press. [243]Google Scholar
Rhines, P. B. (1975). Waves and turbulence on a β plane. J. Fluid Mech., 69, 417–443. [343]CrossRefGoogle Scholar
Rhines, P. B. (1979). Geostrophic turbulence. Ann. Rev. Fluid Mech., 11, 401–411. [343]CrossRefGoogle Scholar
Richards, K. J. and Pollard, R. T. (1991). Structure of the upper ocean in the western equatorial Pacific. Nature, 350, 48–50. [140]CrossRefGoogle Scholar
Richards, K. J., Smeed, D. A., Hopfinger, E. J. and Chabert d'Hieres, G. (1992). Boundary–layer separation of rotating flows past surface-mounted obstacles. J. Fluid Mech., 26, 1579–1590. [325]Google Scholar
Richardson, L. F. and Stommel, H. (1948). Note on eddy diffusion in the sea. J. Meteorol., 5, 238–240. [33]2.0.CO;2>CrossRefGoogle Scholar
Richardson, P. L. (1983a). Eddy kinetic energy in the North Atlantic from surface drifters. J. Geophys. Res., 88, 4355–4367. [343, 362]CrossRefGoogle Scholar
Richardson, P. L. (1983b). Gulf Stream Rings. In Eddies in Marine Science, ed. , A. R. Robinson. Berlin: Springer-Verlag, pp. 19–45. [348]
Richardson, P. L. (1993). A census of eddies observed in North Atlantic SOFAR float tracks. Progress in Oceanogr., 31, 1–50. [342]CrossRefGoogle Scholar
Richardson, P. L., Walsh, D., Armi, L., Schroder, M. and Price, J. F. (1989). Tracking three Meddies with SOFAR floats. J. Phys. Oceanogr., 19, 371–383. [352, 353]2.0.CO;2>CrossRefGoogle Scholar
Richardson, P. L., Bowers, A. S. and Zenk, W. (2000). A census of Meddies tracked by floats. Progress in Oceanogr., 45, 209–250CrossRefGoogle Scholar
Ridderinkhof, H. and Zimmerman, J. T. F. (1992). Chaotic stirring in a tidal system. Science, 258, 1107–1111. [288]CrossRefGoogle Scholar
Rippeth, T. P., Fisher, N. R. and Simpson, J. H. (2001). The cycle of turbulent dissipation in the presence of tidal straining. J. Phys. Oceanogr., 31, 2458–2471. [290]2.0.CO;2>CrossRefGoogle Scholar
Robinson, S. K. (1991). Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech., 23, 601–639. [217, 218]CrossRefGoogle Scholar
Rona, P. A., Jackson, D. R., Bemis, K. G., Jones, C. D., Mitsuzawa, K., Pulmer, D. R. and Silver, D. (2002). Acoustic advances study of sea floor hydrothermal flow. EOS, 83(44), 497–502. [189]CrossRefGoogle Scholar
Rose, C. P. and Thorne, P. D. (2001). Measurements of suspended sediment transport parameters in a tidal estuary. Continental Shelf Res., 21, 1551–1571. [188, 280]CrossRefGoogle Scholar
Rossby, T. and Webb, D. (1970). Observing abyssal motions by tracking Swallow floats in the SOFAR channel. Deep-Sea Res., 17, 359–365. [341]Google Scholar
Rossby, H. T., Riser, S. C. and Mariano, A. J. (1983). The western North Atlantic – a Lagrangian viewpoint. In Eddies in Marine Science, ed. , A. R. Robinson. Berlin: Springer-Verlag, pp. 66–91. [342]Google Scholar
Ruddick, B. (2003). Sounding out ocean fine structure. Science, 301, 772–773. [140]CrossRefGoogle ScholarPubMed
Ruddick, D. R. and Turner, J. S. (1979). The vertical length scale of double-diffusive intrusions. Deep-Sea Res., 26A, 903–913. [140, 142]CrossRefGoogle Scholar
Rudnick, D. L. and Ferrari, R. (1999). Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science, 283, 526–529. [131, 229]CrossRefGoogle ScholarPubMed
Rudnick, D. L., Boyd, T. J., Brainard, R. E. and 16 others (2003). From tides to mixing along the Hawaiian Ridge. Science, 301, 355–357. [42, 313, 371]CrossRefGoogle ScholarPubMed
St Laurent, L. and Garrett, C. (2002). The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 2882–2899. [75]
St Laurent, L. and Schmitt, R. W. (1999). The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 29, 1404–1424. [13, 210]2.0.CO;2>CrossRefGoogle Scholar
St Laurent, L. C., Toole, J. M. and Schmitt, R. W. (2001). Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31, 3476–3495. [41, 208, 323, 325]2.0.CO;2>CrossRefGoogle Scholar
Salmun, H. and Phillips, O. M. (1992). An experiment on boundary mixing, part 2. Slope dependence at small angles. J. Fluid Mech., 240, 355–378. [318]CrossRefGoogle Scholar
Sanford, T. B. and Lien, R.-C. (1999). Turbulent properties in a homogeneous tidal bottom boundary layer. J. Geophys. Res., 104, 1245–1257. [275, 276]CrossRefGoogle Scholar
Sanford, T. B., Drever, R. G. and Dunlap, J. H. (1985). An acoustic Doppler and electromagnetic velocity profiler. J. Atmos. Oceanic Technol., 2, 110–124. [173]2.0.CO;2>CrossRefGoogle Scholar
Sanford, T. B., Carlson, J. A., Dunlap, J. H., Prater, M. D. and Lien, R.-C. (1999). An electromagnetic vorticity and velocity sensor for observing finescale kinetic fluctuations in the ocean. J. Atmos. Oceanic Technol., 16, 1647–1667. [277]2.0.CO;2>CrossRefGoogle Scholar
Sarmiento, J. L. (1983). A simulation of bomb tritium entry into the Atlantic Ocean. J. Phys. Oceanogr., 13, 1924–1939. [357]2.0.CO;2>CrossRefGoogle Scholar
Saunders, P. M. (1967). The temperature at the ocean–air interface. J. Atmos. Sci., 24, 269–273. [17]2.0.CO;2>CrossRefGoogle Scholar
Saunders, P. M. (1983). Benthic observations on the Madeira abyssal plain: currents and dispersion. J. Phys. Oceanogr., 13, 1416–1429. [225]2.0.CO;2>CrossRefGoogle Scholar
Saunders, P. M. (1987). Flow through Discovery Gap. J. Phys. Oceanogr., 17, 631–643. [208, 209]2.0.CO;2>CrossRefGoogle Scholar
Scandura, P., Vittori, G. and Blondeaux, P. (2000). Three-dimensional oscillatory flow over steep ripples. J. Fluid Mech., 412, 355–378. [277]CrossRefGoogle Scholar
Schmitt, R. W. (1979). Flux measurements on salt fingers at an interface. J. Mar. Res., 37, 419–436. [139]Google Scholar
Schmitt, R. W. (1981). Form of the temperature-salinity relationship in the Central Water: evidence of double-diffusive mixing. J. Phys. Oceanogr., 11, 1015–1026. [136]2.0.CO;2>CrossRefGoogle Scholar
Schmitt, R. W. (1994). Double diffusion in oceanography. Annu. Rev. Fluid Mech., 26, 255–285. [139, 183]CrossRefGoogle Scholar
Schmitt, R. W. (1995). The salt finger experiments of Jevons (1857) and Rayleigh (1880). J. Phys. Oceanogr., 25, 8–17. [132]2.0.CO;2>CrossRefGoogle Scholar
Schmitt, R. W. (2001). Double-diffusive convection. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian, vol. 2. London: Academic Press, pp. 757–766. [133]Google Scholar
