Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T17:06:09.952Z Has data issue: false hasContentIssue false

6 - Performance of Digital Modulation over Wireless Channels

Published online by Cambridge University Press:  05 June 2012

Andrea Goldsmith
Affiliation:
Stanford University, California
Get access

Summary

We now consider the performance of the digital modulation techniques discussed in the previous chapter when used over AWGN channels and channels with flat fading. There are two performance criteria of interest: the probability of error, defined relative to either symbol or bit errors; and the outage probability, defined as the probability that the instantaneous signal-to-noise ratio falls below a given threshold. Flat fading can cause a dramatic increase in either the average bit error probability or the signal outage probability. Wireless channels may also exhibit frequency-selective fading and Doppler shift. Frequency-selective fading gives rise to intersymbol interference (ISI), which causes an irreducible error floor in the received signal. Doppler causes spectral broadening, which leads to adjacent channel interference (small at typical user velocities) and also to an irreducible error floor in signals with differential phase encoding (e.g. DPSK), since the phase reference of the previous symbol partially decorrelates over a symbol time. This chapter describes the impact on digital modulation performance of noise, flat fading, frequency-selective fading, and Doppler.

AWGN Channels

In this section we define the signal-to-noise power ratio (SNR) and its relation to energy per bit (Eb) and energy per symbol (Es). We then examine the error probability on AWGN channels for different modulation techniques as parameterized by these energy metrics. Our analysis uses the signal space concepts of Section 5.1.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×