Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T11:15:57.761Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

David J. Connor
Affiliation:
University of Melbourne
Robert S. Loomis
Affiliation:
University of California, Davis
Kenneth G. Cassman
Affiliation:
University of Nebraska, Lincoln
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Crop Ecology
Productivity and Management in Agricultural Systems
, pp. 516 - 545
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbate, P. E., Dardanelli, J. L., Cantarero, M. G., Maturano, M., Melchiori, R. J. M., and Suero, E. E.. 2004. Climate and water availability effects on water-use efficiency in wheat. Crop Sci. 44:474–83.CrossRefGoogle Scholar
Adamchuk, V. I., Dobermann, A., and Ping, J. L.. 2004a. Listening to the story told by yield maps. University of Nebraska Extension Circular 04–704. Lincoln, Nebraska.Google Scholar
Adamchuk, V. I., Hummel, J. W., Morgan, M. T., and Upadhyaya, S. K.. 2004b. On-the-go soil sensors for precision agriculture. Comput. Electron. Agr. 44:71–91.CrossRefGoogle Scholar
Addiscott, T. M. 1988. Long-term leakage from bare unmanured land. Soil Use Manage. 4:91–5.CrossRefGoogle Scholar
Adviento-Borbe, M. A. A., Haddix, M. L., Binder, D. L., Walters, D. T., and Dobermann, A.. 2007. Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Global Change Biol. 13:1972–88.CrossRefGoogle Scholar
,Agricultural Research Council Working Party. 1980. The Nutrient Requirements of Ruminant Livestock. Commonwealth Agricultural Bureaux, Farnham Royal, Slough, UK.Google Scholar
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.. 1998. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper 56, FAO, Rome.Google Scholar
,American Society of Agricultural Engineers (ASAE). 1999. Manure production and characteristics. ASAE Standard ASAE D384.1. ASAE Standards 1999. St. Joseph, MI: ASAE, pp. 663–5.Google Scholar
Ames, B. N., Profet, M., and Gold, L. S.. 1990a. Dietary pesticides (99.99% all natural). Proc. Natl. Acad. Sci. USA. 87:7777–81.CrossRefGoogle Scholar
Ames, B. N., Profet, M., and Gold, L. S.. 1990b. Nature's chemicals and synthetic chemicals: comparative toxicology. Proc. Natl. Acad. Sci. USA. 87:7782–6.CrossRefGoogle ScholarPubMed
Amthor, J. S. 1989. Respiration and Crop Productivity. Springer-Verlag, New York.CrossRefGoogle Scholar
Amthor, J. S. 2007. Improving photosynthesis and yield potential. In Ranalli, P. (ed.) Improvement of Crop Plants for Industrial End Uses. Springer, pp. 27–58.CrossRefGoogle Scholar
Anandakumar, K. 1999. Sensible heat flux over a wheat canopy: optical scintillometer measurements and surface renewal analysis estimations. Agric. For. Meteorol. 96:145–56.CrossRefGoogle Scholar
Annandale, J. G., Jovanovic, N. Z., Campbell, G. S., Sautoy, N. Du, and Lobit, P.. 2004. Two-dimensional solar radiation interception model for hedgerow fruit trees. Agric. For. Meteorol. 121:207–25.CrossRefGoogle Scholar
Angus, J. F. 2001. Nitrogen supply and demand in Australian agriculture. Aust. J. Exp. Agric. 41:277–88.CrossRefGoogle Scholar
Angus, J. F., Cunningham, M. W., Moncur, M. W., and Mackenzie, D. J.. 1981. Phasic development in field crops. I. Thermal response in the seedling phase. Field Crops Res. 3:365–78.CrossRefGoogle Scholar
Anon. 1988. Draft: Salinity and Drainage Strategy. Discussion Paper No. 1. Murray–Darling Basin Ministerial Council, Canberra.
, Anon. 2009. Supercharging the rice engine. CSA News 54(7):4–6.Google Scholar
Arkley, R. J. 1963. Relationships between plant growth and transpiration. Hilgardia 34:559–84.CrossRefGoogle Scholar
Austin, R. B., Bingham, J., Blackwell, R. D., Evans, L. T., and Ford, M. A.. 1980. Genetic improvements in winter wheat yields since 1900 and associated physiological changes. J. Agric. Sci. (Camb.) 94:675–89.CrossRefGoogle Scholar
Avlani, P. K. and Chancellor, W. J.. 1977. Energy requirements for wheat production and use in California. Trans. ASAE 20:429–37.CrossRefGoogle Scholar
Ayers, R. S. and Westcot, D. W.. 1985. Water Quality for Agriculture. Irrig. Drain. Paper No. 29(rev. 1). Rome, Italy: FAO.Google Scholar
Azevedo, J. and Stout, P. R.. 1974. Farm Animal Manures: An Overview of their Role in the Agricultural Environment. Manual 44. Calif. Agric. Exp. Stn., Univ. California, Berkeley.Google Scholar
Badger, P. C. 2002. Ethanol from cellulose: a general review. In Janick, J. and Whipkey, A. (eds.) Trends in New Crops and New Uses. Alexandria, VA: ASHS Press, pp. 17–21.Google Scholar
Badgley, C., Moghtader, J., Quintero, E.et al. 2007. Organic agriculture and the global food supply. Renew. Agric. Food Syst. 22:86–108.CrossRefGoogle Scholar
Bair, R. A. 1942. Growth rates of maize under field conditions. Plant Physiol. 17:619–31.CrossRefGoogle ScholarPubMed
Baker, D. N. and Meyer, R. E.. 1966. Influence of stand geometry on light interception and net photosynthesis in cotton. Crop Sci. 6:15–19.CrossRefGoogle Scholar
Baker, D. N., Lambert, J. R., and McKinion, J. M.. 1983. GOSSYM: A Simulator of Cotton Crop Growth and Yield. South Carolina Agric. Exp. Sm. Tech. Bull., 1089. Clemson Univ., Clemson.Google Scholar
Baker, J. M. and Griffith, T. J.. 2005. Examining strategies to improve the carbon balance of corn/soybean agriculture using eddy covariance and mass balance techniques. Agric. For. Meteorol. 128:163–77.CrossRefGoogle Scholar
Baker, J. M., Ochsner, R. T., Venterea, R. T., and Griffis, T. J.. 2007. Tillage and carbon sequestration – what do we really know? Agric. Ecosys. Envir. 118:1–5.CrossRefGoogle Scholar
Banziger, M., Setimela, P. S., Hodson, D., and Vivek, B.. 2006. Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agric. Water Manage. 2006: 80:212–24.CrossRefGoogle Scholar
Bartholomew, D. 1982. Environmental control of dry-matter production in pineapple. I. In Ting, I. and Gibbs, M. (eds.) Crassulacean Acid Metabolism. Rockville, Maryland: Am. Soc. Plant Physiol, pp. 278–94.Google Scholar
Bates, S. L., Zhao, J. Z., Roush, R. T., and Shelton, A. M.. 2005. Insect resistance management in GM crops: past, present, and future. Nature Biotech. 23:57–62.CrossRefGoogle Scholar
Batjes, N. H. 2009. Harmonized soil profile data for applications at global and continental scales: updates to the WISE database. J. Soil Use & Manage. 25:124–7.CrossRefGoogle Scholar
Beale, P. E. 1974. Regeneration of Trifolium subterraneum cv Yarloop from seed reserves on Kangaroo Island. J. Aust. Inst. Agric. Sci. 40:78–80.Google Scholar
Bellarby, J., Foereid, B., Hastings, A., and Smith, P.. 2008. Cool Farming. Amsterdam: GreenPeace International.Google Scholar
Berni, J. A. J., Zarco-Tejada, P. J., Sepulcre-Cantó, G., Fereres, E., and Villalobos, F.. 2009. Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sensing Environ. 113:2380–8.CrossRefGoogle Scholar
Betrán, F. J., Beck, D., Banziger, M., and Edmeades, G. O.. 2003. Genetic analysis of inbred and hybrid grain yield under stress and nonstress environments in tropical maize. Crop Sci. 43:807–17.CrossRefGoogle Scholar
Bingham, J. 1972. Physiological objectives in breeding for grain yield in wheat. In Lupton, F. G. H., Jenkins, G. and Johnson, R. (eds.) The Way Ahead in Plant Breeding (Proc. 6th Eucarpia Congr.). Cambridge, UK: Plant Breeding Institute, pp. 15–29.Google Scholar
Biscoe, P. V., Scott, R. K., and Monteith, J. L.. 1975. Barley and its environment. III. Carbon budget of the stand. J. Appl. Ecol. 12:269–91.CrossRefGoogle Scholar
Björkman, O. (1981). Responses to different quantum flux densities. In Lange, O. L., Nobel, P. S., Osmond, C. B. and Zeigler, H. (eds.) Physiological Plant Ecology. I. Responses to the Physical Environment (Encycl. Plant Physiol., new ser., vol. 12A). Berlin: Springer-Verlag, pp. 57–107.Google Scholar
Björkman, O., Nobs, M., Pearcy, R., Boynton, J., and Berry, J.. 1969. Characteristics of hybrids between C3 and C4 species of Atriplex. In Hatch, M. D., Osmond, C. B., and Slayter, R. O. (eds.) Photosynthesis and Photorespiration. New York: Wiley-Interscience, pp. 105–19.Google Scholar
Blackmer, A. M., Pottker, D., Cerrato, M. E., and Webb, J.. 1989. Correlations between soil nitrate concentrations in late spring and corn yields in Iowa. J. Prod. Agric. 2:103–9.CrossRefGoogle Scholar
Blanco-Canqui, H. and Lal, R.. 2008. No-tillage and soil-profile carbon sequestration: an on-farm assessment. Soil Sci. Soc. Am. J. 72:693–701.CrossRefGoogle Scholar
Bloom, A. J., Chapin, F. S., and Mooney, H. A.. 1985. Resource limitation in plants – an economic analogy. Ann. Rev. Ecol. Syst. 16:363–92.CrossRefGoogle Scholar
Bloom, A. J., Caldwell, R. M., Finazzo, J., Warner, R. L., and Weisshart, J.. 1989. Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. Plant Physiol. 91:352–6.CrossRefGoogle ScholarPubMed
Boddey, R. M., Urquiaga, S., Reis, V., and Döbereiner, J.. 1991. Biological nitrogen fixation associated with sugar cane. Plant & Soil 137:111–17.CrossRefGoogle Scholar
Boeringa, R. (ed.). 1980. Alternative Methods of Agriculture. Amsterdam:Elsevier Scientific.Google Scholar
Bolaños, J. and Edmeades, G. O.. 1993. Eight cycles of selection for drought tolerance in lowland tropical maize. I. Response in grain yield, biomass, and radiation utilization. Field Crops Res. 31:223–52.Google Scholar
Bolaños, J. and Edmeades, G. O.. 1996. The importance of the anthesis–silking interval in breeding for drought tolerance in tropical maize. Field Crops Res. 48:65–80.CrossRefGoogle Scholar
Bolland, M. and Gilkes, B.. 1990. The poor performance of rock phosphate fertilizers in Western Australia: part 1. The crop and pasture responses. J. Aust. Inst. Agric. Sci. N.S. 3:43–8.Google Scholar
Bolton, J. K. and Brown, R. H.. 1980. Photosynthesis of grass species differing in carbon dioxide fixation pathways. V. Response of Panicum maximum, Panicum milioides and tall fescue (Festuca arundinacea) to nitrogen nutrition. Plant Physiol. 66:97–100.CrossRefGoogle Scholar
Bonachela, S., Orgaz, F., Villalobos, F. J., and Fereres, E.. 2001. Soil evaporation from drip-irrigated olive orchards. Irrig. Sci. 20:65–71.CrossRefGoogle Scholar
Boote, K. J., Jones, J. W., and Hoogenboom, G. H.. 1998. Simulation of crop growth, CROPGRO model. In Peart, R. M. and Curry, R. B. (eds.) Agricultural Systems Modeling and Simulation. New York: Marcel Dekker, pp. 651–93.Google Scholar
Bouldin, D. R., Klausner, S. D., and Reid, W. S.. 1984. Use of nitrogen from manure. In Hauck, R. D. (ed.) Nitrogen in Crop Production. Madison, Wisconsin: Am. Soc. Agron., pp. 221–45.Google Scholar
Bramley, R. G. V. 2009. Lessons from nearly 20 years of precision agriculture research, development, and adoption as a guide to its appropriate application. Crop & Past. Sci. 60:197–217.CrossRefGoogle Scholar
Broadbent, F. E. and Carlton, A. B.. 1978. Field trials with isotopically labelled nitrogen fertilizer. In Nielsen, D. R. and MacDonald, J. G. (eds.) Nitrogen in the Environment, vol. 1. New York: Academic Press, pp. 1–41.Google Scholar
Brody, S. 1945. Bioenergetics and Growth. New York: Reinhold.Google Scholar
Brouder, S. M. and Cassman, K. G.. 1994. Cotton root and shoot response to localized supply of nitrate, phosphate, and potassium: split-pot studies with nutrient solution and vermiculitic soil. Plant & Soil 161:179–93.CrossRefGoogle Scholar
Brouwer, R. 1983. Functional equilibrium: sense or nonsense? Neth. J. Agric. Sci. 31:335–48.Google Scholar
Brown, D. L., Scott, J. T., Peters, E. J., and Baldwin, R. L.. 1989. Influence of sometribove, USAN (recombinant methionyl bovine somatotropin) on the body composition of lactating cattle. Am. Inst. Nutr. 1989:633–8.Google Scholar
Brown, R. C. and Wright, M.. 2009. Biomass conversion to fuels and electrical power. In Howarth, R. W. and Bringezu, S. (eds.) Biofuels: Environmental Consequences and Interactions with Changing Land Use. Proceedings of the Scientific Committee on Problems of the Environment (SCOPE) International Biofuels Project Rapid Assessment, September 22–25, 2008, Gummersbach Germany. Cornell University, Ithaca NY, USA (http://cip.cornell.edu/biofuels/), pp. 53–64.Google Scholar
Brown, R. H. 1978. A difference in N use efficiency in C3 and C4 plants and its implications in adaptation and evolution. Crop Sci. 18:93–8.CrossRefGoogle Scholar
Bryson, R. A. and Murray, T. J.. 1977. Climates of Hunger: Mankind and the World's Changing Weather. Madison: University of Wisconsin Press.Google Scholar
Buol, S. W., Hole, F. D., and McCracken, R. J.. 1989. Soil Genesis and Classification, 3rd edn. Ames: Iowa State University Press.Google Scholar
Buresh, R. J., Reddy, K. R., and Kessell, C.. 2008. Nitrogen transformations in submerged rice soils. In Schepers, J. S. and Raun, W. R. (eds.) Nitrogen in Agricultural Soils. Monograph 49. Madison, WI: Amer. Soc. Agron., pp. 401–36.Google Scholar
Buringh, P. and Heemst, H. D.. 1979. Potential world food production. In Linnemann, H., Hoogh, J., Keyzer, M. A., and Heemst, H. D. (eds.) MOIRA: Model of International Relations in Agriculture (Contr. Econ. Anal. No. 124). Amsterdam, the Netherlands: Elsevier North-Holland, pp. 19–72.Google Scholar
Bywater, A. C. and Baldwin, R. L.. 1980. Alternative strategies in food–animal production. In Baldwin, R. J. (ed.) Animals, Feed, Food and People: an Analysis of the Role of Animals in Food Production (AAAS Sel. Symp. No. 42). Boulder, Colorado: Westview Press, pp. 1–29.Google Scholar
Cain, J. D., Rosier, P. T. W., Meijninger, W., and Bruin, H. A. R.. 2001. Spatially averaged sensible heat fluxes measured over barley. Agric. For. Meteorol. 107:307–22.CrossRefGoogle Scholar
Calvino, P., Sadras, V., Redolatti, M., and Canepa, M.. 2004. Yield responses to narrow rows as related to interception of radiation and water deficit in sunflower hybrids of varying cycle. Field Crops Res. 88:261–7.CrossRefGoogle Scholar
Cardwell, V. B. 1982. Fifty years of Minnesota corn production: sources of yield increase. Agron. J. 74:984–90.CrossRefGoogle Scholar
Cassman, K. G. 1999. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc. National Acad. Sci. USA 96:5952–9.CrossRefGoogle ScholarPubMed
Cassman, K. G. and Pingali, P. L.. 1995. Intensification of irrigated rice systems: learning from the past to meet future challenges. GeoJournal 35:299–305.CrossRefGoogle Scholar
Cassman, K. G. and Wood, S.. 2005. Cultivated systems. In Millennium Ecosystem Assessment: Global Ecosystem Assessment Report on Conditions and Trends. (www.maweb.org//en/products.global.aspx). Washington D.C.: Island Press, pp. 745–94.Google Scholar
Cassman, K. G., Dobermann, A. D., and Walters, D. T.. 2002. Agroecosystems, N-use efficiency, and N management. AMBIO 31:132–40.CrossRefGoogle Scholar