Schmitt, R. W. and Evans, D. L. (1978). An estimate of the vertical mixing due to salt fingers based on observations in the North Atlantic Central Water. J. Geophys. Res., 83, 2913–2919. [132]CrossRefGoogle Scholar
Schmitt, R. W. and Georgi, D. T. (1982). Finestructure and microstructure in the North Atlantic Current. J. Mar. Res., 40 (Suppl.), 657–705. [137]Google Scholar
Schmitt, R. W. and Ledwell, J. R. (2001). Dispersion and diffusion in the deep ocean. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian, vol. 2. London: Academic Press, pp. 726–733. [12, 208, 362]Google Scholar
Schmitt, R. W., Lueck, R. G. and Joyce, T. M. (1986). Fine- and microstructure at the edge of a warm core ring. Deep-Sea Res., 33, 1665–1690. [140]CrossRefGoogle Scholar
Schmitt, R. W., Perkins, H., Boyd, J. D. and Stalcup, M. C. (1987). C-SALT: an investigation of the thermohaline staircase in the western tropical North Atlantic. Deep-Sea Res., 34, 1655–1704. [138]CrossRefGoogle Scholar
Schmitt, R. W., Toole, J. M., Koehler, R. L., Mellinger, E. C. and Doherty, K. W. (1988). The development of a fine and microstructure profiler. J. Atmos. Oceanic Technol., 5, 484–500. [173]2.0.CO;2>CrossRefGoogle Scholar
Schmitz, W. J., Holland, W. R. and Price, J. F. (1983). Mid-latitude mesoscale variability. Rev. Geophys. & Space Phys., 21, 1109–1118. [343]CrossRefGoogle Scholar
Schott, F. and Leaman, K. D. (1991). Observations with moored Doppler current profilers in the convection region in the Golfe du Lion. J. Phys. Oceanogr., 21, 558–574. [129]2.0.CO;2>CrossRefGoogle Scholar
Schott, F., Visbeck, M., Send, U., Fischer, J., Stramma, L. and Desaubies, Y. (1996). Observations of deep convection in the Gulf of Lions, northern Mediterranean, during winter of 1991/2. J. Phys. Oceanogr., 26, 505–524. [129]2.0.CO;2>CrossRefGoogle Scholar
Tokos, Schultz, , K. H. L., Hinrichsen, H.-H. and Zenk, W. (1994). Merging and migration of two Meddies. J. Phys. Oceanogr., 24, 2129–2140. [352, 353]2.0.CO;2>CrossRefGoogle Scholar
Scinocca, J. F. (1995). The mixing of mass and momentum by Kelvin–Helmholtz billows. J. Atmos. Sci., 52, 2509–2530. [92, 103]2.0.CO;2>CrossRefGoogle Scholar
Scorer, R. (1951). Billow clouds. Quart. J. R. Meteorol. Soc., 77, 235–240. [83]CrossRefGoogle Scholar
Scotti, R. S. and Corcos, G. M. (1972). An experiment on the stability of small disturbances in a stratified free shear flow. J. Fluid Mech., 52, 499–528. [93]CrossRefGoogle Scholar
Seim, H. E. (1999). Acoustic backscatter from turbulent microstructure. J. Atmos. Oceanic Technol., 16, 1491–1498. [188]2.0.CO;2>CrossRefGoogle Scholar
Seim, H. E., Gregg, M. C. and Miyamoto, R. T. (1995). Acoustic backscatter from turbulent microstructure. J. Atmos. Oceanic Technol., 12, 367–380. [197, 199]2.0.CO;2>CrossRefGoogle Scholar
Send, U. and Marshall, J. (1995). Integral effects of deep convection. J. Phys. Oceanogr., 25, 855–872. [129, 130]2.0.CO;2>CrossRefGoogle Scholar
Sharples, J. and Simpson, J. H. (2001). Shelf-sea and slope fronts. In Encyclpedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turekian, vol. 5. London: Academic Press, pp. 2760–2768. [15]Google Scholar
Shay, T. J. and Gregg, M. C. (1984). Turbulence in an oceanic convective layer. Nature, 310, 282–285. (Corrigendum, 311, 84.) [246, 247]CrossRefGoogle Scholar
Shay, T. J. and Gregg, M. C. (1986). Convectively driven turbulent mixing in the upper ocean. J. Phys. Oceanogr., 16, 1777–1798. [247, 248]2.0.CO;2>CrossRefGoogle Scholar
Shen, C. Y. and Meid, R. P. (1986). Statistics of internal wave overturning from observations of upper ocean temperature. J. Phys. Oceanogr., 16, 1763–1776. [201]2.0.CO;2>CrossRefGoogle Scholar
Shirtcliffe, T. G. L. (1969). The development of layered thermosolutal convection. Int. J. Heat. Mass Transfer, 12, 215–222. [137]CrossRefGoogle Scholar
Shirtcliffe, T. G. L. and Turner, J. S. (1970). Observations of the cell structure of salt fingers. J. Fluid Mech., 41, 707–719. [135]CrossRefGoogle Scholar
Shrira, V. I., Voronovich, V. V. and Kozhelupova, N. G. (1997). Explosive instability of vorticity waves. J. Phys. Oceanogr., 27, 547–554. [298]2.0.CO;2>CrossRefGoogle Scholar
Siddiqui, M. H. K., Loewen, M. R., Asher, W. F. and Jessup, A. T. (2004). Coherent structures beneath wind waves and their influence on air–water gas transfer. J. Geophys. Res., 109 (C3), C03024, doi:10.1029/2002JC001559, 2004. [231]CrossRefGoogle Scholar
Signell, R. P. and Geyer, W. R. (1991). Transient eddy formation around headlands. J. Geophys. Res., 96, 2561–2575. [322]CrossRefGoogle Scholar
Simpson, J. E. (1997). Gravity Currents in the Environment and the Laboratory, 2nd edn. Cambridge: Cambridge University Press. [6, 52, 319]Google Scholar
Simpson, J. H. (1981). The shelf sea fronts: implications of their existence and behaviour. Phil. Trans. R. Soc. Lond., A302, 531–546. [282, 283]CrossRefGoogle Scholar
Simpson, J. H. and Bowers, D. (1981). Models of stratification and frontal movement in shelf seas. Deep-Sea Res., 28A, 727–738. [283]CrossRefGoogle Scholar
Simpson, J. H. and Hunter, J. R. (1974). Fronts in the Irish Sea. Nature, 250, 404–406. [282]CrossRefGoogle Scholar
Simpson, J. H. and Sharples, J. (1994). Does the Earth's rotation influence the location of the shelf sea fronts?J. Geophys. Res., 99(C2), 3315–3319. [283]CrossRefGoogle Scholar
Simpson, J. H., Crawford, W. R., Rippeth, T. P., Campbell, A. R. and Choek, J. V. S. (1996). The vertical structure of turbulent dissipation in shelf seas. J. Phys. Oceanogr., 26, 1579–1590. [283]2.0.CO;2>CrossRefGoogle Scholar
Simpson, J. H., Rippeth, T. P. and Campbell, A. R. (2000). The phase lag of turbulent dissipation in tidal flow. From Interactions Between Estuaries, Coastal Seas and Shelf Seas, ed. , T. Yanagi. Tokyo: Terra Scientific Pub Co. (TERRAPUB), pp. 57–67. [16]Google Scholar
Simpson, J. H., Burchard, H., Fisher, N. R. and Rippeth, T. P. (2002). The semi-diurnal cycle of dissipation in a ROFI: model-measurement comparisons. Continental Shelf Res., 22, 1615–1628. [16]CrossRefGoogle Scholar
