Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T12:02:12.896Z Has data issue: false hasContentIssue false

8 - Spread spectrum communications

Published online by Cambridge University Press:  05 June 2012

Ke-Lin Du
Affiliation:
Concordia University, Montréal
M. N. S. Swamy
Affiliation:
Concordia University, Montréal
Get access

Summary

Introduction

Spread spectrum communications was originally used in the military for the purpose of interference rejection and enciphering. In digital cellular communications, spread spectrum modulation is used as a multiple-access technique. Spectrum spreading is mainly performed by one of the following three schemes.

  • Direct sequence (DS): Data is spread and the carrier frequency is fixed.

  • Frequency hopping (FH): Data is directly modulated and the carrier frequency is spread by channel hopping.

  • Time hopping (TH): Signal transmission is randomized in time.

The first two schemes are known as spectral spreading, and are introduced in this chapter. Time hopping is known as temporal spreading, and will be introduced in Chapter 20. Spectrum spreading provides frequency diversity, low PSD of the transmitted signal, and reduced band-limited interference, while temporal spreading has the advantage of time diversity, low instantaneous power of the transmitted signals, and reduced impulse interference.

CDMA is a spread spectrum modulation technology in which all users occupy the same time and frequency, and they can be separated by their specific codes. For DS-CDMA systems, at the BS, the baseband bitstream for each MS is first mapped onto M-ary symbols such as QPSK symbols; each of the I and Q signals is then spread by multiplying a spreading code and then a scrambling code. The spread signals for all MSs are then amplified to their respective power, summed, modulated to the specified band, and then transmitted.

Type
Chapter
Information
Wireless Communication Systems
From RF Subsystems to 4G Enabling Technologies
, pp. 246 - 289
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×