Cassman, K. G., Dobermann, A., Walters, D. T., and Yang, H.. 2003. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 28:315–58.CrossRefGoogle Scholar
Cassman, K. G., Peng, S., Olk, D. C.et al. 1998. Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems. Field Crops Res. 56:7–39.CrossRefGoogle Scholar
Cassman, K. G., Roberts, B. A., Kerby, T. A., Bryant, D. C., and Higashi, S. L.. 1989. Soil potassium balance and cumulative cotton response to annual potassium additions on a vermiculitic soil. Soil Sci. Soc. Am. J. 53:805–12.CrossRefGoogle Scholar
Cassman, K. G., Singleton, P. W., and Linquist, B. A.. 1993. Input/output analysis of the cumulative soybean response to phosphorus on an ultisol. Field Crops Res. 34:23–36.CrossRefGoogle Scholar
Cassman, K. G., Whitney, A. S., and Stockinger, K. R.. 1980. Root growth and dry matter distribution of soybean as affected by phosphorus stress, nodulation, and N source. Crop Sci. 20:239–44.CrossRefGoogle Scholar
,CAST (Council for Agriculture Science and Technology). 1999. Animal Agriculture and Global Food Security. Task Force Report no. 135. Ames, Iowa: Council for Agriculture Science and Technology.Google Scholar
Cerrato, M. E. and Blackmer, A. M.. 1990. Comparison of models for describing corn yield response to nitrogen. Agron. J. 82:138–43.CrossRefGoogle Scholar
Cervinka, V. 1980. Fuel and energy efficiency. In Pimentel, D. (ed.) Handbook of Energy Utilization in Agriculture. Boca Raton, Florida: CRC Press, pp. 15–21.Google Scholar
Chalmers, D. J., Mitchell, P. D., and Heek, L.. 1981. Control of peach tree growth and productivity by regulated water supply, tree density and summer pruning. J. Am. Soc. Hort. Sci. 106:307–12.Google Scholar
Chang, C. C. 1963. An Agricultural Engineering Analysis of Rice Farming Methods in Taiwan. Conf. Paper No. 20. Los Baños, Philippines: IRRI.Google Scholar
Chapman, H. W., Gleason, L. S., and Loomis, W. E.. 1954. The carbon dioxide content of field air. Plant Physiol. 29:500–3.CrossRefGoogle ScholarPubMed
Chapman, S. C. and Edmeades, G. O.. 1999. Selection improves drought tolerance in tropical maize populations. II. Direct and correlated responses among secondary traits. Crop Sci. 39:1315–24.CrossRefGoogle Scholar
Chauhan, B. S., Gill, G. S., and Preston, C.. 2006. Tillage system effects on weed ecology, herbicide activity and persistence: a review. Aust. J. Exp. Agric. 46:1557–70.CrossRefGoogle Scholar
Christopher, J. T., Manschadi, A. M., Hammer, G. L., and Borrell, A. K.. 2008. Developmental and physiological traits associated with high-yield and stay-green phenotype in wheat. Aust. J. Agric. Res. 59:354–64.CrossRefGoogle Scholar
Clover, G. R. G., Jaggard, K. W., Smit, H. G., and Azam-Li, S. N.. 2001. The use of radiation interception and transpiration to predict the yields of healthy, droughted and virus-infected sugar beet. J. Agric. Sci. 136:169–78.CrossRefGoogle Scholar
Cock, J. H., Riano, N. M., El-Sharkawy, M. A., Lopez, Y., and Bastidas, G.. 1987. C3–C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz). II. Initial products of 14CO2 fixation. Photosyn. Res. 12:237–41.CrossRefGoogle Scholar
Cockroft, B. and Mason, W.. 1987. Irrigated agriculture. In Connor, D. J. and Smith, D. F. (eds.) Agriculture in Victoria. Melbourne: Australian Institute of Agricultural Science, pp. 159–77.Google Scholar
Coehlo, D. T. and Dale, R. F.. 1980. An energy-crop growth variable and temperature function for predicting corn growth and development: planting to silking. Agron. J. 72:503–10.Google Scholar
Collino, D. J., Dardanelli, J. L., Sereno, R., and Racca, R. W.. 2000. Physiological responses of argentine peanut varieties to water stress. Water uptake and water use efficiency. Field Crops Res. 68:133–42.CrossRefGoogle Scholar
Connor, D. J. 1983. Plant stress factors and their influence on production of agroforestry plant associations. In Huxley, P. A. (ed.) Plant Research and Agroforestry. Nairobi, Kenya: ICRAF, pp. 401–26.Google Scholar
Connor, D. J. 2001. Optimizing crop diversity. In Nosberger, J., Geiger, H. H. and Struik, P. C. (eds.) Crop Science – Progress and Prospects. Proc. 4th Int. Crop Sci. Cong., Hamburg, 2000. Oxford, UK: CABI International, pp. 191–211.Google Scholar
Connor, D. J. 2004. Designing cropping systems for efficient use of limited water in southern Australia. Europ. J. Agron. 21:419–31.CrossRefGoogle Scholar
Connor, D. J. 2006. Towards optimal designs for hedgerow olive orchards. Aust. J. Agric. Res. 57:1067–72.CrossRefGoogle Scholar
Connor, D. J. 2008. Organic agriculture cannot feed the world. Field Crops Res. 106:187–90.CrossRefGoogle Scholar
Connor, D. J. and Cock, J. H.. 1981. The response of cassava to water shortage. II. Canopy dynamics. Field Crops Res. 4:285–96.CrossRefGoogle Scholar
Connor, D. J. and Hernández, C. G.. 2009. Crops for biofuels: current status and prospects for the future. In Howarth, R. W. and Bringezu, S. (eds.) Biofuels: Environmental Consequences and Interactions with Changing Land Use. Proceedings of the Scientific Committee on Problems of the Environment (SCOPE) International Biofuels Project Rapid Assessment, 22–25 September 2008, Gummersbach Germany (http://cip.cornell.edu/biofuels/). Ithaca NY, USA: Cornell University, pp. 65–80.Google Scholar
Connor, D. J. and Jones, T. R.. 1985. Response of sunflower to strategies of irrigation. II. Morphological and physiological responses to water shortage. Field Crops Res. 12:91–103.CrossRefGoogle Scholar
Connor, D. J. and Loomis, R. S.. 1991. Strategies and tactics for water-limited agriculture in low rainfall mediterranean climates. In Acevedo, E., Fereres, E., Giménez, C. and Srivastrava, J. P. (eds.) Improvement and Management of Winter Cereals under Temperature, Drought and Salinity Stresses. Proceedings of an International Symposium, October 26–29, 1987, Cordoba, Spain. Madrid: INIA, pp. 441–65.Google Scholar
Connor, D. J. and Palta, J. A.. 1981. The response of cassava to water shortage. III. Stomatal control of plant water status. Field Crops Res. 4:297–311.CrossRefGoogle Scholar
Connor, D. J., Centeno, A., and Gómez-del-Campo, M.. 2009. Yield determination in olive hedgerow orchards. II. Analysis of radiation and fruiting profiles in hedgerow olive orchards. Aust. J. Crop & Past. Sci. 60:443–52.CrossRefGoogle Scholar
Connor, D. J., Cock, J. H., and Parra, G. H.. 1981. The response of cassava to water shortage. I. Growth and yield. Field Crops Res. 4:181–200.CrossRefGoogle Scholar
Connor, D. J., Jones, T. J., and Palta, J. A.. 1985a. Response of sunflower to strategies of irrigation. I. Growth, yield and the efficiency of water use. Field Crops Res. 10:15–36.CrossRefGoogle Scholar
Connor, D. J., Palta, J. A., and Jones, T. R.. 1985b. Response of sunflower to strategies of irrigation. III. Crop photosynthesis and transpiration. Field Crops Res. 12:281–93.CrossRefGoogle Scholar
Connor, D. J., Sadras, V. O., and Hall, A. J.. 1995. Canopy nitrogen distribution and the photosynthetic performance of sunflower crops during grain filling – a quantitative analysis. Oecol. 101:274–81.CrossRefGoogle ScholarPubMed
Connor, D. J., Theiveyanathan, S., and Rimmington, G. M.. 1992. Development, growth, water-use and yield of a spring and a winter wheat in response to time of sowing. Aust. J. Agric. Res. 43:493–516.CrossRefGoogle Scholar
Cook, P. G., Leaney, F. W., and Jolly, I. D.. 2001. Groundwater Recharge in the Mallee Region, and Salinity Implications for the Murray River. a Review. CSIRO 45/01, Canberra.Google Scholar
Cooper, J. P. 1970. Potential production and energy conservation in temperate and tropical grasses. Herbage Abst. 40:113–58.Google Scholar
Cooper, P. J. M., Gregory, P. J., Tully, D., and Harris, H. C.. 1987. Improving water use efficiency of annual crops in the rainfed farming systems of west Asia and North Africa. Exp. Agric. 23:113–58.CrossRefGoogle Scholar
Cornish, P. S. 1987. Effects of residues and tillage on the water balance of a red earth soil. In Reeves, T. G. (ed.) Proceedings of the Fourth Australian Agronomy Conference. Melbourne: Aust. Soc. Agron., p. 294.Google Scholar
Cornish, P. S. and Pratley, J. E.. 1987. Tillage: New Directions in Australian Agriculture. Melbourne: Inkata Press.Google Scholar
Cowan, I. R. 1965. Transport of water in the soil–plant–atmosphere system. J. Appl. Ecol. 2:221–39.CrossRefGoogle Scholar
Cowan, I. R. 1982. Regulation of water use in relation to carbon gain in higher plants. In Lange, O. L., Nobel, P. S., Osmond, C. B., and Ziegler, H. (eds.) Physiological Plant Ecology 11. Water Relations and Carbon Assimilation (Encycl. Plant Physiol., new ser. vol. 12B). Berlin: Springer-Verlag, pp. 589–613.Google Scholar
Cowan, I. R. 1986. Economics of carbon fixation in higher plants. In Givnish, T. J. (ed.) On the Economy of Plant Form and Function. Cambridge University Press, pp. 133–70.Google Scholar
DeDatta, S. K. 1981. Principles and Practices of Rice Production. New York: John Wiley.Google Scholar
Demment, M. W., Young, M. M., and Sensenig, R. L.. 2003. Providing micronutrients through food-based solutions: a key to human and national development. J. Nutr. 133 supplement: 3879S–3885S.CrossRefGoogle ScholarPubMed
Denison, R. F. 2007. When can intelligent design of crops by humans outperform natural selection? In Spiertz, J. H. J., Struik, P. C., and Laar, H. H. (eds.) Scale and Complexity in Plant Systems Research, Gene–Plant–Crop Relations (http://library.wur.nl/frontis/gene-plant-crop/24_struik.pdf). The Netherlands: Springer, pp. 287–302.CrossRefGoogle Scholar
Denison, R. F. and Loomis, R. S.. 1989. An Integrative Physiological Model of Alfalfa Growth and Development. Publ. No. 1926. Div. Agric. Nat. Res. Oakland, California: University of California.Google Scholar
Denison, R. F., Kiers, T. E., and West, S. A.. 2003. Darwinian agriculture: when can humans find solutions beyond the reach of natural selection? Quart. Rev. Biol. 78:145–67.CrossRefGoogle ScholarPubMed
Denmead, O. T. and Shaw, R. J.. 1962. Availability of soil water to plants as affected by soil moisture content and meteorological conditions. Agron. J. 54:385–90.CrossRefGoogle Scholar
Derpsch, R. and Freidrich, T.. 2009. Development and Current Status of No-till Adoption in the World. Proceedings on CD-ROM, 18th Triennial Conference of the International Soil Tillage Research Organization (ISTRO), June 15–19, 2009, Izmir, Turkey.Google Scholar
Wit, C. T. 1958. Transpiration and crop yields. Versl. Landbouwk. Onderz. 64:6.Google Scholar
Wit, C. T. 1960. On competition. Versl. Landbouwk. Onderz. 66:8.Google Scholar
Wit, C. T. 1992. Resource use efficiency in agriculture. Agric. Syst. 40:125–52.CrossRefGoogle Scholar
Wit, C. T. and Bergh, J. P.. 1965. Competition between herbage plants. Neth. J. Agric. Sci. 13:212–21.Google Scholar
Wit, C. T.et al. 1978. Simulation of Assimilation, Respiration and Transpiration of Crops. Simulation Monographs. Wageningen, the Netherlands: Pudoc.Google Scholar
Díaz-Ambrona, C. G. H., O'Leary, G. J., Sadras, V. O., O'Connell, M. G., and Connor, D. J.. 2005. Environmental risk analysis of farming systems in a semi-arid environment: effect of rotations and management practices on deep drainage. Field Crops Res. 94:257–71.CrossRefGoogle Scholar
Diebert, E. J., Bijeriego, M., and Olson, R. A.. 1979. Utilization of 15N fertilizer by nodulating and non-nodulating soybean isolines. Agron. J. 71:717–22.CrossRefGoogle Scholar
Distelfeld, A., Li, C., and Dubcovsky, J.. 2009. Regulation of flowering in temperate cereals. Curr. Opin. Plant Biol. 12:1–7.CrossRefGoogle ScholarPubMed
Dobermann, A. and Cassman, K. G.. 2004. Cropping systems: irrigated continuous rice systems of tropical and subtropical Asia. In Goodman, R. M. (ed.) Encyclopedia of Plant and Crop Science. New York: Marcel Dekker, pp. 349–54.CrossRefGoogle Scholar
Dobermann, A.et al. (22 co-authors) 2002. Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Res. 74:37–66.CrossRefGoogle Scholar
Dobos, R. R., Sinclair, H. R., and Hipple, K. W.. 2008. User Guide: National Commodity Crop Productivity Index. Version 1.0. (ftp://ftp-fc.sc.egov.usda.gov/NSSC/NCCPI/NCCPI_user_guide.pdf). USDA-NRCS.Google Scholar
,DOE (USA) 2006. Breaking the Barriers to Cellulosic Ethanol. A Joint Research Agenda. DOE/SC-0095.Google Scholar
,DOE (USA) 2008. Biomass: Multi Year Plan 2008. Oak Ridge, Tennessee.Google Scholar
Doering, O. C. 1977. An Energy Based Analysis of Alternative Production Methods and Cropping Systems in the Corn Belt. West Lafayette, Indiana: Purdue University, Agricultural Experiment Station.Google Scholar
Dolan, M. S., Clapp, C. E., Allmaras, R. R., Baker, J. M., and Molina, J. A. E.. 2006. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil & Tillage Res. 89:221–31.CrossRefGoogle Scholar
Donald, C. M. 1958. The interaction of competition for light and for nutrients. Aust. J. Agric. Res. 9(4):421–35.CrossRefGoogle Scholar
Donald, C. M. 1968. The breeding of crop ideotypes. Euphytica 17:385–403.CrossRefGoogle Scholar
Donald, C. M. and Hamblin, J.. 1976. The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Adv. Agron. 28:361–405.CrossRefGoogle Scholar
Donald, C. M. and Hamblin, J.. 1983. The convergent evolution of annual seed crops in agriculture. Adv. Agron. 36:97–143.CrossRefGoogle Scholar
Dong, Z., Canny, M. J., McCully, M. E.et al. 1994. A nitrogen-fixing endophyte of sugarcane stems. Plant Physiol. 105:1139–47.CrossRefGoogle ScholarPubMed
Dry, P. R. and Loveys, B. R.. 1999. Grape shoot growth and stomatal conductance are reduced when part of the root system is dried. Vitis 38:151–6.Google Scholar
Dry, P. R., Loveys, B. R., and During, H.. 2000. Partial drying of the root-zone of grape. I. Transient changes in shoot growth and gas exchange. Vitis 39:3–8.Google Scholar
Duncan, W. G., Loomis, R. S., Williams, W. A., and Hanau, R.. 1967. A model for simulating photosynthesis in plant communities. Hilgardia 38:181–205.CrossRefGoogle Scholar
Duncan, W. G., McCloud, D. E., McGraw, R. L., and Boote, K. J.. 1978. Physiological aspects of peanut yield improvement. Crop Sci. 18:1015–20.CrossRefGoogle Scholar
Dunin, F. X., Smith, C. J., Zeglin, S. J.et al. 2001. Water balance changes in a crop sequence with lucerne. Aust. J. Agric. Res. 52:247–61.CrossRefGoogle Scholar
Duvick, D. N. and Cassman, K. G.. 1999. Post-green-revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci. 39:1622–30.CrossRefGoogle Scholar
,EC (European Commission). (2000). Organic Farming: Guide to Community Rules. Brussels: Directorate General for Agriculture.Google Scholar
,Economist. 2008. The Power and the Glory. Special Report on Energy. June 21.