Skyllingstad, E. D. and Denbo, D. W. (1995). An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 8501–8522. [256]CrossRefGoogle Scholar
Skyllingstad, E. D., Paulson, C. A., Pegan, W. S., McPhee, M. G. and Stanton, T. (2003). Effects of keels on ice bottom turbulent exchange. J. Geophys. Res., 108(C12), doi:10.1029/2002JC001488. [228]CrossRefGoogle Scholar
Skyllingstad, E. D., Smyth, W. D., Moum, J. N. and Wijesekera, H. (1999). Upper-ocean turbulence during a westerly wind burst: a comparison of large-eddy simulation results and microstructure measurements. J. Phys. Oceanogr., 29, 5–28. [247, 265, 266]2.0.CO;2>CrossRefGoogle Scholar
Skyllingstad, E. D., Smyth, W. D. and Crawford, G. B. (2000). Resonant wind-driven mixing in the ocean boundary layer. J. Phys. Oceanogr., 30, 1866–1890. [266]2.0.CO;2>CrossRefGoogle Scholar
Sleath, J. F. A. (1985). Energy dissipation in oscillating flow over rippled beds. Coastal Engineering, 9, 159–170. [273, 274]CrossRefGoogle Scholar
Sleath, J. F. A. (1987). Turbulent oscillatory flow over rough beds. J. Fluid Mech., 182, 369–409. [277]CrossRefGoogle Scholar
Sleath, J. F. A. (1990). Seabed boundary layers. In The Sea, ed. , B. LeMehaute and , D. M. Hanes, vol. 9B. New York: John Wiley and Sons, pp. 693–727. [277]Google Scholar
Slinn, D. N., Allen, J. S., Newberger, P. A. and Holman, R. A. (1998). Nonlinear shear instabilities of alongshore currents over barred beaches. J. Geophys. Res., 103, 18357–18379. [299]CrossRefGoogle Scholar
Small, J. (2003). The reflection and shoaling of non-linear internal waves at the Malin shelf break. J. Phys. Oceanogr., 33, 2657–2674. [49]2.0.CO;2>CrossRefGoogle Scholar
Smayda, T. J. and Reynolds, C. S. (2001). Community assembly in marine phytoplankton; applications of recent models to harmful dinoflagellate blooms. J. Plankton Res., 23, 447–461. [267]CrossRefGoogle Scholar
Smith, J. A. (1996). Observations of Langmuir circulation, waves and the mixed layer. In The Air–Sea Interface: Radio and Acoustic Sensing, Turbulence and Wave Dynamics, ed. , M. A. Donelan, , W. H. Hi and , W. J. Plant. Toronto: University of Toronto Press, pp. 613–22. [252, 253]Google Scholar
Smith, J. A. (1998). Evolution of Langmuir circulation during a storm. J. Geophys. Res., 103, 12649–12668. [251]CrossRefGoogle Scholar
Smith, J. A. and Largier, J. L. (1995). Observations of nearshore circulation: rip currents. J. Geophys. Res., 100, 10967–10975. [299]CrossRefGoogle Scholar
Smith, J., Pinkel, R. and Weller, R. A. (1987). Velocity structure in the mixed layer during MILDEX. J. Phys. Oceanogr. 17, 425–39. [253]2.0.CO;2>CrossRefGoogle Scholar
Smyth, C. and Hay, A. D. (2003). Near-bed turbulence and bottom friction during SandyDuck 97. J. Geophys. Res., 108, 3197, doi:10.1029/2001JC000952. [281]CrossRefGoogle Scholar
Smyth, W. D. (2004). Kelvin–Helmholtz billow evolution from a localized source. Submitted to Quart. J. R. Met. Soc., 130, 2753–2766. [111]CrossRefGoogle Scholar
Smyth, W. D. and Peltier, W. (1989). The transition between Kelvin–Helmholtz and Holmboe instability: an investigation of the overreflection hypothesis. J. Atmos. Sci., 46, 3698–3720. [109]2.0.CO;2>CrossRefGoogle Scholar
Smyth, W. D. and Peltier, W. (1990). Three-dimensional primary instabilities of a stratified, dissipative stratified flow. Geophys. Astrophys. Fluid Dyn., 52, 249–261. [109]CrossRefGoogle Scholar
Smyth, W. D. and Winters, K. B. (2003). Turbulence and mixing in Holmboe waves. J. Phys. Oceanogr., 33, 694–711. [103, 109]2.0.CO;2>CrossRefGoogle Scholar
Smyth, W. D., Zavialov, P. O. and Moum, J. N. (1997). Decay of turbulence in the upper ocean following sudden isolation from surface forcing. J. Phys. Oceanogr., 27, 810–822. [247]2.0.CO;2>CrossRefGoogle Scholar
Smyth, W. D., Moum, J. N. and Caldwell, D. R. (2001). The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations. J. Phys. Oceanogr., 31, 1969–1992. [5, 92, 105, 183]2.0.CO;2>CrossRefGoogle Scholar
Snodgrass, F. E., Groves, G. W., Hasselmann, K. F., Miller, G. R., Munk, W. H. and Powers, W. M. (1966). Propagation of ocean swell across the Pacific. Phil. Trans. R. Soc. Lond., A259, 431–497. [111, 291]CrossRefGoogle Scholar
Soloviev, A. and Lucas, R. (2003). Observations of wave-enhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep-Sea Res., 50, 371–395. [237]CrossRefGoogle Scholar
Sonmor, L. J. and Klaassen, G. P. (1997). Towards a unified theory of gravity wave stability. J. Atmos. Sci., 54, 2655–2680. [145]2.0.CO;2>CrossRefGoogle Scholar
Soulsby, R. L. (1983). The bottom boundary layer of shelf seas. In Physical Oceanography of Coastal and Shelf Seas, ed. , B. Johns. Amsterdam: Elsevier, pp. 189–266. [221]Google Scholar
Soulsby, R. L., Atkins, R. and Salkield, A. P. (1994). Observations of the turbulent structure of a suspension of sand in a turbulent current. Continental Shelf Res., 14, 429–435. [280]CrossRefGoogle Scholar
Spelt, P. D. M. and Biesheuvel, A. (1997). On the motion of gas bubbles in homogeneous isotropic turbulence. J. Fluid Mech., 336, 221–244. [241]CrossRefGoogle Scholar
Spigel, R. H., Imberger, J. and Rayner, K. N. (1986). Modelling the diurnal mixed layer. Limnol. Oceanogr., 31, 533–556. [338]CrossRefGoogle Scholar
Spilhaus, A. F. (1937). A bathythermograph. J. Mar. Res., 1, 95–100. [190]CrossRefGoogle Scholar
Squire, H. B. (1933). On the stability of three-dimensional disturbances of viscous flow between parallel walls. Proc. R. Soc. Lond., A142, 621–628. [85]CrossRefGoogle Scholar
Stammer, D. (1997). Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 1743–1769. [114, 347]2.0.CO;2>CrossRefGoogle Scholar
Stammer, D. and Wunsch, C. (1999). Temporal changes in eddy energy of the oceans. Deep-Sea Res. II, 46, 77–108. [345, 346]CrossRefGoogle Scholar
Stansfield, K., Garrett, C. and Dewey, R. (2001). The probability distribution of the Thorpe displacement within overturns in Juan De Fuca Strait. J. Phys. Oceanogr., 31, 3421–3434. [177]2.0.CO;2>CrossRefGoogle Scholar
Stanton, T. P. and Ostrovsky, L. A. (1998). Observations of highly nonlinear internal solitons over the continental shelf. Geophys. Res. Letts., 25, 2695–2698. [51]CrossRefGoogle Scholar
Staquet, C. (2000). Mixing in a stably stratified shear layer: two- and three-dimensional numerical experiments. Fluid Dyn. Res., 27, 367–404. [92]CrossRefGoogle Scholar
Staquet, C. and Sommeria, J. (2002). Internal gravity waves: from instabilities to turbulence. Ann. Rev. Fluid Mech., 34, 559–593. [144]CrossRefGoogle Scholar
Stern, M. E. (1960). The ‘salt fountain’ and thermohaline convection. Tellus, 12, 172–175. [131, 132]CrossRefGoogle Scholar
Stern, M. E. (1967). Lateral mixing of water masses. Deep-Sea Res., 14, 747–753. [140]Google Scholar
Stern, M. and Simeonov, J. A. (2002). Internal wave overturns produced by salt fingers. J. Phys. Oceanogr., 32, 3638–3656. [165]2.0.CO;2>CrossRefGoogle Scholar
Stern, M. and Turner, J. S. (1969). Salt fingers and convecting layers. Deep-Sea Res., 16, 497–511. [135]Google Scholar
Stern, M., Radko, T. and Simeonov, J. (2001). Salt fingers in an unbounded thermocline. J. Mar. Res., 59, 355–390. [165]CrossRefGoogle Scholar
Stevens, C. and Imberger, J. (1996). The initial response of a stratified lake to a surface shear stress. J. Fluid Mech., 312, 39–66. [338]CrossRefGoogle Scholar
Stigebrandt, A. and Aure, J. (1989). Vertical mixing in basin waters of fjords. J. Phys. Oceanogr., 19, 917–926. [333]2.0.CO;2>CrossRefGoogle Scholar
Stillinger, D. C., Helland, K. N. and Atta, C. W. (1983). Experiments on the transition of homogeneous turbulence to internal waves. J. Fluid Mech., 131, 91–122. [184]CrossRefGoogle Scholar
Stips, A., Prandke, H. and Neumann, T. (1998). The structure and dynamics of the bottom boundary layer in shallow sea areas without tidal influence: an experimental approach. Prog. Oceanogr., 41, 383–453. [269]CrossRefGoogle Scholar
Stokes, G. G. (1847). On the theory of oscillatory waves. Trans. Cambridge Philos. Soc., 8, 441–455. [45]Google Scholar
Stommel, H. (1949a). Horizontal diffusion due to oceanic turbulence. J. Mar. Res., 8, 199–225. [33, 261]Google Scholar
Stommel, H. (1949b). Trajectories of small bodies sinking slowly through convection cells. J. Mar. Res., 8, 24–29. [35, 36]Google Scholar
Stommel, H. and Fedorov, K. N. (1967). Small scale structure in temperature and salinity near Timor and Mindinao. Tellus, 19, 306–325. [131, 140, 229]CrossRefGoogle Scholar
Stommel, H., Arons, A. B. and Blanchard, D. (1956). An oceanographical curiosity: the perpetual salt fountain. Deep-Sea Res., 3, 152–153. [116]Google Scholar
Strang, E. J. and Fernando, H. J. S. (2001). Entrainment and mixing in stratified shear flows. J. Fluid Mech., 428, 349–386. [109, 265]CrossRefGoogle Scholar
Sundermeyer, M. A. and Ledwell, J. R. (2001). Lateral dispersion over the continental shelf: analysis of dye release experiments. J. Geophys. Res., 106, 9603–9622. [289]CrossRefGoogle Scholar
Sundermeyer, M. A. and Price, J. F. (1998). Lateral mixing and the North Atlantic Tracer Release Experiment: observations and numerical simulations of Lagrangian particles and a passive tracer. J. Geophys. Res., 103, 21481–21497. [360]CrossRefGoogle Scholar
Sutherland, B. R. (2001). Finite amplitude internal wavepacket dispersion and breaking. J. Fluid Mech., 429, 343–380. [168]CrossRefGoogle Scholar
Sutherland, B. R. and Linden, P. F. (1998). Internal wave excitation from a stratified flow over a thin barrier. J. Fluid Mech., 377, 223–252. [72, 168]CrossRefGoogle Scholar
Sutyrin, G. (1994). Nonlinear Rossby waves and vortices. In Modelling of Oceanic Eddies, ed. , G. J. F. van Heilst. Amsterdam: North-Holland, pp. 93–99. [367]Google Scholar
Svendsen, I. A. (1987). Analysis of surf zone turbulence. J. Geophys. Res., 92, 5115–5124. [297]CrossRefGoogle Scholar
Swallow, J. C. (1971). The Aries current measurements in the western North Atlantic. Phil. Trans. R. Soc. Lond., A270, 451–460. [340]CrossRefGoogle Scholar
Swallow, J. C. and Caston, G. F. (1974). The preconditioning phase of MEDOC 1969. Part I. Observations. Deep-Sea Res., 20, 429–448. [130]Google Scholar
Tait, R. I. and Howe, M. R. (1968). Some observations of thermohaline stratification in the deep ocean. Deep-Sea Res., 15, 275–280. [136]Google Scholar
Tait, R. I. and Howe, M. R. (1971). Thermohaline staircase. Nature, 231, 178–179. [136]CrossRefGoogle ScholarPubMed
Taylor, G. I. (1916). Skin friction of the wind on the Earth's surface. Proc. R. Soc. Lond., A92, 196–199. [269]CrossRefGoogle Scholar
Taylor, G. I. (1919). Tidal friction in the Irish Sea. Phil. Trans. R. Soc. Lond., A220, 1–92. [37, 269]CrossRefGoogle Scholar
Taylor, G. I. (1921). Diffusion by continuous movements. Proc. Lond. Math. Soc, Ser. 2, 20, 196–212. [32]Google Scholar
Taylor, G. I. (1931). Effect of variation of density on the stability of superposed streams of fluid. Proc. R. Soc. Lond., A132, 499–523. [82]CrossRefGoogle Scholar
Taylor, G. I. (1935). Statistical theory of turbulence. Proc. R. Soc. Lond., A151, 421–454. [178]CrossRefGoogle Scholar
Taylor, G. I. (1950). The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. 1. Proc. R. Soc. Lond., A201, 192–196. [10]CrossRefGoogle Scholar
Taylor, G. I. (1953). Dispersion of soluable matter in solvent flowing slowly though a tube. Proc. R. Soc. Lond., A219, 186–203. [287]CrossRefGoogle Scholar
Taylor, G. I. (1954). The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond., A223, 446–468. [287]CrossRefGoogle Scholar
Taylor, J. R. (1993). Turbulence and mixing in the boundary layer generated by shoaling internal waves. Dyn. Atmos. Oceans, 19, 233–258. [307]CrossRefGoogle Scholar
Teixeira, M. A. C. and Belcher, S. E. (2002). On the distribution of turbulence by a progressive surface wave. J. Fluid Mech., 458, 229–267. [236]CrossRefGoogle Scholar
Tennekes, H. and Lumley, J. L. (1972). A First Course in Turbulence, 2nd edn. Cambridge MA: MIT Press. [19, 27, 64]Google Scholar
Terray, E. A., Donelan, M. A., Agarwal, Y. C., Drennan, W. M., Kahma, K. K., Williams, A. J. III, Huang, P. A. and Kitaigorodsk, S. A. ii (1996). Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792–807. [239]2.0.CO;2>CrossRefGoogle Scholar