Edmeades, G. O. 2008. Drought tolerance in maize: an emerging reality. In Clive, J. (ed.) Global Status of Commercialized Biotech/GM Crops: 2008. ISAAA Brief No. 39. (http://www.isaaa.org). Ithaca, NY: ISAAA.Google Scholar
,EEA (European Energy Agency). 2007a. Estimating the Environmentally Compatible Bioenergy Potential from Agriculture. Technical Report 12. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
,EEA (European Energy Agency). 2007b. Environmentally Compatible Bioenergy Potential from European Forests. Copenhagen: EEA.Google Scholar
Ehlers, W. and Goss, M.. 2003. Water Dynamics in Plant Production. Wallingford: CABI.CrossRefGoogle Scholar
Ehleringer, J. and Pearcy, R. W.. 1983. Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiol. 73:555–9.CrossRefGoogle Scholar
Ekern, P. C. 1965. Evapotranspiration of pineapple in Hawaii. Plant Physiol. 40:736–9.CrossRefGoogle ScholarPubMed
Elliott, B. 1987. Field crops. In Connor, D. J. and Smith, D.F. (eds.) Agriculture in Victoria. Melbourne, Australia: Australian Institute of Agricultural Science, pp. 107–25.Google Scholar
El-Sharkawy, M. A. 2007. International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica 44:481–512.CrossRefGoogle Scholar
El-Sharkawy, M. A., Lopez, Y., and Bernal, L. M.. 2008. Genotypic variations in activities of phosphoenolpyruvate carboxylase and correlations with leaf photosynthetic characteristics and crop productivity of cassava grown in low-land seasonally-dry tropics. Photosynthetica 46:238–47.CrossRefGoogle Scholar
,EMBRAPA. 2006. Brazilian Agroenergy Plan 2006–2011. Brazilia DF: EMBRAPA.Google Scholar
Evans, J. R., Caemmerer, S., and Adams, W. W. (eds.) 1988. Ecology of Photosynthesis in Sun and Shade. Australia: CSIRO.Google Scholar
Evans, L. T. 1971. Evolutionary, adaptive, and environmental aspects of the photosynthetic pathway: assessment. In Hatch, M. D., Osmond, C. B., and Slayter, R. O. (eds.) Photosynthesis and Photorespiration. New York: Wiley-Interscience, pp. 130–6.Google Scholar
Evans, L. T., Visperas, R. M., and Vergara, B. S.. 1984. Morphological and physiological changes among rice varieties used in the Philippines over the last seventy years. Field Crops Res. 8:105–24.CrossRefGoogle Scholar
,FAO. 2000. Land Resource Potential and Constraints at Regional and Country Levels. World Soil Resources Report 90. Rome: FAO.Google Scholar
,FAO. 2002. World Agriculture: Towards 2015/2030. Rome: FAO UN.Google Scholar
,FAO. 2007. AEZWIN. An Interactive Multiple Criteria Analysis Tool for Land Resources Appraisal. World Soil Resources Report 87. (www.iiasa.ac.at/Research/LUC/SAEZ/index.html) Rome: FAO.Google Scholar
,FAO. 2008. The State of Food and Agriculture 2008. Biofuels: Prospects, Risks and Opportunities. Rome: FAO.Google Scholar
,FAO. 2009. High-level Expert Forum: How to Feed the World in 2050, 12–13 October 2009. Rome: FAO, Agricultural Economics Development Division.Google Scholar
,FAOSTAT. (http://faostat.fao.org/).
,FAO/WHO. 1973. Energy and Protein Requirements. Report of Joint Expert Committee. Rome: FAO UN.Google Scholar
,FAO/WHO/UNU. 1985. Energy and Protein Requirements. Joint Expert Consultation. Tech. Rep. No. 724. Geneva: World Health Organization.Google Scholar
Farquhar, G. D. and Richards, R. A.. 1984. Istopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physiol. 11:539–52.CrossRefGoogle Scholar
Farquhar, G. G., O'Leary, M. H., and Berry, J. A.. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9:121–37.CrossRefGoogle Scholar
Fereres, E. and Soriano, A.. 2007. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 58:147–59.CrossRefGoogle ScholarPubMed
Fereres, E., Goldhammer, D. A., and Parsons, L. R.. 2003. Irrigation water management of horticultural crops. HortScience 38:1036–42.Google Scholar
Fick, G. W., Williams, W. A., and Loomis, R. S.. 1971. Recovery from partial defoliation and root pruning in sugar beet. Crop Sci. 11:718–21.CrossRefGoogle Scholar
Finlay, K. W. and Wilkinson, G. N.. 1963. The analysis of adaptation in a plant breeding programme. Aust. J. Agric. Res. 14:742–54.CrossRefGoogle Scholar
Fischer, G. and Heilig, G. K.. 1997. Population momentum and the demand on land and water resources. Phil. Trans. Roy. Soc. London B 352:869–89.CrossRefGoogle Scholar
Fischer, G., Velthuizen, H., Shah, M., and Nachtergaele, F.. 2002. Global Agro-ecological Assessment for Agriculture in the 21st century. FAO: Rome; and IIASA: Laxenburg.Google Scholar
Fischer, R. A. 1979. Growth and water limitation to dryland wheat yield in Australia: a physiological framework. J. Aust. Inst. Agric. Sci. 45:83–94.Google Scholar
Fischer, R. A. and Armstrong, J. S.. 1987. Strategies and tactics with short fallows. In Reeves, T. G. (ed.) Proceedings of the Fourth Australian Agronomy Conference. Melbourne: Aust. Soc. Agron., p. 300.Google Scholar
Fischer, R. A., Rees, D., Sayre, K. D.et al. 1998. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate of cooler canopies. Crop Sci. 38:1467–75.CrossRefGoogle Scholar
Fitzpatrick, E. A. and Nix, H. A.. 1970. The climatic factor in Australian grassland ecology. In Moore, R. M. (ed.) Australian Grasslands. Canberra: Australian National University Press, pp. 3–26.Google Scholar
Fleagle, R. G. and Businger, J. A.. 1980. An Introduction to Atmospheric Physics, 2nd edn. New York: Academic Press.Google Scholar
Fletcher, A. L., Sinclair, T. R., and Allen, L. H. Jr. 2007. Transpiration responses to vapor pressure deficit of “slow-wilting” and commercial soybean. Environ. Exp. Bot. 61:145–51.CrossRefGoogle Scholar
Fluck, R. C. 1981. Net energy sequestered in agricultural labor. Trans. ASAE 24:1449–55.CrossRefGoogle Scholar
Forrester, J. W. 1961. Industrial Dynamics. Cambridge, Massachusetts: Massachusetts Institute of Technology Press.Google Scholar
Foyer, C. H. 1988. Feedback inhibition of photosynthesis through source-sink regulation in leaves. Plant Physiol. Biochem. 26:483–92.Google Scholar
Francis, G., Edinger, R., and Becker, K.. 2005. A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Nat. Resour. Forum 29:12–24.CrossRefGoogle Scholar
Frissel, M. (ed.) 1977. Cycling of mineral nutrients in agricultural systems. Agro-Ecosys (special issue) 4:1–354.Google Scholar
Fröhlich, C. and London, J.. 1985. Radiation Manual. Geneva: World Meteorological Organization.Google Scholar
Fronzek, S. and Carter, T. R.. 2007. Assessing uncertainties in climate change impacts on resource potential for Europe based on projections from RCMs and GCMs. Clim. Change 81(Supplement 1):357–37CrossRefGoogle Scholar
Gaff, D. F. 1981. The biology of resurrection plants. In Pate, J. S. and McComb, A. J. (eds.) The Biology of Australian Plants. Nedlands: University of Western Australia Press, pp. 114–46.Google Scholar
Galloway, J. N., Dentener, F. J., Capone, D. G.et al. 2004. Nitrogen cycles: past, present, future. Biogeochem. 70:153–226.CrossRefGoogle Scholar
Gardner, W. R. 1965. Dynamic aspects of soil-water availability to plants. Ann. Rev. Plant Physiol. 16:323–42.CrossRefGoogle Scholar
Gardner, W. R. and Brooks, R. H.. 1957. A descriptive theory of leaching. Soil Sci. 83:295–304.CrossRefGoogle Scholar
Garner, W. W. and Allard, H. A.. 1920. Effect of length of day and night and other factors of the environment on growth and reproduction in plants. J. Agric. Res. 18:553–606.Google Scholar
Garrity, D. P., Watts, D. G., Sullivan, C. Y., and Gilley, J. R.. 1982. Moisture deficits and grain sorghum performance: evapotranspiration–yield relationships. Agron. J. 74:815–20.CrossRefGoogle Scholar
Gates, D. M. 1980. Biophysical Ecology. New York: Springer-Verlag.CrossRefGoogle Scholar
Gifford, R. M. and Millington, R. J.. 1975. Energetics of Agriculture and Food Production. Aust. Bull. No. 288. Melbourne, Australia: CSIRO.Google Scholar
Gilmartin, P. M. and Bowler, C. (eds.) 2002. Molecular Plant BiologyVol. 1. Oxford and New York: Oxford University Press.Google Scholar
Gilmore, E. C. and Rogers, J. S.. 1958. Heat units as a method of measuring maturity in corn. Agron. J. 50:611–15.CrossRefGoogle Scholar
Gimeno, V., Fernandez-Martinez, J. M., and Fereres, E.. 1989. Winter planting as a means of drought escape in sunflower. Field Crops Res. 22:307–16.CrossRefGoogle Scholar
Givnish, T. J. (ed.) 1986. On the Economy of Plant Form and Function. Cambridge: Cambridge University Press.Google Scholar
Gladstones, J. S. 1967. Naturalized subterranean clover strains in Western Australia: a preliminary agronomic examination. Aust. J. Agric. Res. 18:713–32.CrossRefGoogle Scholar
Gleason, H. A. 1926. The individualistic concept of plant association. Bull. Torrey Bot. Club 53:1–20.CrossRefGoogle Scholar
Gómez-del-Campo, M., Centeno, A., and Connor, D. J.. 2009. Yield determination in olive hedgerow orchards. I. Yield and profiles of yield components in north–south and east–west oriented hedgerows. Aust. J. Crop & Past. Sci. 60:434–42.CrossRefGoogle Scholar
Goyne, P. J. and Schneiter, A. A.. 1987. Photoperiod influence on development in sunflower genotypes. Agron. J. 79:704–9.CrossRefGoogle Scholar
Graham, R. L., Nelson, R., Sheehan, J., Perlack, R. D., and Wright, L. L.. 2007. Current and potential corn stover supplies. Agron. J. 99:1–11.CrossRefGoogle Scholar
Grassini, P., , A. J. Hall, and Mercau, J. L.. 2009a. Benchmarking sunflower water productivity in semiarid environments. Field Crops Res. 110:251–62.CrossRefGoogle Scholar
Grassini, P., Yang, H. S., and Cassman, K. G.. 2009b. Limits to maize productivity in the Western Corn-Belt: a simulation analysis for fully irrigated and rainfed conditions. Agric. Forest Meteorol. 149:1254–65.CrossRefGoogle Scholar
Grassini, P., Thorburn, J., Burr, C., and Cassman, K. G.. 2010. High-yield irrigated maize systems in Western U.S. Corn Belt: management factors that affect water productivity. Field Crops Research. 120:133–44.Google Scholar
Greenland, D. 1971. Changes in the nitrogen status and physical conditions of soils under pastures, with special reference to the maintenance of fertility of Australian soils used for growing wheat. Soils and Fert. 34:237–51.Google Scholar
Griffiths, J. B. and Walsgott, D. N.. 1987. Water use of wheat in the Victorian Mallee. In Reeves, T. G. (ed.) Proceedings of the Fourth Australian Agronomy Conference. Melbourne: Aust. Soc. Agron., p. 296.Google Scholar
Grimes, D. W. and El-Zik, K. M.. 1982. Water Management for Cotton. Berkeley, California: Div. Agric. Sci., University of California.Google Scholar
Gulick, S. H., Cassman, K. G., and Grattan, S. R.. 1989. Exploitation of soil potassium in layered profiles by root systems of cotton and barley. Soil Sci. Soc. Am. J. 53:146–53.CrossRefGoogle Scholar
Gutschick, V. P. 1987. A Functional Biology of Crop Plants. London: Croom Helm.CrossRefGoogle Scholar
Guyol, N. D. 1977. Energy Interrelationships. A Handbook of Tables and Conversion Factors for Combining and Comparing International Energy Data. Publ. No. FEB/B-77/166. Washington, D.C.: Federal Energy Administration.Google Scholar
Haefele, S. M., Siopongco, J. D. L. C., Boling, A. A., Bouman, B. A. M., and Tuong, T. P.. 2009. Transpiration efficiency of rice. Field Crops Res. 111:1–10.CrossRefGoogle Scholar
Haishun, Y., Dobermann, A., Cassman, K. G., and Walters, D. T.. 2006. Features, applications, and limitations of the hybrid-maize simulation model. Agron. J. 98:737–48.Google Scholar
Hall, A. J., Vilella, A., Trapani, N., and Chimenti, C.. 1982. The effects of water stress and genotype on the dynamics of pollen-shedding and silking in maize. Field Crops Res. 5:349–63.CrossRefGoogle Scholar
Hammer, G. L., Goyne, P. J., and Woodruff, D. R.. 1982. Phenology of sunflower cultivars. III. Models for prediction in field environments. Aust. J. Agric. Res. 33:263–74.CrossRefGoogle Scholar
Hammer, G. L., Dong, Z., McLean, G.et al. 2009. Can changes in canopy and/or root system architecture explain historical yield trends in U.S. Corn Belt? Crop Sci. 49:299–312.CrossRefGoogle Scholar
Hanks, R. J. 1983. Yield and water use relationships. In Taylor, H. M., Jordan, W. R., and Sinclair, T. R. (eds.) Limitations to Efficient use of Water in Crop Production. Madison, WI: Am. Soc. Agron., pp. 393–412.Google Scholar
Harlan, H. V. and Martini, M. L.. 1938. The effect of natural selection in a mixture of barley varieties. J. Agric. Res. 57:189–99.Google Scholar
Harper, J. L. 1977. Population Biology of Plants. New York: Academic Press.Google Scholar
Haun, J. R. 1973. Visual quantification of wheat development. Agron. J. 65:116–19.CrossRefGoogle Scholar
Hearn, A. B. 1994. OZCOT: a simulation model for cotton management. Agric. Sys. 44:257–99.CrossRefGoogle Scholar
Hearn, A. B. and da Rosa, D. D.. 1985. A simple model for crop management applications for cotton (Gossypium hirsutum L.). Field Crops Res. 12:49–69.CrossRefGoogle Scholar
Heffer, P. 2009. Assessment of Fertilizer Use by Crops at the Global Level, 2006/07–2007/08. (www.fertilizer.org). Paris: International Fertilizer Association.Google Scholar
Heichel, G. H. 1978. Stabilizing agricultural energy needs: role of forages, rotations, and nitrogen fixation. J. Soil Water Conserv. 33:279–82.Google Scholar