Thomas, W. H. and Gibson, C. H. (1990). Quantified small-scale turbulence inhibits a red tide dinoflagellate Gonyaulax polyedra Stein. Deep-Sea Res., 37, 1583–1593. [268]CrossRefGoogle Scholar
Thornton, E. B. and Guza, R. T. (1983). Transformation of wave height distribution. J. Geophys. Res., 88, 5925–5938. [297]CrossRefGoogle Scholar
Thorpe, A. J. and Guymar, T. H. (1977). The nocturnal jet. Quart. J. R. Meteorol. Soc., 103, 633–653. [249]CrossRefGoogle Scholar
Thorpe, S. A. (1968a). A method of producing a shear flow in a stratified fluid. J. Fluid Mech., 32, 693–704. [109, 110]CrossRefGoogle Scholar
Thorpe, S. A. (1968b). On the shape of progressive internal waves. Phil. Trans. R. Soc. Lond., A263, 563–614. [87]CrossRefGoogle Scholar
Thorpe, S. A. (1968c). On standing internal gravity waves of finite amplitude. J. Fluid Mech., 32, 489–528. [151, 152, 169]CrossRefGoogle Scholar
Thorpe, S. A. (1969). Experiments on the instability of stratified shear flows: immiscible fluids. J. Fluid Mech., 39, 25–48. [86]CrossRefGoogle Scholar
Thorpe, S. A. (1971a). Asymmetry of the internal seiche in Loch Ness. Nature, 231, 306–308. [46, 52]CrossRefGoogle Scholar
Thorpe, S. A. (1971b). Experiments on the instability of stratified shear flows: miscible fluids. J. Fluid Mech., 46, 299–319. [93, 94, 104]CrossRefGoogle Scholar
Thorpe, S. A. (1973). Experiments on instability and turbulence in a stratified shear flow. J. Fluid Mech., 61, 731–751. [93, 103, 109]CrossRefGoogle Scholar
Thorpe, S. A. (1974). Near-resonant forcing in a shallow two-layer fluid: a model for the internal surge in Loch Ness. J. Fluid Mech. 63, 509–527. [87]CrossRefGoogle Scholar
Thorpe, S. A. (1975). The excitation, dissipation, and interaction of internal waves in the deep ocean. J. Geophys. Res., 80, 328–338. [71]CrossRefGoogle Scholar
Thorpe, S. A. (1977). Turbulence and mixing in a Scottish loch. Phil. Trans. R. Soc. Lond., A286, 125–181. [48, 176, 203]CrossRefGoogle Scholar
Thorpe, S. A. (1978a). The near-surface ocean mixing layer in stable heating conditions. J. Geophys. Res., 83, 2875–2885. [97]CrossRefGoogle Scholar
Thorpe, S. A. (1978b). On the shape and breaking of finite amplitude internal gravity waves in a shear flow. J. Fluid Mech., 85, 7–31. [157, 159]CrossRefGoogle Scholar
Thorpe, S. A. (1978c). On internal gravity waves in an accelerating shear flow. J. Fluid Mech., 88, 623–639. [160]CrossRefGoogle Scholar
Thorpe, S. A. (1981). An experimental study of critical layers. J. Fluid Mech., 103, 321–344. [163]CrossRefGoogle Scholar
Thorpe, S. A. (1982). On the layers produced by rapidly oscillating a vertical grid in a uniformly stratified fluid. J. Fluid Mech., 124, 391–409. [193, 195]CrossRefGoogle Scholar
Thorpe, S. A. (1983). Benthic observations on the Madeira abyssal plain: fronts. J. Phys. Oceanogr., 13, 1430–1440. [224, 225]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (1984). The effect of Langmuir circulation on the distribution of submerged bubbles caused by breaking waves. J. Fluid Mech., 142, 151–170. [253]CrossRefGoogle Scholar
Thorpe, S. A. (1985). Small-scale processes in the upper ocean boundary layer. Nature, 318, 5l9–522. [258, 260]CrossRefGoogle Scholar
Thorpe, S. A. (1987a). Transitional phenomena and the development of turbulence in stratified fluids: a review. J. Geophys. Res. 92(C5), 5231–5248. [93, 99, 102]CrossRefGoogle Scholar
Thorpe, S. A. (1987b). Current and temperature variability on the continental slope. Phil. Trans. R. Soc. Lond., A323, 471–517. [310, 317]CrossRefGoogle Scholar
Thorpe, S. A. (1989). The distortion of short internal waves produced by a long wave, with application to ocean boundary mixing. J. Fluid Mech., 208, 395–415. [151]CrossRefGoogle Scholar
Thorpe, S. A. (1992). The break-up of Langmuir circulation and the instability of an array of vortices. J. Phys. Oceanogr., 22, 350–360. [253]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (1994a). Statically unstable layers produced by overturning internal gravity waves. J. Fluid Mech., 260, 333–350. [60, 152]CrossRefGoogle Scholar
Thorpe, S. A. (1994b). The stability of statically unstable layers. J. Fluid Mech., 260, 315–331. [119, 145]CrossRefGoogle Scholar
Thorpe, S. A. (1995). On the meandering and dispersion of a plume of floating particles caused by Langmuir circulation and a mean current. J. Phys. Oceanogr., 25, 685–690. [263]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (1997). On the interactions of internal waves reflecting from slopes. J. Phys. Oceanogr. 27, 2072–2078. [312]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (1999a). A note on the breaking of internal waves in the ocean. J. Phys. Oceanogr., 29, 2433–2441. [150]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (1999b). On internal wave groups. J. Phys. Oceanogr., 29, 1085–1095. [166, 167]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (1999c). Fronts formed by obliquely reflecting internal waves at a sloping boundary. J. Phys. Oceanogr., 29, 2462–2467. [313]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (1999d). The generation of alongslope currents by breaking internal waves. J. Phys. Oceanogr., 20, 29–38. [315]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (2001). On the reflection of internal wave groups from sloping topography. J. Phys. Oceanogr., 31, 3121–3126. [315]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. (2002a). On the dispersion of pairs of internal inertial gravity waves. J. Mar. Res., 60 (3), 461–476. [70]CrossRefGoogle Scholar
Thorpe, S. A. (2002b). The axial coherence of Kelvin–Helmholtz billows. Quart. J. R. Meteorol. Soc., 128, 1529–1542. [98, 99]CrossRefGoogle Scholar
Thorpe, S. A. (2003). A note on standing internal inertial gravity waves of finite amplitude. Geophys. Astrophys Fluid Dyn., 97, 59–74. [55, 151]CrossRefGoogle Scholar
Thorpe, S. A. (2004). Langmuir circulation. Ann. Rev. Fluid Dyn., 36, 55–79. [251]CrossRefGoogle Scholar
Thorpe, S. A. and Brubaker, J. M. (1983). Observations of sound reflection by temperature microstructure. Limnol. Oceanogr., 28, 601–613. [188]CrossRefGoogle Scholar
Thorpe, S. A. and Hall, A. J. (1977). Mixing in upper layer of lake during heating cycle. Nature, 265, 719–722. [259]CrossRefGoogle Scholar
Thorpe, S. A. and Hall, A. J. (1980). The mixing layer of Loch Ness. J. Fluid Mech., 101, 687–703. [259]CrossRefGoogle Scholar
Thorpe, S. A. and Hall, A. J. (1987). Bubble clouds and temperature anomalies in the upper ocean. Nature, 328, 48–51. [250]CrossRefGoogle Scholar
Thorpe, S. A. and Holt, J. T. (1995). The effects of laterally sloping upper and lower boundaries on waves and instability in stratified shear flows. J. Fluid Mech., 286, 49–65. [99]CrossRefGoogle Scholar
Thorpe, S. A. and Jiang, R. (1998). Estimating internal waves and diapycnal mixing from conventional mooring data in a lake. Limnology Oceanogr., 43, 936–945. [339]CrossRefGoogle Scholar
Thorpe, S. A. and Lemmin, U. (1999). Internal waves and temperature fronts on slopes. Annales Geophysicae, 17, 1227–1234. [316]CrossRefGoogle Scholar
Thorpe, S. A. and Umlauf, L. (2002). Internal gravity wave frequencies and wavenumbers from single point measurements over a slope. J. Mar. Res., 60 (4), 690–723. [63, 305]CrossRefGoogle Scholar
Thorpe, S. A. and White, M. (1988). A deep intermediate nepheloid layer. Deep-Sea Res., 35, 1665–1671. [227]CrossRefGoogle Scholar
Thorpe, S. A., Hutt, P. K. and Soulsby, R. (1969). The effect of horizontal gradients on thermohaline convection. J. Fluid Mech., 38, 375–400. [140, 141]CrossRefGoogle Scholar
Thorpe, S. A., Hall, A. J., Packwood, A. R. and Stubbs, A. R. (1985). The use of a towed side-scan sonar to investigate processes near the sea surface. Continental Shelf Research, 4, 597–608. [86]CrossRefGoogle Scholar
Thorpe, S. A., Hall, P. and White, M. (1990). The variability of mixing at the continental slope. Phil. Trans. R. Soc. Lond., A33, 183–194. [310]CrossRefGoogle Scholar
Thorpe, S. A., Curé, M. and White, M. (1991). The skewness of temperature derivatives in oceanic boundary layers. J. Phys. Oceanogr., 21, 428–433. [258, 313]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A., Curé, M., Graham, A. and Hall, A. (1994). Sonar observations of Langmuir circulation and estimates of dispersion of floating particles. J. Atmos. Oceanic Technol., 11, 1273–1294. [288]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A., Lemmin, U., Perrinjaquet, C. and Fer, I. (1999a). Observations of the thermal structure of a lake using a submarine. Limnol. Oceanogr., 44, 1575–1582. [249]CrossRefGoogle Scholar
Thorpe, S. A., Nimmo Smith, W. A. M., Thurnherr, A. M. and Walters, N. J. (1999b). Patterns in foam. Weather, 54, 327–334. [244, 294, 295, 296]CrossRefGoogle Scholar
Thorpe, S. A., Osborn, T. R., Jackson, J. F. E., Hall, A. J. and Lueck, R. G. (2003a). Measurements of turbulence in the upper ocean mixing layer using Autosub. J. Phys. Oceanogr., 33, 122–145. [173, 239, 242, 246, 257, 258, 259, 265]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A., Osborn, T. R., Farmer, D. M. and Vagel, S. (2003b). Bubble clouds and Langmuir circulation: observations and models. J. Phys. Oceanogr., 33, 2013–2031. [243, 268, 280]2.0.CO;2>CrossRefGoogle Scholar
Thoulet, J. (1894). Contribution a l'étude des lacs des Vosges. Bull. Soc. Geogr. Paris, 15, 557–604. [46]Google Scholar
Toggweiler, J. R., Dixon, K. and Bryan, K. (1989). Simulations of radiocarbon in a course-resolution world ocean model. J. Geophys. Res., 94, 8217–8264. [357]CrossRefGoogle Scholar
Tokmakian, R. T. and Challenor, P. G. (1993). Observations in the Canary Basin and the Azores frontal region using Geosat. J. Gephys. Res., 98, 4761–4774. [365]CrossRefGoogle Scholar
Tollmein, W. (1929). Über die Entstehung der Turbulenz. Nachr. Ges. Wiss. Göttingen, Math.-phys. Kl., 1, 21–44. [85]Google Scholar
Toole, J. M. (1981a). Intrusion characteristics in the Antarctic Polar Front. J. Phys. Oceanogr., 11, 780–793. [140, 353]2.0.CO;2>CrossRefGoogle Scholar
Toole, J. M. (1981b). Anomalous characteristics of Equatorial thermohaline finestructure. J. Phys. Oceanogr., 11, 871–876. [140]2.0.CO;2>CrossRefGoogle Scholar
Toole, J. M. and Georgi, D. T. (1981). On the dynamics and effects of double-diffively driven intrusions. Prog. Oceanogr., 10, 123–145. [142]CrossRefGoogle Scholar
Toole, J. M., Schmitt, R. W. and Polzin, K. L. (1997). Near-boundary mixing above the flanks of a midlatitude seamount. J. Geophys. Res., 102, 947–949. [40, 312, 325]CrossRefGoogle Scholar
Townsend, A. A. (1959). Temperature fliuctuations over a heated horizontal surfaceJ. Fluid Mech., 5, 209–241. [119]CrossRefGoogle Scholar
Townsend, A. A. (1962). Natural convection in the Earth's boundary layer. Quart. J. R. Meteorol. Soc., 88, 51–58. [214]CrossRefGoogle Scholar
Townsend, A. A. (1966). Internal waves produced by a convective layer. J. Fluid Mech., 24, 307–319. [72]CrossRefGoogle Scholar
Townsend, A. A. (1968). Excitation of internal waves in a stably stratified atmosphere with considerable wind shear. J. Fluid Mech., 32, 145–171. [72]CrossRefGoogle Scholar
Trenberth, K. E. (2001). El Niňo Southern Oscillation (ENSO). In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turikian, vol. 5. London: Academic Press, pp. 2599–2604. [367]Google Scholar
Trowbridge, J. and Elgar, S. (2001). Turbulence measurements in the surf zone. J. Phys. Oceanogr., 31, 2403–2417. [281, 293]2.0.CO;2>CrossRefGoogle Scholar
Tsimplis, M. (1992). The effect of rain in calming the sea. J. Phys. Oceanogr., 22, 404–412. [243]2.0.CO;2>CrossRefGoogle Scholar
Turner, J. S. (1967). Salt fingers across a density interface. Deep-Sea Res., 14, 599–611. [132, 142]Google Scholar
Turner, J. S. (1973). Buoyancy Effects in Fluids. Cambridge: Cambridge University Press. [6, 132, 229, 264]CrossRefGoogle Scholar
Turner, J. S. (1974). Double-diffusive phenomena. Annu Rev. Fluid Mech., 6, 37–56. [132]CrossRefGoogle Scholar
Turner, J. S. (1978). Double-diffusive intrusions into a density gradient. J. Geophys. Res., 83, 2887–2901. [140]CrossRefGoogle Scholar