Heilman, J. L., McInnes, K. J., Savage, M. J., Gesch, R. W., and Lascano, R. J.. 1994. Soil and canopy energy balances in a west Texas vineyard. Agric. For. Meteorol. 71:99–114.CrossRefGoogle Scholar
Heilman, J. L., McInnes, K. J., Gesch, R. W., Lascano, R. J., and Savage, M. J.. 1996. Effects of trellising on the energy balance of a vineyard. Agric. For. Meteorol. 81:79–93.CrossRefGoogle Scholar
Helyar, K. R. and Porter, W. M.. 1989. Soil acidification, its measurement and the processes involved. In Robson, A. D. (ed.) Soil Acidity and Plant Growth. Merrickville, New South Wales: Academic Press Australia, pp. 61–101.CrossRefGoogle Scholar
Helyar, K. R., Hochman, Z., and Brennan, J. P.. 1988. The problem of acidity in temperate area soils and its management. In Loveday, J. (ed.) National Soils Conference Review Papers. Nedlands, Western Australia: Australian Society of Soil Science, pp. 22–54.Google Scholar
Herridge, D. E., Peoples, M. B., and Boddey, R. M.. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant & Soil 311:1–18.CrossRefGoogle Scholar
Herridge, D. F. and Bergersen, F. J.. 1988. Symbiotic nitrogen fixation. In Wilson, J. R. (ed.) Advances in Nitrogen Cycling in Agricultural Ecosystems. Wallingford, Oxon, UK: CAB International, pp. 45–65.Google Scholar
Hiler, E. A., Howell, A. T., Lewis, R. B., and Boos, R. P.. 1974. Irrigation timing by the stress day index method. Trans. ASAE 17:393–8.CrossRefGoogle Scholar
Hirose, T. and Werger, M. J. A.. 1987. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72:520–6.CrossRefGoogle ScholarPubMed
Hochman, Z., Holzworth, D., and Hunt, J. R.. 2009. Potential to improve on-farm wheat yield and WUE in Australia. Crop & Past. Sci. 60:708–16.CrossRefGoogle Scholar
Holaday, A. S. and Black, C. C.. 1981. Comparative characterization of phosphoenolpyruvate carboxylase in C3, C3 and C3–C4 intermediate Panicum species. Plant Physiol. 67:330–4.CrossRefGoogle Scholar
Holland, E. A., Braswell, B. H., Sulzman, J., and Lamarque, J.-F.. 2005. Nitrogen deposition onto the United States and western Europe: synthesis of observations and models. Ecol. Applic. 15:38–57.CrossRefGoogle Scholar
Hoskinson, P. E. and Qualset, C. O.. 1967. Geographic variation in Balboa rye. Tennessee Farm & Home Progress Report 62(2):8–9.Google Scholar
Houston, C. E. 1967. Drainage of Irrigated Land. University of California, Berkeley, California: Calif. Agric. Exp. Sta.Google Scholar
Hsiao, T. C., Fereres, E., Acevedo, E., and Henderson, D. W.. 1976. Water stress and dynamics of growth and yield of crop plants. In Lange, O. L., Kappen, L., and Schulze, E.-D. (eds.) Water and Plant Life. Ecological Studies Vol. 19. Berlin: Springer-Verlag, pp. 281–305.CrossRefGoogle Scholar
Hsiao, T. C., Steduto, P., and Fereres, E.. 2007. A systematic and quantitative approach to improve water use efficiency in agriculture. Irrig. Sci. 25:209–31.CrossRefGoogle Scholar
Huan, N. H., Thiet, L. V., Chien, H. V., and , K. L. Heong. 2004. Farmers' evaluation of reducing pesticides, fertilizers and seed rates in rice farming through participatory research in the Mekong Delta, Vietnam. Crop Prot. 24:457–64.CrossRefGoogle Scholar
Huang, P. 1989. Feldspars, olivines, pyroxenes, and amphiboles. In Dixon, J. B and Weed, S. B. (eds.) Minerals in the Soil Environment. Madison, WI: Soil. Sci. Soc. Am., pp. 975–1050.Google Scholar
Hunt, D. 1983. Farm Power and Machinery Management. Ames, IA: Iowa State University Press.Google Scholar
Hunt, R. 1978. Plant growth analysis. Studies in Biology, No. 96. London: Edward Arnold.Google Scholar
Idso, C. and Singer, S. F.. 2009. Climate Change Reconsidered: 2009 Report of the Nongovernmental Panel on Climate Change (NIPCC). Chicago, Illinois: The Heartland Institute.Google Scholar
,IEA (International Energy Agency). 2008. World Energy Outlook, 2008. Paris, France: IEA.Google Scholar
,IFOAM (International Federation of Organic Agriculture Movements). 2002. Norms and Accreditation Criteria for Organic Production and Processing. Bonn, Germany: IFOAM.Google Scholar
Inman-Bamber, N. G. and McGlinchey, M. G.. 2003. Crop coefficients and water-use estimates for sugarcane based on long-term Bowen ratio energy balance measurements. Field Crops Res. 83:125–8.CrossRefGoogle Scholar
,IPCC-AR4. 2007. Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Parry, M. L., Canziani, O. F., Palutikof, J. P., Linden, P. J. and Hanson, C. E. (eds.) Cambridge University Press.Google Scholar
Jackson, B. S., Arkin, G. F., and Hearn, A. B.. 1988. The cotton simulation model “COTTAM”: fruiting model calibration and testing. Trans. Amer. Soc. Agric. Eng. 31:846–54.CrossRefGoogle Scholar
Jacobs, M. R. 1955. Growth Habits of Australian Eucalypts. Canberra: Australian Government Printer.Google Scholar
James, C. 2008. Global Status of Commercialized Biotech/GM Crops: 2008. ISAAA Brief No. 39. (www.isaaa.org). Ithaca, NY: ISAAA.Google Scholar
Jamieson, P. D., Brooking, I. R., Semenov, M. A., and Porter, J. R.. 1998. Making sense of wheat development: a critique of methodology. Field Crops Res. 55:117–27.CrossRefGoogle Scholar
Jamieson, P. D., Brooking, I. R., Semenov, M. A.et al. 2007. Reconciling alternative models of phenological development in winter wheat. Field Crops Res. 103:36–41.CrossRefGoogle Scholar
Jenkinson, D. S. 1982. The nitrogen cycle in long term field experiments. Phil. Trans. R. Soc. Lond. B 296:563–71.CrossRefGoogle Scholar
Jenkinson, D. S. 1988. Determination of microbial biomass carbon and nitrogen in soil. In Wilson, J. R. (ed.) Advances in Nitrogen Cycling in Agricultural Ecosystems. Wallingford, Oxon, UK: CAB International, pp. 368–86.Google Scholar
Jenny, H. 1930. A Study on the Influence of Climate upon the Nitrogen and Organic Matter Content of the Soil. University of Missouri Agric. Exp. Sta. Res. Bull. No. 152.Google Scholar
Jenny, H. 1941. Factors of Soil Formation. New York: McGraw-Hill Book Co.Google Scholar
Jenny, H. 1980. The Soil Resource. Ecological Studies Vol. 37. New York: Springer-Verlag.CrossRefGoogle Scholar
Jensen, M. E. 1974. Consumptive Use of Water and Irrigation Water Requirements. New York: Am. Soc. Civil Eng.Google Scholar
Jensen, M. E. 2007. Beyond irrigation efficiency. Irrig. Sci. 25:233–45.CrossRefGoogle Scholar
Johnson, J. W., Welch, L. F., and Kurtz, L. T.. 1975. Environmental implications of N fixation by soybeans. J. Environ. Qual. 4:303–6.CrossRefGoogle Scholar
Johnson, W. A., Stoltzfus, V., and Craumer, P.. 1977. Energy conservation in Amish agriculture. Science 198:373–8.CrossRefGoogle ScholarPubMed
Johnson, W. G., Davis, V. M., Kruger, G. R., and Weller, S. C.. 2009. Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations. European J. Agron. 31:162–72.CrossRefGoogle Scholar
Jones, C. A. and Kiniry, J. R. (eds.). 1986. CERES-MAIZE. A Simulation Model of Maize Growth and Development. College Station: Texas A&M University Press.Google Scholar
Jones, J. W. 1983. Irrigation options to avoid critical stresses: optimization of on-farm water allocation to crops. In Taylor, H. M., Jordan, W. R., and Sinclair, T. R. (eds.) Limitations to Efficient Water Use in Crop Production. Madison, WI: Am. Soc. Agron., pp. 507–616.Google Scholar
Jones, J. W., Hoogenboom, G., Porter, C. H.et al. 2003. The DSSAT cropping system model. Eur. J. Agron. 18:235–65.CrossRefGoogle Scholar
Jones, M. R. 1989. Analysis of the use of energy in agriculture. Agric. Syst. 29:339–55.CrossRefGoogle Scholar
Jongschaap, R. E. E., Corre, W. J., Bindraban, P. S., and Bandenburg, W. A.. 2007. Claims and facts on Jatropha curcas L. Global Jatropha curcas Evaluation, Breeding and Propagation Programme. Report 158. (www.jatropha-platform.org/Documents.html). Wagenignen: Plant Research International B.V.Google Scholar
Jordan, W. R. and Miller, F. R.. 1980. Genetic variability in sorghum root systems: implications for drought tolerance. In Turner, N. C. and Kramer, P. J. (eds.) Adaptation of Plants to Water and High Temperature Stress. New York: John Wiley, pp. 383–99.Google Scholar
Jordan, W. R., Dugas, W. A., and Shouse, P. J.. 1983. Strategies for crop improvement for drought-prone regions. Agric. Water Manage. 7:281–99.CrossRefGoogle Scholar
Kaddah, M. T. and Rhoades, J. D.. 1976. Salt and water balance in Imperial Valley, California. Soil Sci. Soc. Am. J. 40:93–100.CrossRefGoogle Scholar
Kampmeijer, P. and Zadoks, J. C.. 1977. EPIMUL, a Simulator of Foci and Epidemics in Mixtures of Resistant and Susceptible Plants, Mosaics and Multilines. Simulation Monographs. Wageningen, the Netherlands: Pudoc.Google Scholar
Katsura, K., Maeda, S., Horie, T., and Shiraiwa, T.. 2009. Estimation of respiratory parameters for rice based on long-term and intermittent measurement of canopy CO2 exchange rates in the field. Field Crops Res. 111:85–91.CrossRefGoogle Scholar
Keating, B. A., Gaydon, D., Huth, N. I.et al. 2002. Use of modelling to explore the water balance of dryland farming systems in the Murray-Darling Basin, Australia. Europ. J. Agron. 18:159–69.CrossRefGoogle Scholar
Kemanian, A. R., Stockle, C. O., and Huggins, D. R.. 2005. Transpiration-use efficiency of barley. Agric. For. Meteorol. 130:1–11.CrossRefGoogle Scholar
Kiehl, J. T. 2007. Twentieth century climate model response and climate sensitivity. Geophys. Res. Lett. 34:L22710. DOI:10.1029/2007GL031383.CrossRefGoogle Scholar
Kiesselach, T. A. 1949. The Structure and Reproduction of Corn. Cold New York: Cold Spring Harbor Laboratory Press.Google Scholar
Kiniry, J. R., Ritchie, J. T., and Musser, R. L.. 1983. Dynamic nature of the photoperiod response of maize. Agron. J. 75:700–3.CrossRefGoogle Scholar
Kira, T., Ogawa, H., and Shinozaki, K.. 1953. Intraspecific competition among higher plants. 1. Competition-density-yield inter-relationships in regularly dispersed populations. J. Inst. Polytech. Osaka City Univ. 4:1–16.Google Scholar
Kirby, E. J. M. and Appleyard, M.. 1984. Cereal Development Guide, 2nd edn. Stoneleigh, UK: National Agricultural Centre.Google Scholar
Kirchmann, H. and Bergstrom, L. (eds.) 2008. Organic Crop Production: Ambitions and Limitations. Springer.CrossRefGoogle Scholar
Kirkegaard, J. A., Gardner, P. A., Angus, J. F., and Koetz, E.. 1994. Effect of Brassica break crops on the growth and yield of wheat. Aust. J. Agric. Res. 45:529–45.CrossRefGoogle Scholar
Kirkegaard, J. A., Howe, G. N., and Mele, P. M.. 1999. Enhanced accumulation of soil mineral-N following canola. Aust. J. Exp Agric. 39:587–93.CrossRefGoogle Scholar
Klingebiel, A. A. and Montgomery, P. H.. 1961. Land-use Capability Classification. Agric. Handbook No. 210. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Knutson, J. D., Curley, R. G., Roberts, E. B., Hagan, R. M., and Cervinka, V.. 1977. Energy for irrigation. Calif. Agric. 31(5):46–7.Google Scholar
Kreidemann, P. E. and Goodwin, I.. 2003. Regulated Deficit Irrigation and Partial Rootzone Drying. An Overview of Principles and Applications. Irrigation Insights No. 3. Canberra: Land & Water Australia.Google Scholar
Kremer, C., Stockle, C. O., Kemanian, A. R., and Howell, T.. 2008. A canopy transpiration and photosynthesis model for evaluating simple crop productivity models. In Ahuja, et al. (eds.) Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes. Madison, Wisconsin: ASA, CSSA, SSSA, pp. 301–55.Google Scholar
Laabs, V., Amelung, W., Pinto, A., Altstaedt, A., and Zech, W.. 2000. Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brasilian Cerrados. Chemosphere 41:1441–9.CrossRefGoogle Scholar
Lafitte, H. R. and Loomis, R. S.. 1988a. Calculation of growth yield, growth respiration and heat content of grain sorghum from elemental and proximal analyses. Ann. Bot. 62:353–61.CrossRefGoogle Scholar
Lafitte, H. R. and Loomis, R. S.. 1988b. The growth and composition of grain sorghum with limited nitrogen. Agron. J. 80:492–3.CrossRefGoogle Scholar
Laird, D. A. 2008. The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron. J. 100:178–81.CrossRefGoogle Scholar
Laing, D. R., Kretchmer, P. J., Zuluaga, S., and Jones, P. G.. 1983. Field bean. In Smith, W. H. and Banta, S. J. (eds.) Potential Productivity of Field Crops Under Different Environments. Los Banos, Philippines: IRRI, pp. 227–48.Google Scholar
Lamb, H. H. 1977. Climate: Past, Present and Future. Vol. 2. Climatic History and the Future. London: Metheun.Google Scholar
Large, E. C. 1954. Growth stages in cereals. Illustrations of the Feekes' scale. Plant Path. 3:128–9.CrossRefGoogle Scholar
LaRue, T. A. and Patterson, T. G.. 1981. How much nitrogen do legumes fix? Adv. Agron. 34:15–38.CrossRefGoogle Scholar
Latshaw, W. L. and Miller, E. C.. 1924. Elemental composition of the corn plant. J. Agric. Res. 27:845–60.Google Scholar
Lee, E. A. and Tollenaar, M.. 2007. Physiological basis of successful breeding strategies for maize grain yield. Crop Sci. 47(S3):S202–S215.CrossRefGoogle Scholar
Lefroy, E. C. and Stirzaker, R. J.. 1999. Agroforestry for water management in the cropping zone of southern Australia. Agrofor. Sys. 45:277–302.CrossRefGoogle Scholar
Legg, T. D., Fletcher, J. J., and Easter, K. W.. 1989. Nitrogen budgets and economic efficiency: a case study of southeastern Minnesota. J. Prod. Agric. 2:110–16.CrossRefGoogle Scholar