Turner, J. S. (1986). Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech., 173, 431–471. [125, 265]CrossRefGoogle Scholar
Turner, J. S. (1997). G. I. Taylor in his later years. Ann. Rev. Fluid Mech., 29, 1–25. [10]CrossRefGoogle Scholar
Uijttewaal, W. S. J. and Jirka, G. H. (2003). Grid turbulence in shallow flow. J. Fluid Mech., 489, 325–344. [286]CrossRefGoogle Scholar
Unesco (1983). Algorithms for computation of fundamental properties of seawater. UNESCO technical papers in marine science, vol. 44. Paris: UNESCO, 53 pages. [6]
Dyke, M. (1982). An Album of Fluid Motion. Stanford, CA: The Parabolic Press. [xi]Google Scholar
Haren, H., Oakey, N. and Garrett, C. (1994). Measurements of internal wave band eddy fluxes above a sloping bottom. J. Mar. Res., 52, 909–946. [314, 315]CrossRefGoogle Scholar
Veron, F. and Melville, W. K. (2001). Experiments on the stability and transition of wind-driven water surfaces. J. Fluid Mech., 446, 25–65. [17, 243, 254, 255]Google Scholar
Versluis, M., Heydt, A v. d., Schmitz, B. and Lohse, D. (2000). How snapping shrimp snap: through cavitation bubbles. Science, 289, 2114–2117. [268]CrossRefGoogle Scholar
Villard, P. V., Osborne, P. D. and Vincent, C. E. (2000). Influence of wave groups on SSC patterns over vortex ripples. Continental Shelf Res., 20, 2391–2410. [280]CrossRefGoogle Scholar
Vlasenko, V. and Hutter, K. (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. Phys. Oceanogr., 32, 1779–1793. [303]2.0.CO;2>CrossRefGoogle Scholar
Voropayev, S. I. and Afanasyev, Ya D. (1992). Two-dimensional vortex-dipole interaction in a stratified fluid. J. Fluid Mech., 236, 665–689. [195, 197]CrossRefGoogle Scholar
Voropayev, S. I., Afanasyev, Ya D. and Filippov, I. A. (1991). Horizontal jets and vortex dipoles in a stratified fluid. J. Fluid Mech., 227, 543–566. [169, 170]CrossRefGoogle Scholar
Wallace, B. C. and Wilkinson, D. L. (1988). Run up of internal waves on a gentle slope in a two-layer system. J. Fluid Mech., 191, 419–442. [299]CrossRefGoogle Scholar
Walsh, D. and Ruddick, B. (1998). Nonlinear equilibriation of thermohaline intrustions. J. Phys. Oceanogr., 28, 1043–1070. [140, 142]2.0.CO;2>CrossRefGoogle Scholar
Wang, G. and Dewar, W. K. (2003). Meddy-seamount interactions: implications for the Mediterranean salt tongue. J. Phys. Oceanogr., 33, 2446–2461. [353]2.0.CO;2>CrossRefGoogle Scholar
Wang, F. J. and Domoto, G. A. (1994). Free-surface Taylor vortices. J. Fluid Mech., 261, 169–198. [293]CrossRefGoogle Scholar
Wang, L.-P. and Maxey, M. R. (1993). Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech., 256, 27–68. [280]CrossRefGoogle Scholar
Watanabe, M. and Hibiya, T. (2002). Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Letts., 29(8), 10.1029/2001GL014422. [41, 65, 73, 346, 371]CrossRefGoogle Scholar
Watson, E. R. (1903). Internal oscillation in the water of Loch Ness. Nature, 69, 174. [46]CrossRefGoogle Scholar
Watson, E. R. (1904). Movements of the waters of Loch Ness, as indicated by temperature observations. Geographical Journal, 24, 430–37. [46]CrossRefGoogle Scholar
Watson, K. M. (1990). The coupling of surface and internal gravity waves: revisited. J. Phys. Oceanogr., 20, 1233–1248. [72]2.0.CO;2>CrossRefGoogle Scholar
Webb, D. J. and Suginohara, N. (2001). Oceanography: vertical mixing in the ocean. Nature, 409, 37. [371]CrossRefGoogle ScholarPubMed
Wedderburn, E. M. (1907). The temperature of the fresh-water lochs of Scotland, with special reference to Loch Ness. With appendix containing special observations made in Loch Ness by members of the Scottish Lake Survey. Trans. R. Soc. Edinburgh, 45, 407–89. [46, 80, 81, 191]CrossRefGoogle Scholar
Wedderburn, E. M. (1911). Some analogies between lakes and oceans. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 4, 55–64. [81]CrossRefGoogle Scholar
Welander, P. (1955). Studies of the general development of motion in a two-dimensional, ideal fluid. Tellus, 7, 141–156. [20, 21]CrossRefGoogle Scholar
Weller, R. A. and Price, J. F. (1988). Langmuir circulation within the oceanic mixed layer. Deep-Sea Res., 35, 711–747. [251, 265]CrossRefGoogle Scholar
Weller, R. A., Dean, J. P., Marra, J., Price, J. F., Francis, E. A. and Broadman, D. C. (1985). Three-dimensional flow in the upper ocean. Science, 227, 1552–1556. [251]CrossRefGoogle ScholarPubMed
Wesson, J. C. and Gregg, M. C. (1988). Turbulent dissipation in the Strait of Gibraltar and associated mixing. In Small-Scale Turbulence and Mixing in the Ocean, ed. , J. C. J. Nihoul and , B. M. Jamart. Amsterdam: Elsevier Oceanography Series, Elsevier, pp. 201–212. [328, 329]Google Scholar
Wesson, J. C. and Gregg, M. C. (1994). Mixing at the Camarinal Sill in the Strait of Gibraltar. J. Geophys. Res., 99, 9847–9878. [19, 20, 176, 177, 328]CrossRefGoogle Scholar
Widnall, S. E. and Sullivan, J. P. (1973). On the stability of vortex rings. Proc. R. Soc. Lond., A332, 335–353. [274]CrossRefGoogle Scholar
Widnall, S. E. and Tsai, C. Y. (1977). The instability of a thin vortex ring of constant vorticity. Phil. Trans. R. Soc. Lond., 287, 273–305. [274]CrossRefGoogle Scholar
Wijesekera, H. W. and Dillon, T. M. (1991). Internal waves and mixing in the upper equatorial Pacific ocean. J. Geophys. Res., 96, 7115–7125. [72]CrossRefGoogle Scholar
Wijesekera, H. W., Paulson, C. A. and Skyllingstad, E. D. (2004). Scaled temperature spectrum in the unstable oceanic surface layer. J. Geophys. Res., 109(C3), C03015, doi:10.1029/2003JC002066, 2004. [258]CrossRefGoogle Scholar
Williams, A. J. III (1975). Images of ocean microstructure. Deep-Sea Res., 22, 811–829. [137]Google Scholar
Williams, A. J. III (1981). A role of double diffusivity in a Gulf Stream frontal intrusion. J. Geophys. Res., 86, 1917–1926. [137]CrossRefGoogle Scholar
Wimbush, M. (1970). Temperature gradient above the deep-sea floor. Nature, 227, 1041–1043. [214, 220]CrossRefGoogle Scholar
Wimbush, M. and Munk, W. (1971). The benthic boundary layer. In The Sea, 4 (1). New York: John Wiley and Sons, pp. 731–758. [214, 220]Google Scholar