Leitch, I. and Godden, W.. 1953. The Efficiency of Farm Animals in the Conversion of Feedingstuffs to Food for Man. (Anim. Nut. Tech. Commun. No. 14.) Farnham Royal, Slough, UK: Commonwealth Agricultural Bureau.Google Scholar
Levi, J. and Peterson, M. L.. 1972. Responses of spring wheats to vernalization and photoperiod. Crop Sci. 12:487–90.CrossRefGoogle Scholar
Lindsay, W. L., Vlek, P. L. G., and Chien, S. H.. 1989. Phosphate minerals. In Dixon, J. B. and Weed, S. B. (eds.) Minerals in Soil Environments. Madison, Wisconsin: Soil Sci. Soc. Am., pp. 1089–130.Google Scholar
Liska, A. J. and Cassman, K. G.. 2008. Towards standardization of life-cycle metrics for biofuels: greenhouse gas emissions mitigation and net energy yield. J. Biobased Materials 2:187–203.CrossRefGoogle Scholar
Liska, A. J., and Perrin, R. K.. 2009. Indirect land use emissions in the life cycle of biofuels: regulations vs. science. Biofuel Bioproduct Refining 3:318–28CrossRefGoogle Scholar
Liska, A. J., Yang, H. S., Bremer, V. R.et al. 2009. Improvements in life cycle energy efficiency and greenhouse gas emissions of corn-ethanol. J. Indust. Ecol. 13:58–74.CrossRefGoogle Scholar
Lobell, D. B., Cassman, K. G., and Field, C. B.. 2009. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34:179–204.CrossRefGoogle Scholar
Loffler, C. M., Wei, J., Fast, T.et al. 2005. Classification of maize environments using crop simulation and geographic information systems. Crop Sci. 45:1708–16.CrossRefGoogle Scholar
Loomis, R. S. 1978. Ecological dimensions of medieval agrarian systems: an ecologist responds. Agric. Hist. 52:478–83.Google Scholar
Loomis, R. S. 1979. ldeotype concepts for sugarbeet improvement. J. Am. Soc. Sugar Beet Technol. 20:323–41.CrossRefGoogle Scholar
Loomis, R. S. 1983. Crop manipulations for efficient use of water: an overview. In Taylor, H. M., Jordan, W. R., and Sinclair, T. R. (eds.) Limitations to Efficient Use of Water in Crop Production. Madison, Wisconsin: Am. Soc. Agron., pp. 345–74.Google Scholar
Loomis, R. S. 1985. Systems approaches for crop and pasture research. In Yates, J. J. (ed.) Proceedings of the Third Australian Agronomy Conference, Melbourne, Aust. Soc. Agron., pp. 1–8.Google Scholar
Loomis, R. S. and Gerakis, P. A.. 1975. Productivity of agricultural systems. In Cooper, J. P. (ed.) Photosynthesis and Productivity in Different Environments. Cambridge: Cambridge University Press, pp. 145–72.Google Scholar
Loomis, R. S. and Lafitte, H. R.. 1987. The carbon economy of a maize crop exposed to elevated CO2 concentrations and water stress determined from elemental analysis. Field Crops Res. 17:63–74.CrossRefGoogle Scholar
Loomis, R. S. and Williams, W. A.. 1963. Maximum crop productivity: an estimate. Crop Sci. 3:67–72.CrossRefGoogle Scholar
Loomis, R. S. and Williams, W. A.. 1969. Productivity and the morphology of crop stands. In Eastin, J. D., Haskin, F. A., Sullivan, C. Y., and Bavel, C. H. M.(eds.) Physiological Aspects of Crop Yield. Madison, Wisconsin: Am. Soc. Agron., pp. 27–47.Google Scholar
Loomis, R. S., Brickey, J. H., Broadbent, F. E., and WorkerJr, G. F.. 1960. Comparison of nitrogen source materials for midseason fertilization of sugar beets. Agron. J. 52:97–101.CrossRefGoogle Scholar
Loomis, R. S., Luo, Y., and Kooman, P.. 1990. Integration of activity in the higher plant. In Rabbinge, R., Goudriaan, J., Keulen, H., Penning de Vries, F. W. T., and Laar, H. H. (eds.) Theoretical Production Ecology: Reflections and Prospects. Wageningen, the Netherlands: Pudoc, pp. 105–24.Google Scholar
Loomis, W. E. 1932. Growth–differentiation balance vs. carbohydrate–nitrogen balance. Proc. Am. Soc. Hort. Sci. 29:240–5.Google Scholar
Lopes, N. F. 1979. Respiration Related to Growth and Maintenance in Radish (Raphanus sativus L.). PhD dissertation. University of California, Davis.Google Scholar
López-Bellido, L., Fuentes, M., Castillo, J. E., López-Garrido, F. J., and Fernández, E. J.. 1996. Long-term tillage, crop rotation, and nitrogen fertilizer effects on wheat yield under rainfed Mediterranean conditions. Agron. J. 88:783–91.CrossRefGoogle Scholar
Lorio., P. L. Jr. 1986. Growth-differentiation balance: a basis for understanding Southern Pine Beetle-tree interactions. Forest Ecol. Manage. 145:259–73.CrossRefGoogle Scholar
Ludlow, M. M. and Powles, S. B.. 1988. Effects of photoinhibition induced by water stress on growth and yield of grain sorghum. In Evans, J. R., Caemmerer, S., and Adams, W. W. (eds.) Ecology of Photosynthesis in Sun and Shade. Canberra, Australia: CSIRO, pp. 179–94.Google Scholar
Lush, W. M. and Evans, L. T.. 1974. Translocation of photosynthetic assimilate from grass leaves, as influenced by environment and species. Aust. J. Plant Physiol. 1:417–31.CrossRefGoogle Scholar
Lyerly, P. J. and Longeneker, D. E.. 1957. Salinity Control in Irrigated Agriculture. Texas Agric. Exp. Sta. Bull. No. 876.Google Scholar
Maas, E. V. 1984. Crop tolerance. Calif. Agric. 38(10):20–l.Google Scholar
Maas, E. V. and Hoffman, G. J.. 1977. Crop salt tolerance: current assessment. J. Irrig. Drain. 103:115–34.Google Scholar
MacRae, R. J. and Mehuys, G. R.. 1985. The effect of green manuring on the physical properties of temperate-area soils. Adv. Soil Sci. 3:71–94.CrossRefGoogle Scholar
Macedo, I. C. and Seabra, E. A.. 2008. Mitigation of GHG emissions using sugarcane ethanol. In Zuurbier, P. and Vooren, J. (eds.) Sugarcane Ethanol: Contributions to Climate Change Mitigation and the Environment. The Netherlands: Wageningen Academic Publishers, pp. 95–111.Google Scholar
Major, D. J. 1980. Photoperiod response characteristics controlling flowering of nine crop species. Can. J. Plant Sci. 60:777–84.CrossRefGoogle Scholar
Marris, E. 2008. More crop per drop. Nature 452:273–7.CrossRefGoogle ScholarPubMed
Marten, G. G. 1988. Productivity, stability, sustainability, equitability and autonomy as properties for agroecosystem assessment. Agric. Systems 26:291–316.CrossRefGoogle Scholar
Mateos, L. 2008. Assessing a new paradigm for irrigation system performance. Irrig. Sci. 27:25–34.CrossRefGoogle Scholar
McBride, J. L. and Nicholls, N.. 1983. Seasonal relationships between Australian rainfall and the southern oscillation index. Month. Weath. Rev. 111:1998–2004.2.0.CO;2>CrossRefGoogle Scholar
McCallum, M. H., Connor, D. J., and O'Leary, G. J.. 2001. Water use by lucerne and effect on crops in the Victoria Wimmera. Aust. J. Agric. Res. 52:193–201.CrossRefGoogle Scholar
McCree, K. J. 1970. An equation for the rate of respiration of white clover plants grown under controlled conditions. In Setlik, I. (ed.) Prediction and Measurement of Photosynthetic Productivity. Proc. IBP/PP Tech. Mtg., Trebon. Pudoc, Wageningen, pp. 221–9.
McDermitt, D. K. and Loomis, R. S.. 1981. Elemental composition of biomass and its relation to energy content, growth efficiency, and growth yield. Ann. Bot. 48:275–90.CrossRefGoogle Scholar
McGlasson, W. B. and Pratt, H. K.. 1963. Fruit-set patterns and fruit growth in cantaloupe (Cucumis melo L., var. reticulatis Naud.). Proc. Am. Soc. Hort. Sci. 83:495–505.Google Scholar
McGregor, K. C. and Mutchler, C. K.. 1977. Status of the R factor in northern Mississippi. In Foster, G. R. (ed.) Soil Erosion: Prediction and Control. Ankeny, Iowa: Soil Conservation Society, pp. 135–42.Google Scholar
McIlroy, I. C. 1971. An instrument for continuous recording of natural evaporation. Agric Meteorol. 9:93–100.CrossRefGoogle Scholar
McKinion, J. M., Baker, D. N., Whistler, F. D., and Lambert, J. R.. 1989. Application of the GOSSYM/COMAX system to cotton crop management. Agric. Sys. 31:55–65.CrossRefGoogle Scholar
McLaughlin, N.B., Drury, C. F., Reynolds, W. D.et al. 2008. Energy inputs for conservation and conventional tillage implements in a clay soil. Amer. Soc. Agric. & Biol. Engineers 51:1153–63.Google Scholar
Meijninger, W. M. L. and Bruin, H. A. R.. 2000. The sensible heat fluxes over irrigated areas in western Turkey determined with a large aperture scintillometer. J. Hydrol. 229:42–9.CrossRefGoogle Scholar
Menz, K. M., Moss, D. N., Cannell, R. Q., and Brun, W. A.. 1969. Screening for photosynthetic efficiency. Crop Sci. 9:692–4.CrossRefGoogle Scholar
Messina, C. D., Jones, J. W., Boote, K. J., and Vallejos, C. E.. 2006. A gene-based model to simulate soybean development and yield responses to environment. Crop Sci. 46:456–66.CrossRefGoogle Scholar
Meyer, W. S. and Green, G. C.. 1981. Plant indicators of wheat and soybean crop water stress. Irrig. Sci. 2:167–76.CrossRefGoogle Scholar
,Midwest Plan Service. Livestock Wastes Subcommittee. 1985. Livestock Waste Facilities Handbook. Ames, Iowa State University Press: Midwest Plan Service.Google Scholar
Miller, E. E. and Klute, A.. 1967. The dynamics of soil water. Part I. Mechanical forces. In Hagan, R. M., Haise, H. R., and Edminster, T. W. (eds.) Irrigation of Agricultural Lands. Agronomy Monograph No. 11. Madison, Wisconsin: Am. Soc. Agron., pp. 209–44.Google Scholar
Mohanty, H. K., Mallik, S., and Grover, A.. 2000. Prospects of improving flooding tolerance in lowland rice varieties by conventional breeding and genetic engineering. Curr. Sci. 78:132–7.Google Scholar
Moncur, M. W. 1981. Floral Initiation in Field Crops. An Atlas of Scanning Electron Micrographs. Australia: CSIRO.Google Scholar
Monsi, M. and Saeki, T.. 1953. Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion. Jap. J. Bot. 14:22–52.Google Scholar
Monteith, J. L. 1964. Evaporation and environment. Symp. Soc. Exp. Biol. 19:205–34.Google Scholar
Monteith, J. L. 1977. Climate and the efficiency of crop production in Britain. Phil. Trans. R. Soc. Lond. B 281:277–94.CrossRefGoogle Scholar
Monteith, J. L. 1978. Reassessment of maximum growth rates for C3 and C4 crops. Exp. Agric. 14:1–5.CrossRefGoogle Scholar
Monteith, J. L. and Unsworth, M. H.. 1990. Principles of Environmental Physics, 2nd edn. London: Edward Arnold.Google Scholar
Mooney, H. A. and Dunn, E. L.. 1970. Convergent evolution of Mediterranean climate evergreen sclerophyll shrubs. Evolution 24:292–303.CrossRefGoogle ScholarPubMed
Morgan, J. 1983. Osmoregulation as a selection criterion for drought tolerance in wheat. Aust. J. Agric. Res. 34:607–14.CrossRefGoogle Scholar
Morgan, J. M. 2000. Increases in grain yield of wheat by breeding for an osmoregulation gene: relationship to water supply and evaporative demand. Aust. J. Agric. Res. 51:971–8.CrossRefGoogle Scholar
Morgan, R. P. C. and Davidson, D. A.. 1986. Soil Erosion and Conservation. Harlow, Essex, UK: Longman Scientific & Technical.Google Scholar
Morrison, M. J., Voldeng, H. D., and Cober, E. R.. 1999. Physiological changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agron. J. 91:685–9.CrossRefGoogle Scholar
Morton, D. C., DeFries, R. S., Shimabukuro, Y. E.et al. 2006. Crop expansion changes deforestation dynamics in southern Brazilian Amazon. Proc. Natl. Acad. Sci. USA 103:14637–41.CrossRefGoogle ScholarPubMed
Myers, R. J. K. and Foale, M. A.. 1981. Row spacing and population density in grain sorghum: a simple analysis. Field Crops Res. 4:147–54.CrossRefGoogle Scholar
,National Research Council. Committee on Animal Nutrition. 1982. United States-Canadian Tables of Feed Composition (third revision). Washington, D.C.: National Academy of Sciences.Google Scholar
,National Research Council. Committee on Animal Nutrition. 1984. Nutrient Requirements of Beef Cattle. Washington, D.C.: National Academy Press.Google Scholar
,National Research Council. Subcommittee on the Tenth Edition of the RDAs. 1989. Recommended Dietary Allowances. Washington, D.C.: National Academy Press.Google Scholar
,Nature. 2006. Biofuelling the future. Business feature. Nature 44:669–78.Google Scholar
Naylor, R. L., Liska, A. J., Burk, M. B.et al. 2007. The ripple effect: biofuels, food security, and the environment. Environment 49:30–43.Google Scholar
Neales, T. F. and Incoll, L. D.. 1968. The control of leaf photosynthesis rate by level of assimilate concentration in the leaf: a review of the hypothesis. Bot. Rev. 34:107–25.CrossRefGoogle Scholar
Neiburger, M., Edinger, T. G., and Bonner, W. D.. 1982. Understanding our Atmospheric Environment. San Francisco: W. H. Freeman.Google Scholar
Nelson, D. E.et al. (18 co-authors) 2007. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc. Nat. Acad. Sci. USA 104:16451–5.CrossRefGoogle ScholarPubMed
Nelson, D. W. 1982. Gaseous losses of nitrogen other than through denitrification. In Stevenson, F. J. (ed.) Nitrogen in Agricultural Soils. Agronomy Monograph no. 22. Madison, Wisconsin: Am. Soc. Agron., pp. 327–63.Google Scholar
Ng, E. and Loomis, R. S.. 1984. Simulation of Growth and Yield of the Potato Crop. Simulation Monographs. Wageningen, the Netherlands:Pudoc.Google Scholar
Nicholls, N. 1991. Advances in long-term weather forecasting. In , R. C. Muchow and Bellamy, J. A. (eds.) Climatic Risk in Crop Production: Models and Management for the Semi-arid Tropics. Wallingford, UK: CAB International, pp. 427–44.Google Scholar
,NLWRA. 2000. Dryland Salinity. Australia's Dryland Salinity Assessment 2000. Canberra: National Land and Water Resources Audit.
Northcote, K. H., Hubble, G. D., Isbell, R. F., Thompson, C. H., and Bettany, E.. 1975. A Description of Australian Soils. Melbourne: CSIRO.Google Scholar
Norton, J. M. 2008. Nitrification in agricultural soils. In Schepers, J. S., Raun, W. R. (eds.) Nitrogen in Agricultural Systems. Agron. Monogr. 49. Madison, Wisconsin: American Society of Agronomy; Crop Science Society of America; Soil Science Society of America; pp. 173–99.Google Scholar
O'Connell, M. G., O'Leary, G. J., and Incerti, M.. 1995. Potential groundwater recharge from fallowing in north-western Victoria, Australia. Agric. Water Manage. 29:37–52.CrossRefGoogle Scholar
O'Connell, M. G., O'Leary, G. J., and Connor, D. J.. 2003. Drainage and change in soil water storage below the root zone under long fallow and continuous cropping sequences in the Victorian Mallee. Aust. J. Agric. Res. 54:663–75.CrossRefGoogle Scholar
Odum, H. T. 1967. Energetics of world food production. In The President's Scientific Advisory Committee, Report of Problems of World Food Supply 3. Washington, D.C.: The White House, pp. 55–94.Google Scholar
Ofori, F. and Stern, W. R.. 1987. Cereal–legume intercropping systems. Adv. Agron. 41:41–90.CrossRefGoogle Scholar
O'Leary, G. J. 1996. The effects of conservation tillage on potential groundwater recharge. Agric. Water Manage. 31:65–73.CrossRefGoogle Scholar
O'Leary, G. J. and Connor, D. J.. 1998. A simulation study of wheat crop response to water supply, nitrogen nutrition, stubble retention, and tillage. Aust. J. Agric. Res. 49:11–19.CrossRefGoogle Scholar
O'Leary, G. J., Connor, D. J., and White, D. H.. 1981. A simulation model of the development, growth and yield of the wheat crop. Agric. Syst. 17:1–26.CrossRefGoogle Scholar
O'Leary, G. J., Ormesher, D., and Wells, M.. 2003. Detecting subsoil constraints on farms in the Murray Mallee. In Solutions for a Better Environment. Proceedings of the 11th Australian Agronomy Conference, February 2–6, 2003, Geelong, Victoria. Australian Society of Agronomy. (www.regional.org.au/au/asa/2003/c/15/oleary.htm).Google Scholar
Olesen, T., Morris, S., and McFadyen, L.. 2007. Modelling the interception of photosynthetically active radiation by evergreen subtropical hedgerows. Aust. J. Agric. Res. 58:215–33.CrossRefGoogle Scholar
Olk, D. C., Cassman, K. G., Mahieu, N., and Randall, E. W.. 1998. Conserved chemical properties of young humic acid fractions in tropical lowland soil under intensive irrigated rice cropping. Eur. J. Soil Sci. 49:337–49.CrossRefGoogle Scholar
Orang, M. N., Matyac, J. S., and Snyder, R. L.. 2008. Survey of irrigation methods in California. J. Irrig. Drain. E. ASCE 34:96–100.CrossRefGoogle Scholar
Orgaz, F., Mateos, L., and Fereres, E.. 1992. Season length and cultivar determine the optimum evapotranspiration deficit in cotton. Agron. J. 84:700–6.CrossRefGoogle Scholar
Osmond, C. B., Oja, V., and Laisk, A.. 1988. Regulation of carboxylation and photosynthetic oscillations during sunshade acclimation in Helianthus annuus measured with a rapid-response gas exchange system. In Evans, J. R., Caemmerer, S., and Adams, W. W. (eds.) Ecology of Photosynthesis in Sun and Shade. Canberra, Australia: CSIRO, pp. 237–51.Google Scholar
Osmond, C. B., Winter, K., and Ziegler, H.. 1982. Functional significance of different pathways of CO2 fixation in photosynthesis. In Lange, O. L., Nobel, P. S., Osmond, C. B., and Zeigler, H. (eds.) Physiological Plant Ecology. II. Water Relations and Carbon Assimilation (Encyl. Plant Physiol., new ser. vol. 12B). Heidelberg: Springer-Verlag, pp. 479–547.Google Scholar
Oster, J. D., Hoffman, G. J., and Robinson, F. E.. 1984. Dealing with salinity. Management alternatives: crop, water and soil. Calif. Agric. 38(10):29–32.Google Scholar
Otegui, M. E., Andrade, F. H., and Suero, E. E.. 1995. Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crops Res. 40:87–94.CrossRefGoogle Scholar
Oyarzun, R. A., Stockle, C. O., and Whiting, M. D.. 2007. A simple approach to modeling radiation interception by fruit-tree orchards. Agric. For. Meteorol. 142:12–24.CrossRefGoogle Scholar
Paltridge, G. W. and Denholm, J. V.. 1974. Plant yield and the switch from vegetative to reproductive growth. J. Theor. Biol. 44:23–34.CrossRefGoogle ScholarPubMed
Paltridge, G. W. and Platt, C. M. R.. 1976. Radiative Processes in Meteorology and Climatology. (Developments in Atmospheric Science no. 5.) Amsterdam: Elsevier Scientific.Google Scholar
Paltridge, G. W., Denholm, J. V., and Connor, D. J.. 1984. Determinism, senescence and the yield of plants. J. Theor. Biol. 10:383–98.CrossRefGoogle Scholar
Pannell, D. J. 1999. Social and economic challenges in the development of complex farming systems. Agrofor. Syst. 45:393–409.CrossRefGoogle Scholar
Passioura, J. B. 1983. Roots and drought resistance. Agric. Water Manage. 7:265–80.CrossRefGoogle Scholar
Paul, E. A. and Clark, F. E.. 1989. Soil Microbiology and Biochemistry. San Diego, California: Academic Press.Google Scholar
Paul, E. A. and Veen, J. A.. 1978. The use of tracers to determine the dynamic nature of organic matter. Trans, 11th Int. Congr. Soil Sci. 3:61–102.Google Scholar
Payne, P. R. 1978. Human protein requirements. In Norton, G. (ed.) Plant Proteins. London: Butterworth, pp. 247–63.Google Scholar
Pearce, R. B., Carlson, G. E., Barnes, D. K., Hart, R. H., and Hanson, C. H.. 1969. Specific leaf weight and photosynthesis in alfalfa. Crop Sci. 9:423–6.CrossRefGoogle Scholar
Peng, S., Cassman, K. G., Virmani, S. S., Sheehy, J., and Khush, G. S.. 1999. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci. 39:1552–9.CrossRefGoogle Scholar
Peng, S., Garcia, F. V., Laza, R. C.et al. 1996. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice. Field Crops Res. 47:243–52.CrossRefGoogle Scholar
Peng, S., Huang, J., Sheehy, J. E.et al. 2004. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 101:9971–5.CrossRefGoogle ScholarPubMed
Peng, S., Khush, G. S., Virk, P., Tang, Q., and Zo, Y.. 2008. Progress in ideotype breeding to increase rice yield potential. Field Crops Res. 108:32–8.CrossRefGoogle Scholar
Penman, H. L. 1948. Natural evaporation from open water, bare soil, and grass. Proc. R. Soc. Lond. A 193:120–45.CrossRefGoogle Scholar
Penman, H. L., Angus, D. E., and Bavel, C. H. M.. 1967. Microclimate factors affecting evaporation and transpiration. In Hagen, R. M., Haise, H. R., and Edminister, T. W. (eds.) Irrigation of Agricultural Lands. Agronomy Monograph no. 11.Madison, Wisconsin: Am. Soc. Agron., pp. 483–505.Google Scholar
Penning de Vries, F. W. T. 1975. The cost of maintenance processes in plant cells. Ann. Bot. 39:77–92.CrossRefGoogle Scholar
Penning de Vries, F. W. T., Brunsting, A. H. M., and Laar, H. H.. 1974. Products, requirements and efficiency of biosynthesis: a quantitative approach. J. Theor. Biol. 45:339–77.CrossRefGoogle ScholarPubMed
Penning de Vries, F. W. T., Laar, H. H., and Chardon, M. C. M.. 1983. Bioenergetics and growth of fruits, seeds, and storage organs. In Smith, W. H. and Banta, S. J. (eds.) Potential Productivity of Field Crops Under Different Environments. Los Baños, Philippines: IRRI, pp. 37–59.Google Scholar
Perlack, R. D., Wright, L. L., Turhollow, A. F.et al. 2005. Biomass as Feedstock for a Bioenergy and Bioproducts Industry. The Technical Feasibility of a Billion Ton Annual Supply. USDA and DOE.
Peterson, G. A., Westfall, D. G., and Cole, C. V.. 1993. Agroecosystem approach to soil and crop management. Soil Sci. Soc. Am. J. 57:1354–60.CrossRefGoogle Scholar
Petheram, C., Walker, G., Grayson, R., Thierfelder, T., and Zhang, L.. 2002. Towards a framework for predicting impacts of land-use on recharge: 1. A review of recharge studies in Australia. Aust. J. Soil Res. 40:397–417.CrossRefGoogle Scholar
Piha, M. I. and Munns, D. N.. 1987. Nitrogen fixation potential of bean (Phaseolus vulgaris L.) compared with other grain legumes under controlled conditions. Plant Soil 98:169–82.CrossRefGoogle Scholar
Pimentel, D., Hurd, L. E., Belloti, A. C.et al. 1973. Food production and the energy crisis. Science 206:1277–80.Google Scholar
Pirt, S. J. 1965. The maintenance energy of bacteria in growing cultures. Proc. R. Soc. Lond. B 163:224–31.CrossRefGoogle ScholarPubMed
,Plant and Soil Sciences eLibrary. http://plantandsoil.unl.edu/croptechnology2005/pages/index.jsp?what=topicsD&topicOrder=1&informationModuleId=1087488148.
Plant, R. E., Horrocks, R. D., Grimes, D. W., and Zelinski, L. J.. 1992. CALEX/cotton: an integrated expert system application for irrigation scheduling. Amer. Soc. Agric. Eng. 35:1833–9.CrossRefGoogle Scholar
Pook, M., Lisson, S., Risbey, J.et al. 2009. The autumn break for cropping in southeast Australia: trends, synoptic influences and impacts on wheat yield. Int. J. Climatol. 29:2012–26.CrossRefGoogle Scholar
Porter, J. R. 1993. AFRCWHEAT2: a model of the growth and development of wheat incorporating responses to water and nitrogen. Eur. J. Agron. 2:69–82.CrossRefGoogle Scholar
Portmann, F. T., Siebert, S., and Döll, P.. 2010. MIRCA2000 – Global Monthly Irrigated and Rainfed Crop Areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cy. 24, GB1011. doi:10.1029/2008GB003435.CrossRefGoogle Scholar
Postel, S., Polak, P., Gonzales, F., and Keller, J.. 2001. Drip irrigation for small farmers. A new initiative to alleviate hunger and poverty. Water Int. 26:3–13.CrossRefGoogle Scholar
Powlson, D. S., Addiscott, T. M., Benjamin, N.et al. 2008. When does nitrate become a risk for humans? J. Environ. Qual. 37:291–5.CrossRefGoogle ScholarPubMed
Priestley, C. H. B. and Taylor, R. J.. 1972. On the assessment of surface heat flux and evaporation using large scale parameters. Mon. Weather Rev. 100:81–92.2.3.CO;2>CrossRefGoogle Scholar
Pruitt, W. O. 1964. Cyclic relations between evapotranspiration and radiation. Trans. ASAE 7:271–5; 280.CrossRefGoogle Scholar
Pruitt, W. O. 1986. Prediction and Measurement of Crop Water Requirements: the Basis of Irrigation Scheduling. University of Sydney, Sydney: Faculty of Agriculture.Google Scholar
Puckridge, D. W. and Donald, C. M.. 1967. Competition among wheat plants sown at a wide range of densities. Aust. J. Agric. Res. 18:193–211.CrossRefGoogle Scholar
Pugsley, A. T. 1982. Additional genes inhibiting winter habit in wheat. Euphytica 21:547–52.CrossRefGoogle Scholar
Putman, A. and Tang, C. S. (eds.) 1986. The Science of Allelopathy. New York: John Wiley.Google Scholar
Radford, P. J. 1967. Growth analysis formulae – their use and abuse. Crop Sci. 7:171–5.CrossRefGoogle Scholar
Radin, J. W. 1977. Contribution of the root system to nitrate assimilation in whole cotton plants. Aust. J. Plant Physiol. 4:811–19.CrossRefGoogle Scholar
Radin, J. W. 1983. Control of plant growth by nitrogen: differences between cereals and broadleaf species. Plant Cell Environ. 6:65–8.Google Scholar
Rapoport, H. F. and Loomis, R. S.. 1986. Structural aspects of root thickening in Beta vulgaris L.: comparative thickening in sugarbeet and chard. Bot. Gaz. 147:270–7.CrossRefGoogle Scholar
Rasmusson, D. C. 1987. An evaluation of ideotype breeding. Crop. Sci. 27:1140–6.CrossRefGoogle Scholar
Raun, W. R., Solie, J. B., Johnson, G. V.et al. 2002. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron. J. 94:815–20.CrossRefGoogle Scholar
Rebetzke, G. J., Condon, A. G., Richards, R. A., and Farquhar, G. D.. 2002. Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci. 42:739–45.CrossRefGoogle Scholar
Reddall, A. A., Wilson, L. J., Gregg, P. C., and Sadras, V. O.. 2007. Photosynthetic response of cotton to spider mite damage: interaction with light and compensatory mechanisms. Crop Sci. 47:2047–57.CrossRefGoogle Scholar
Reeve, R. C. and Fireman, M.. 1967. Salt problems in relation to irrigation. In Hagan, R. M., Haise, H. R. and Edminister, T. W. (eds.) Irrigation of Agricultural Lands. Agronomy Monographs. Madison, Wisconsin: Am. Soc. Agron., pp. 988–1008.Google Scholar
Rengasamy, P. 2002. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust. J. Exp. Agric. 42:351–61.CrossRefGoogle Scholar
Richards, R. A. 2000. Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Bot. 51:447–58.CrossRefGoogle ScholarPubMed
Richards, R. A. 2006. Physiological traits used in the breeding of new cultivars for water-scarce environments. Agr. Water Manage. 80:197–211.CrossRefGoogle Scholar
Richards, R. A. and Passioura, J. B.. 1989. A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Aust. J. Agric. Res. 40:943–50.CrossRefGoogle Scholar
Richards, Q. D., Bange, M. P., and Johnston, S. B.. 2008. HydroLogic: an irrigation management system for Australian cotton. Agric. Sys. 98:40–9.CrossRefGoogle Scholar
Ridley, A. M., Christy, B., Dunin, F. X.et al. 2001. Lucerne in crop rotations on the Riverine Plains. I. The soil water balance. Aust. J. Agric. Res. 52:263–77.CrossRefGoogle Scholar
Ridley, A. M., Simpson, R. J., and White, R. E.. 1999. Nitrate leaching under phalaris, cocksfoot, and annual ryegrass pastures and implications for soil acidification. Aust. J. Agric. Res. 50:55–64.CrossRefGoogle Scholar
Rimmington, G. M. and Nicholls, N.. 1993. Forecasting wheat yields in Australia with the southern oscillation index. Aust. J. Agric. Res. 44:625–32.CrossRefGoogle Scholar
Ritchie, J. T. 1971. Dryland evaporative flux in a subhumid climate: I. Micrometeorological influences. Agron. J. 63:51–5.CrossRefGoogle Scholar
Ritchie, J. T. 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 8:1204–13.CrossRefGoogle Scholar
Ritchie, J. T. and Burnett, E.. 1971. Dryland evaporative flux in a subhumid climate: II. Plant influences. Agron. J. 63:56–62.CrossRefGoogle Scholar
Ritchie, J. T. and Otter, S.. 1985. Description and Performance of CERES-Wheat. A User-oriented Wheat Yield Model. ARS Wheat Yield Project, ARS 38:159–76.