Winkel, D. P., Gregg, M. C. and Sanford, T. B. (2002). Patterns of shear and turbulence across the Florida current. J. Phys. Oceanogr., 32, 3269–3285. [331]2.0.CO;2>CrossRefGoogle Scholar
Winters, K. B. and D'Asaro, E. A. (1994). Three-dimensional wave breaking near a critical level. J. Fluid Mech., 272, 255–284. [162]CrossRefGoogle Scholar
Winters, K. B. and Riley, J. J. (1992). Instability of internal waves near a critical level. Dyn. Atmos. Oceans, 16, 249–278. [162]CrossRefGoogle Scholar
Winters, K. B. and Seim, H. E. (2000). The role of dissipation and mixing in exchange flow through a contracting channel. J. Fluid Mech., 407, 265–290. [330]CrossRefGoogle Scholar
Woods, J. D. (1968). Wave-induced shear instability in the summer thermocline. J. Fluid Mech., 32, 791–800. [49, 81, 83, 84, 111, 187, 191]CrossRefGoogle Scholar
Wu, J. (1975). Wind induced currents. J. Fluid Mech., 68, 49–70. [345]CrossRefGoogle Scholar
Wu, C. H. and Nepf, H. M. (2002). Breaking criteria and energy loss for three-dimensional wave breaking. J. Geophys. Res., 107(C10), doi:10.1029/2001 JC001077. [233]CrossRefGoogle Scholar
Wüest, A., Senden, D. C., Imberger, J., Piepke, G. and Gloor, M. (1994). Diapycnal diffusivity measured by tracer and microstructure techniques. Dyn. Atmos. Oceans, 24, 27–39. [339]CrossRefGoogle Scholar
Wunsch, C. (1970). On oceanic boundary mixing. Deep-Sea Res., 17, 293–301. [316, 317]Google Scholar
Wunsch, C. (1972). The spectrum from two years to two minutes of temperature fluctuations at Bermuda. Deep Sea Res., 19, 577–593. [47, 343]Google Scholar
Wunsch, C. (1981). Low frequency variability in the sea. pp 342–374. In Evolution in Physical Oceanography, ed. , B. Warren and , C. Wunsch. Cambridge, MA: MIT Press, pp. 342–374. [342]Google Scholar
Wunsch, C. (1983). Western North Atlantic interior. In Eddies in Marine Science, ed. , A. R. Robinson. Berlin: Springer-Verlag, pp. 46–65. [344]Google Scholar
Wunsch, C. (1997). The vertical partitioning of horizontal kinetic energy. J. Phys. Oceanogr., 27, 1770–1794. [346]2.0.CO;2>CrossRefGoogle Scholar
Wunsch, C. and Ferrari, R. (2004). Vertical mixing, energy and the general circulation of the oceans. Ann. Rev. Fluid Mech., 36, 281–314. [38, 65, 219, 345, 346, 371]CrossRefGoogle Scholar
Wunsch, C. and Stammer, D. (1995). The global frequency-wavenumber spectrum of oceanic variability estimated from the TOPEX/POSEIDON altimeter observations. J. Geophys. Res., 100, 24895–24910. [347]CrossRefGoogle Scholar
Wyrtki, K., Magaad, L. and Hager, J. (1976). Eddy energy in the ocean. J. Geophys. Res., 81, 2641–2646. [343]CrossRefGoogle Scholar
Yaglom, A. M. (1994). A. N. Kolmogorov as a fluid mechanician and founder of a school of turbulence research. Ann. Rev. Fluid Mech., 26, 1–22. [26]CrossRefGoogle Scholar
Yamasaki, H. and Lueck, R. G. (1990). Why oceanic dissipation rates are not lognormal. J. Phys. Oceanogr., 20, 1907–1918. [187]2.0.CO;2>CrossRefGoogle Scholar
Yamasaki, H., Lueck, R. G. and Osborn, T. (1990). A comparison of turbulence data from a submarine and a vertical profiler. J. Phys. Oceanogr., 20, 1778–1786. [187]2.0.CO;2>CrossRefGoogle Scholar
Yap, C. T. and Atta, C. W. (1993). Experimental studies of the development of quasi-two-dimensional turbulence in a stably stratified fluid. Dynamics Atmos. Oceans, 19, 289–323. [194]CrossRefGoogle Scholar
Yih, C. S. (1955). Stability of two-dimensional parallel flows for three-dimensional disturbances. Quart. Appl. Math., 12, 434–435. [85]CrossRefGoogle Scholar
Yih, C. S. (1960). Gravity waves in a stratified fluid. J. Fluid Mech., 8, 481–508. [154]CrossRefGoogle Scholar
Yoshida, S., Ohtani, M., Nishida S. and Linden, P. (1998). Mixing processes in a highly stratified river. In Physical Processes in Lakes and Oceans, ed. , J. Imberger. Amer. Geophys. Union, Coastal and Estuarine Series, pp. 389–400. [111]Google Scholar
Young, W. R., Rhines, P. B. and Garrett, C. J. R. (1982). Shear-flow dispersion, internal waves and horizontal mixing in the ocean. J. Phys. Oceanogr., 12, 515–527. [360]2.0.CO;2>CrossRefGoogle Scholar
Young, W. R., Roberts, A. J. and Stuhne, G. (2001). Reproductive pair correlations and the clustering of organisms. Nature, 412, 328–331. [37]CrossRefGoogle ScholarPubMed
Zedel, L. and Farmer, D. (1991). Organised structures in sub-surface bubble clouds: Langmuir circulation in the upper ocean. J. Geophys. Res., 96, 8889–8900. [253]CrossRefGoogle Scholar
Zeff, B. W., Lanterman, D. D., McAllister, R., Roy, R., Kostelich, E. J. and Lathrop, D. P. (2003). Measuring intense rotation and dissipation in turbulent flows. Nature, 421, 146–149. [28]CrossRefGoogle ScholarPubMed
Zenk, W. (2001). Abyssal currents. In Encyclopedia of Ocean Sciences, ed. , J. H. Steele, , S. A. Thorpe and , K. K. Turikian, vol. 1. London: Academic Press, pp. 12–28. [370]Google Scholar
Zhurbas, V. and Oh, I. S. (2003). Lateral diffusivity and Lagrangian scales in the Pacific Ocean as derived from drifter data. J. Geophys. Res., 108(C5), 3141; doi:10.1029/2002JC001596. [364]CrossRefGoogle Scholar
Zhurbas, V. and Oh, I. S. (2004). Drifter-derived maps of lateral diffusivity in the Pacific and Atlantic Oceans in relation to surface circulation patterns. J. Geophys. Res., 109(C5), doi:10.1029/2003JC002241. [364]CrossRefGoogle Scholar
Zikanov, D. and Slinn, D. N. (2001). Along-slope current generation by obliquely incident internal waves. J. Fluid Mech., 445, 235–261. [18, 315]CrossRefGoogle Scholar
Zilitinikevich, S. S., Kreiman, K. D. and Terzhevik, A. Yu. (1992). The thermal bar. J. Fluid Mech., 236, 27–42. [339]CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • S. A. Thorpe, University of Wales, Bangor
  • Book: The Turbulent Ocean
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511819933.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • S. A. Thorpe, University of Wales, Bangor
  • Book: The Turbulent Ocean
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511819933.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • S. A. Thorpe, University of Wales, Bangor
  • Book: The Turbulent Ocean
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511819933.018
Available formats
×