Roberts, A. M., Helmers, M. J., and Fillery, I. R. P.. 2009. The adoptability of perennial-based farming systems for hydrologic and salinity control in dryland farming systems in Australia and the United States of America. Crop & Past. Sci. 60:83–99.CrossRefGoogle Scholar
Roberts, E. H. and Summerfield, R. J.. 1987. Measurement and prediction of flowering in annual crops. In Atherton, J. G. (ed.) Manipulation of Flowering. Proc. 45th Easter School Agricultural Science, Nottingham University. London: Butterworth, pp. 17–50.CrossRefGoogle Scholar
Roberts, H. A. 1981. Seed banks in the soil. Adv. Appl. Biol. 6:1–55.Google Scholar
Robertson, G. W. 1973. Development of simplified agroclimatic procedures for assessing temperature effects on crop development. In Slayter, R. O. (ed.) Plant Responses to Climatic Factors, Proc. Uppsala Symp. 1970. Paris: UNESCO, pp. 327–43.Google Scholar
Robertson, M. J., Brooking, I. R., and Ritchie, J. T.. 1996. Temperature response of vernalization in wheat: modelling the effect on the final number of mainstem leaves. Ann. Bot. 78:371–81.CrossRefGoogle Scholar
Robson, M. J. 1982. The growth and carbon economy of selection lines of Lolium perenne cv. S23 with “differing” rates of dark respiration. I. Grown as simulated swards during a regrowth period. Ann. Bot. 49:321–9.CrossRefGoogle Scholar
Rolston, D. E., Hoffman, D. L., and Toy, D. W.. 1978. Field measurement of denitrification: I. Flux of N2 and N2O. Soil Sci. Soc. Am. J. 42:863–9.CrossRefGoogle Scholar
Rose, C. W. 1985. Developments in soil erosion and deposition models. Adv. Soil Sci. 2:1–63.CrossRefGoogle Scholar
Rosegrant, M. W., Cai, X., and Cline, S. A.. 2002. World Water and Food to 2025: Dealing with Scarcity. Washington, DC: Intern. Food Policy Res. Inst.Google Scholar
Rosenberg, N. J., Blad, B. L., and Verma, S. B.. 1983. Microclimate, the Biological Environment, 2nd edition. New York: John Wiley.Google Scholar
Rossiter, R. C. and Collins, W. T.. 1988. Genetic diversity in old subterranean clover (Trifolium subterranean L.) populations in Western Australia. II. Pastures sown initially to the Mt. Barker strain. Aust. J. Agric. Res. 39:1063–74.CrossRefGoogle Scholar
Rovira, A. D. 1992. Dryland Mediterranean farming systems of Australia. Aust. J. Exp. Agric. 32:808–9.CrossRefGoogle Scholar
Rovira, A. D. 1993. Sustainable Farming Systems in the Cereal-livestock Areas of the Mediterranean Region of Australia. Glen Osmond, South Australia: Cooperative Research Centre for Soil and Land Management.Google Scholar
Running, S. W. 1980. Relating plant capacitance to water relations of Pinus contorta. Forest Ecol. Manage. 2:237–52.CrossRefGoogle Scholar
Russell, J. S. 1967. Nitrogen fertilizer and wheat in a semi-arid environment. I. Effect on yield. Aust. J. Agric. Anim. Husb. 7:453–62.CrossRefGoogle Scholar
Ruthenberg, H. 1980. Farming Systems in the Tropics. Clarendon Press, Oxford.Google Scholar
Ruttan, V. W. 1982. Agricultural Research Policy. Minneapolis: University of Minnesota Press.Google Scholar
Ryle, G. J. A., Powell, C. E., and Gordon, A. J.. 1979. The respiratory costs of nitrogen fixation in soyabean, cowpea, and white clover. I. Nitrogen fixation and the respiration of the nodulated root. J. Exp. Bot. 30:135–44.CrossRefGoogle Scholar
Sadras, V. O. 2002. Canopy management. In Pimentel, D. (ed.) Encyclopedia of Pest Management. New York: Marcel Dekker, pp. 112–14.Google Scholar
Sadras, V. O. 2003. Influence of size of rainfall events on water-driven processes. I. Water budget of wheat crops in south-eastern Australia. Aust. J. Agric. Res. 54:341–51.CrossRefGoogle Scholar
Sadras, V. O. 2009. Does partial root-zone drying improve irrigation water productivity in the field? A meta analysis. Irrig Sci. 27:183–90.CrossRefGoogle Scholar
Sadras, V. O. and Angus, J. F.. 2006. Benchmarking water-use efficiency of rainfed wheat in dry environments. Aust. J. Agric. Res. 57:847–56.CrossRefGoogle Scholar
Sadras, V. O. and Connor, D. J.. 1991. Physiological basis of the response of harvest index to the fraction of water transpired after anthesis: a simple model to estimate harvest index for determinate species. Field Crop Res. 26:227–39.CrossRefGoogle Scholar
Sadras, V. O., Roget, D. K., and Krause, M.. 2003. Dynamic cropping strategies for risk management in dry-land farming systems. Agric. Syst. 76:929–48.CrossRefGoogle Scholar
Saeki, T. 1963. Light relations in plant communities. In Evans, L. T. (ed.) Environmental Control of Plant Growth. New York: Academic Press, pp. 79–94.CrossRefGoogle Scholar
Sage, R. F. and Reid, C. D.. 1994. Photosynthetic response mechanisms to environmental change in C3 plants. In Wilkinson, R. E. (ed.) Plant–Environment Interactions. New York: Marcel Dekker, pp. 413–19.Google Scholar
Sale, P. J. M. 1974. Productivity of vegetable crops in a region of high solar input. III. Carbon balance of potato crops. Aust. J. Plant Physiol. 1:283–96.CrossRefGoogle Scholar
Sale, P. J. M. 1975. Productivity of vegetable crops in a region of high solar input. IV. Field chamber measurements of french beans (Phaseolus vulgaris L.) and cabbages (Brassica oleracea L.). Aust. J. Plant Physiol. 2:461–70.CrossRefGoogle Scholar
Sale, P. J. M. 1977. Net carbon exchange rates of field grown crops in relation to irradiance and dry weight accumulation. Aust. J. Plant Physiol. 4:555–69.CrossRefGoogle Scholar
Salisbury, F. B. 1963. The Flowering Process. New York: Pergamon Press.CrossRefGoogle Scholar
Salisbury, F. B. 1981. Response to photoperiod. In Lange, O. L., Nobel, P. S., Osmond, C. B., and Zeigler, H. (eds.) Physiological Plant Ecology. I. Responses to the Physical Environment, (Encyl. Plant Physiol, New Ser. Vol. 12A). Heidelberg: Springer-Verlag, pp. 135–67.Google Scholar
Sanchez, P. A. 1976. Properties and Management of Soils in the Tropics. New York: John Wiley.Google Scholar
Schneider, S. H., Gleick, P. H., and Mearns, L. O.. 1990. Prospects for climate change. In Waggoner, P. E. (ed.) Climate Change and U.S. Water Resources. New York: John Wiley, pp. 41–73.Google Scholar
Schouten, H. 1986. Low-input farming. In Keulen, H. and Wolf, J. (eds.) Modelling of Agricultural Production: Weather, Soils and Crops. Simulation Monographs. Wageningen, the Netherlands: Pudoc, pp. 263–76.Google Scholar
Schubert, K. R. (ed.) 1982. The Energetics of Biological Nitrogen Fixation. Rockville, Maryland: Am. Soc. Plant Physiol.
Schultz, J. E. 1971. Soil water changes under fallow crop treatments in relation to soil type, rainfall, and yield. Aust. J. Exp. Agric. Anim. Husb. 11:236–42.CrossRefGoogle Scholar
Searchinger, T., Heimlich, R., Houghton, R.et al. 2008. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science 113:2380–8.Google Scholar
Shannon, M. C. 1984. Breeding, selection and the genetics of salt tolerance. In Staples, R. C. and Toenniessen, G. H. (eds.) Salinity Tolerance in Plants: Strategies for Crop Improvement. New York: Wiley-Interscience, pp. 231–54.Google Scholar
Shantz, H. L. and Piemeisel, L. N.. 1927. Water requirement of plants at Akron, Colorado. J. Agric. Res. 34:1093–190.Google Scholar
Sheehy, J. E., Mitchell, P. L., and Ferrer, A. B.. 2006. Decline in rice grain yields with temperature. Models and correlations can give different estimates. Field Crop Res. 98:151–6.CrossRefGoogle Scholar
Sheldrick, W., Syers, J. K., and Lingard, J.. 2003. Contribution of livestock excreta to nutrient balances. Nutr. Cycl. Agroecosys. 66:119–31.CrossRefGoogle Scholar
Shibles, R. M. and Weber, C. R.. 1965. Leaf area, solar radiation interception and dry matter production by soybeans. Crop Sci. 5:575–7.CrossRefGoogle Scholar
Shouse, P., Jury, W. A., Stolzy, L. H., and Dasburg, S.. 1982. Field measurement and modelling of cowpea water use and yield under stressed and well-watered conditions. Hilgardia 50:1–25.CrossRefGoogle Scholar
Silsbury, J. H. 1977. Energy requirements of symbiotic nitrogen fixation. Nature 267:1149–50.CrossRefGoogle ScholarPubMed
Simmonds, N. W. 1979. Principles of Crop Improvement. London: Longman.Google Scholar
Sinclair, T. R., Hammer, G. L., and Oosterom, E. J.. 2005. Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Funct. Plant Biol. 32:945–52.CrossRefGoogle Scholar
Slatyer, R. O. 1967. Plant–water Relations. New York: Academic Press.Google Scholar
Slicher van Bath, B. H. 1963. The Agrarian History of Western Europe: A.D. 500–1500. London: Edward Arnold.Google Scholar
Smika, D. E. 1970. Summer fallow for dryland winter wheat in the semiarid Great Plains. Agron. J. 62:15–17.CrossRefGoogle Scholar
Smil, V. 1999. Crop residues, agriculture's largest harvest. Bioscience 49:299–308.CrossRefGoogle Scholar
Smil, V. 2001. Feeding the World. A Challenge for the Twenty-first Century. Cambridge, Massachusetts: MIT Press.Google Scholar
Smil, V. 2004. Enriching the Earth. Fritz Haber, Carl Bosch, and the Transformation of World Food Production. Cambridge, Massachusetts: MIT Press.Google Scholar
Smith, B. D. 1990. Origins of agriculture in eastern North America. Science 246:1566–71.CrossRefGoogle Scholar
Smith, D. F. 2000. Natural Gain: in the Grazing Lands of Southern Australia. Sydney: UNSW Press.Google Scholar
Smith, W. H. and Banta, S. J. (eds.) 1983. Potential Productivity of Field Crops under Different Environments. Los Baños, Philippines: IRRI.Google Scholar
Snyder, C. S., Bruulsema, T. W., Jensen, T. L., and Fixen, P. E.. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosys. & Environ. 133:247–66.CrossRefGoogle Scholar
Soil Survey Staff, . 1988. Keys to Soil Taxonomy. Soil Management Support Services, AID, USDA, Cornell University, Ithaca, New York.Google Scholar
Sommer, S. G., Schjoerring, J. K., and Denmead, O. T.. 2004. Ammonia emission from mineral fertilizers and fertilized crops. Adv. Agron. 82:558–622.Google Scholar
Soriano, M. A., Orgaz, F., Villalobos, F. J., and Fereres, E.. 2004. Efficiency of early plantings of sunflower. Eur. J. Agron. 21:465–76.CrossRefGoogle Scholar
Specht, J. E., Williams, J. H., and Weidenbenner, C. J.. 1986. Differential responses of soybean genotypes subjected to a seasonal soil water gradient. Crop Sci. 26:922–34.CrossRefGoogle Scholar
Specht, J. E., Hume, D. J., and Kumudini, S. V.. 1999. Soybean yield potential – a genetic and physiological perspective. Crop Sci. 39:1560–70.CrossRefGoogle Scholar
Spitters, C. J. T. 1980. Competition effects within mixed stands. In Hurd, R. G., Biscoe, P. V., and Dennis, C. (eds.) Opportunities for Increasing Crop Yields. London:Pitman, pp. 219–31.Google Scholar
Squire, G. R. 1990. The Physiology of Tropical Crop Production. Wallingford: CABI.Google Scholar
,Staff of theHortorium, L. H. Bailey. 1976. Hortus Third. New York: Macmillan.Google Scholar
Stahl, R. S. and McCree, K. J.. 1988. Ontogenetic changes in the respiration coefficients of grain sorghum. Crop Sci. 28:111–13.CrossRefGoogle Scholar
Stainforth, D. A., Aina1, T., Christensen, C.et al. 2005. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–6.CrossRefGoogle ScholarPubMed
Stapper, M. 1984. SIMTAG: A Simulation Model of Wheat Genotypes. University of New England and ICARDA, Armidale, Australia, and Aleppo, Syria.Google Scholar
Steduto, P. and Albrizio, R.. 2005. Resource use efficiency of field-grown sunflower, sorghum and chickpea II. Water use efficiency and comparison with radiation use efficiency. Agric. For. Meteorol. 130:269–81.CrossRefGoogle Scholar
Steele, K. W. and Vallis, I.. 1988. The nitrogen cycle in pastures. In Wilson, J. R. (ed.) Advances in Nitrogen Cycling in Agricultural Ecosystems. Wallingford, Oxon, UK: CAB International, pp. 274–91.Google Scholar
Stern, W. R. and Donald, C. M.. 1962. Light relations in grass-clover swards. Aust. J. Agric Res. 13:599–614.CrossRefGoogle Scholar
Stevenson, F. J. (ed.). 1982. Nitrogen in Agricultural Soils. (Agronomy Monograph no. 22.) Madison, Wisconsin: Am. Soc. Agron.Google Scholar
Stewart, J. I. 1988. Response Farming in Rainfed Agriculture. Davis, California: WHARF Foundation Press.Google Scholar
Stewart, J. I. and Hash, C. T.. 1982. Impact of weather analysis on agricultural production and planning decisions for semiarid areas of Kenya. J. Appl. Meteorol. 21:477–94.2.0.CO;2>CrossRefGoogle Scholar
Stout, B. A., Myers, C. A., Hurrand, A., and Faidley, L. W.. 1979. Energy for World Agriculture. Rome: UN FAO.Google Scholar
Struik, P. C., Cassman, K. G., and Koornneef, M.. 2007. A dialogue on interdisciplinary collaboration to bridge the gap between plant genomics and crop science. In Spiertz, J. H. J., Struik, P. C. and Laar, H. H. (eds.) Scale and Complexity in Plant Systems Research: Gene–Plant–Crop Relations. Springer. pp. 319–28.CrossRefGoogle Scholar
Suyker, A. E. and Verma, S. B.. 2009. Evapotranspiration of irrigated and rainfed maize–soybean cropping systems. Agric. For. Meteorol. 149:443–52.CrossRefGoogle Scholar
Tanaka, A. and Fujita, K.. 1979. Growth, photosynthesis and yield components in relation to grain yield of the field bean. J. Fac. Agric. Hokkaido Univ. 59(2):146–238.Google Scholar
Tanner, C. B. 1981. Transpiration efficiency of potato. Agron. J. 73:59–64.CrossRefGoogle Scholar
Tanner, C. B. and Sinclair, T. R.. 1983. Efficient water use in crop production: Research or research? In Taylor, H. M., Jordan, W. R., and Sinclair, T. R. (eds.) Limitations to Efficient Water Use in Crop Production. Madison, Wisconsin: Am. Soc. Agron., pp. 1–27.Google Scholar
Taverne, D. 2005. The March of Unreason. Science, Democracy, and the New Fundamentalism. Oxford: Oxford University Press.Google Scholar
Tennant, D. and Hall, D.. 2001. Improving water use of annual crops and pastures – limitations and opportunities in Western Australia. Aust. J. Agric. Res. 52:171–82.CrossRefGoogle Scholar
Testi, L., Villalobos, F. J., Orgaz, F., and Fereres, E.. 2006. Water requirements of olive orchards. I. Simulation of daily evapotranspiration for scenario analysis. Irrig. Sci. 24:69–76.CrossRefGoogle Scholar
Tetio-Kagho, F. and Gardner, F. P.. 1988. Responses of maize to plant population density. II. Reproductive development, yield and yield adjustments. Agron. J. 80:935–40.CrossRefGoogle Scholar
Thomas, M. D. and Hill, G. R.. 1949. Photosynthesis under field conditions. In Franck, J. and Loomis, W. E. (eds.) Photosynthesis in Plants. Ames: Iowa State College Press, pp. 19–51.Google Scholar
Thompson, P. B. 2008. The agricultural ethics of biofuels: a first look. J. Agr. Environ. Ethic. 21:183–98.CrossRefGoogle Scholar
Thornley, J. H. M. (1976). Mathematical Models in Plant Physiology: a Quantitative Approach to Problems in Plant and Crop Physiology. London: Academic Press.Google Scholar
Timmermann, C., Gerhards, R., and Kühbauch, W.. 2003. The economic impact of site-specific weed control. Precis. Agric. 4:249–60.CrossRefGoogle Scholar
Tollenaar, M. 1989. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Sci. 29:1365–71.CrossRefGoogle Scholar
Tollenaar, M., and Lee, M. A.. 2002. Yield potential, yield stability, and stress tolerance in maize. Field Crop Res. 75:161–9.CrossRefGoogle Scholar
Tottmann, D. R., Makepeace, R. J., and Broad, H.. 1979. An explanation of the decimal code for the growth stages of cereals, with illustrations. Ann. Appl. Biol. 93:221–34.CrossRefGoogle Scholar
Trabalka, J. R. and Reichle, D. E. (eds.). 1986. The Changing Carbon Cycle. New York: Springer-Verlag.CrossRefGoogle Scholar
Trenbath, B. R. 1974. Biomass productivity of mixtures. Adv. Agron. 26:177–210.CrossRefGoogle Scholar
Trevaskis, B., Hemming, M. N., Dennis, E. S., and Peacock, W. J.. 2007. The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci. 12:352–7.CrossRefGoogle ScholarPubMed
Trewartha, G. T. and Horn, L. H.. 1980. An Introduction to Climate. New York: McGraw-Hill.Google Scholar
Trewavas, A. 1986. Resource allocation under poor growth conditions. A major role for growth substances in developmental plasticity. In Jennings, D. H. and Trewavas, A. J. (eds.) Plasticity in Plants. Symp. Soc Exp. Biol. no. 40. Cambridge University, Cambridge, UK: Company of Biologists, pp. 31–76.Google Scholar
Trumble, H. C. 1939. Climatic factors in relation to agricultural regions of southern Australia. Trans. Roy. Soc. S. Aust. 63:36–43.Google Scholar
Turner, N. C. 1986. Crop water deficits: a decade of progress. Adv. Agron. 39:1–51.CrossRefGoogle Scholar
Turner, N. C. 1997. Further progress in crop water relations. Adv. Agron. 58:293–338.CrossRefGoogle Scholar
Turner, N. C. and Begg, J. E.. 1981. Plant–water relations and adaptation to drought. Plant Soil 58:97–113.CrossRefGoogle Scholar
Turner, R. E., Rabalais, N. N., and Justic, D.. 2008. Gulf of Mexico hypoxia: alternate states and a legacy. Environ. Sci. Technol. 42:2323–7.CrossRefGoogle Scholar
Ulrich, A. 1961. Variety climate interactions of sugar beet varieties in simulated climates. J. Am. Soc. Sugar Beet Technol. 11:376–87.CrossRefGoogle Scholar
Ulrich, A., Ririe, D., Hills, F. J., George, A., and Morse, M. D.. 1959. Plant Analysis. A Guide for Sugar Beet Fertilization. (Bull. no. 766, part 1.) University of California, Berkeley, California: Calif. Agric. Exp. Sta.Google Scholar
Ummenhofer, C. C., England, M. H., McIntosh, P. C.et al. 2009. What causes south east Australias's worst droughts? Geophys. Res. Lett. 36 L04706, doi:10.1029/2008GL036801.CrossRefGoogle Scholar
,United Nations Population Division. www.un.org/esa/population.
Unger, P. W. 1984. Tillage Systems for Soil and Water Conservation. (FAO Soils Bulletin no. 54.) Rome: FAO.Google Scholar
Unkovich, M., Herridge, D., Peoples, M.et al. 2008. Measuring Plant-associated Nitrogen Fixation in Agricultural Systems. ACIAR Monograph No. 136. Canberra, Australia.Google Scholar
,USDA (United States Department of Agriculture). 1974. Summer Fallow in the Western United States. Conservation Research Report. Agric. Res. Ser. Washington, DC: Government Printing Office, USDA, US.Google Scholar
,USDA. 2009. Manure use for fertilizer and energy: report to Congress. Economic Research Service. U.S. Washington, D.C.: Department of Agriculture.Google Scholar
,USDA-ERS (USDA Economic Research Service). 2005. Agricultural Resource Management Survey. Washington, D.C.: USDA-ERS.Google Scholar
,USDA-ERS website. http://www.ers.usda.gov/Data/FertilizerUse/.
,USDA-NASS (USDA National Agricultural Statistics Service) website. www.nass.usda.gov/.
Alphen, B. J., Booltink, H. W. G., and Bouma, J.. 2001. Combining pedotransfer functions with physical measurements to improve estimation of soil hydraulic properties. Geoderma 103:133–47.CrossRefGoogle Scholar
Vandenbygaart, A. J. and Angers, D. A.. 2006. Towards accurate measurements of soil organic carbon stock change in agroecosystems. Can. J. Soil Sci. 86:465–71.CrossRefGoogle Scholar
Meer, H. G., Unwin, R. J., Dijk, T. A., and Ennik, G. C. (eds.) 1987. Animal manure on grassland and fodder crops. Fertilizer or waste? (Proc. Intl. Symp. European Grassland Fed.) Dordrecht, the Netherlands: Martinus Nijhoff.Google Scholar
Plank, J. E. 1963. Plant Disease: Epidemics and Control. New York: Academic Press.Google Scholar
Heemst, H. D., Nerkelijn, J. J., and Keulen, H.. 1981. Labour requirements in various agricultural systems. Quart. J. Int. Agric. 120:178–201.Google Scholar
Heerwarden, A. F., Farquhar, G. D., Angus, J. F., Richards, R. A., and Howe, G. N.. 1998. “Haying off”, the negative grain yield response of dryland wheat to nitrogen fertilizer. I. Biomass, grain yield, and water use. Aust. J. Agric. Res. 49:1067–81.CrossRefGoogle Scholar
Keulen, H. 1982. Graphical analysis of annual crop response to fertilizer application. Agric. Syst. 9:113–26.CrossRefGoogle Scholar
Keulen, H. and Heemst, H. D. J.. 1982. Crop supply of macronutrients. Agric. Res. Rep. 916:46.Google Scholar
Noordwijk, M. and Lusiana, B.. 1999. WaNuLCAS, a model of water, nutrient and light capture in agroforestry systems. Agrofor. Syst. 43:217–42.CrossRefGoogle Scholar
Soest, P. J. 1982. Nutritional Ecology of the Ruminant. Corvallis, Oregon: O & B Books.Google Scholar
Wijk, W. R. and Vries, D. A.. 1963. Periodic temperature variations in a homogeneous soil. In Wijk, W. R. (ed.) Physics of the Plant Environment. Amsterdam: North-Holland, pp. 102–43.Google Scholar
Venterea, R. D., Burger, M., and Spokas, K. A.. 2005. Nitrogen oxide and methane emissions under varying tillage and fertilizer management. J. Environ. Qual. 34:1467–77.CrossRefGoogle ScholarPubMed
Verma, S. B., Dobermann, A., Cassman, K. G.et al. 2005. Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agric. For. Meteorol. 131:77–96.CrossRefGoogle Scholar
Vertregt, N. and Penning de Vries, F. W. T.. 1987. A rapid method for determining the efficiency of biosynthesis of plant biomass. J. Theor. Biol. 128:109–19.CrossRefGoogle Scholar
Vertregt, N. and Rutgers, B.. 1988. Ammonia Volatilization from Grazed Pastures. (CABO- Report 84. Report 64–2.) Wageningen, the Netherlands: Centre for Agrobiological Research.Google Scholar
Vince-Prue, D. 1975. Photoperiodism in Plants. New York: McGraw-Hill.Google Scholar
Wafula, B. M. 1995. Applications of crop simulation in agricultural extension and research in Kenya. Agric. Sys. 49:399–412.CrossRefGoogle Scholar
Wallace, J. S. 2000. Increasing agricultural water use efficiency to meet future food production. Agric. Ecosyst. Environ. 82:105–19.CrossRefGoogle Scholar
Wang, Y. P. and Connor, D. J.. 1996. Simulation of optimal development for spring wheat at two locations in southern Australia under present and changed climate conditions. Agric. For. Meteorol. 79:9–28.CrossRefGoogle Scholar
Ward, P. R., Dunin, F. X., and Micin, S. F.. 2001. Water balance of annual and perennial pastures on a duplex soil in a Mediterranean environment. Aust. J. Agric. Res. 52:203–9.CrossRefGoogle Scholar
Warren Wilson, J. 1959. Analysis of the spatial distribution of foliage by two-dimensional point quadrats. New Phytol. 58:92–101.CrossRefGoogle Scholar
Warren Wilson, J. 1967. Stand structure and light penetration. III. Sunlit foliage area. J. Appl. Ecol. 4:159–65.CrossRefGoogle Scholar
Warrington, I. J. and Kanemasu, E. T.. 1983. Corn growth response to temperature and photoperiod. I. Seedling emergence, tassel initiation, and anthesis. Agron. J. 75:749–54.CrossRefGoogle Scholar
Weir, A. H., Bragg, P. L., Porter, J. R., and Rayner, J. H.. 1984. A winter wheat crop simulation model without water or nutrient limitations. J. Agric. Sci. Camb. 102:371–82.CrossRefGoogle Scholar
Weldon, C. W. and Slauson, W. L.. 1986. The intensity of competition versus its importance: an overlooked distinction and some implications. Quart. Rev. Biol. 61:23–44.CrossRefGoogle Scholar
Wellings, S. R. and Bell, P.. 1980. Movement of water and nitrate in the unsaturated zone of the upper Chalk near Winchester, Hants. J. Hydrol. 48:119–36.CrossRefGoogle Scholar
White, J. W. 1981. A Quantitative Analysis of the Growth and Development of Bean Plants (Phaseolus vulgaris L.) PhD Dissertation, University of California. Berkeley.Google Scholar
White, J. W., Herndl, M., Hunt, L. A., Payne, T. S., and Hoogenboom, G.. 2008. Simulation-based analysis of effects of Vrn and Ppd loci on flowering in wheat. Crop Sci. 48:678–87.CrossRefGoogle Scholar
Whitfield, D. M. 1990. Canopy conductance, carbon assimilation and water use in wheat. Agr. Forest Meterol. 53:1–18.CrossRefGoogle Scholar
Whitfield, D. M., Connor, D. J., and Sale, P. J. M.. 1980. Carbon dioxide exchanges in response to change of environment and to defoliation in a tobacco crop. Aust. J. Plant Physiol. 7:473–85.CrossRefGoogle Scholar
Whitfield, D. M., Wright, G. C., Gyles, O. A., and Taylor, A. J.. 1986. Effects of stage growth, irrigation frequency, and gypsum treatment on CO2 assimilation of lucerne (Medicago sativa L.) grown on a heavy clay soil. Irrig. Sci. 7:169–81.CrossRefGoogle Scholar
Whitson, R. E., Kay, R. D., LePori, W. A., and Rister, E. M.. 1981. Machinery and crop selection with weather risk. Trans. ASAE 24:288–91; 295.CrossRefGoogle Scholar
Wilcke, B. 2008. Energy costs for corn drying and cooling. Minnesota Crop eNews. (www.extension.umn.edu/cropenews).
Wilhelm, W. W., Johnson, J. M. F., Karlen, D. L., and Lightle, D. T.. 2007. Corn stover to sustain soil organic carbon further constrains biomass supply. Agron. J. 99:1665–7.CrossRefGoogle Scholar
Williams, C. H. 1980. Soil acidification under clover pasture. Aust. J. Exp. Agric. Anim. Husb. 20:531–67.CrossRefGoogle Scholar
Wilson, D. and Jones, J. G.. 1982. Effect of selection for dark respiration rate of mature leaves on crop yields of Lolium perenne cv. S23. Ann. Bot. 49:313–20.CrossRefGoogle Scholar
Wischmeier, W. H. and Smith, D. D.. 1978. USDA Handbook no. 537. Washington D.C.: U.S. Government Printing Office.Google Scholar
Witt, C., Cassman, K. G., Olk, D. C.et al. 2000. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling, and productivity of irrigated rice systems. Plant & Soil 225:263–78.CrossRefGoogle Scholar
Woodruff, N. P. and Siddoway, F. H.. 1965. A wind erosion equation. Soil Sci. Soc. Am. Proc. 29:602–8.CrossRefGoogle Scholar
Wrage, N., Velthof, G. L., Beusichem, M. L., and Oenema, O.. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. & Biochem. 33:1723–32.CrossRefGoogle Scholar
,World Food Prize website. www.worldfoodprize.org/Laureates/laureates.htm
,WWF. 2008. Global Market Study on Jatropa. Final Report. London: GEXSI LLP.Google Scholar
Xu, K., Xu, X., Fukao, T.et al. 2006. Sub1A encodes an ethylene responsive-like factor that confers submergence tolerance to rice. Nature 442:705–8.CrossRefGoogle Scholar
Xue, C., Yang, X., Bouman, B. A. M.et al. 2008. Optimizing yield, water requirements, and water productivity of aerobic rice for the North China Plain. Irrig. Sci. 26:459–74.CrossRefGoogle Scholar
Yang, H., Dobermann, A., Cassman, K. G., and Walters, D. T.. 2006. Features, applications, and limitations of the Hybrid-Maize Simulation Model. Agron. J. 98:737–48.CrossRefGoogle Scholar
Yorinori, J. T., Paiva, W. M., Frederick, R. D.et al. 2005. Epidemics of Soybean Rust (Phakopsora pachyrhizi) in Brazil and Paraguay from 2001 to 2003. Plant Dis. 89:675–7.CrossRefGoogle Scholar
Yoshida, S. 1981. Fundamentals of Rice Crop Science. Los Baños, Philippines: International Rice Research Institute.Google Scholar
Zadoks, J. C., Chang, T. T., and Konzak, C. F.. 1974. A decimal code for the growth stages of cereals. Weed Res. 14:415–21.CrossRefGoogle Scholar
Zhang, D.-Y., Sun, G.-J., and Jiang, X.-H.. 1999. Donald's ideotype and growth redundancy: a game theoretical analysis. Field Crop Res. 61:179–87.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×