Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T08:41:47.538Z Has data issue: false hasContentIssue false

10 - Calcium imaging

Published online by Cambridge University Press:  05 October 2012

Fritjof Helmchen
Affiliation:
University of Zürich, Switzerland
Romain Brette
Affiliation:
Ecole Normale Supérieure, Paris
Alain Destexhe
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

Over the past 30 years calcium-sensitive fluorescent dyes have emerged as powerful tools for optical imaging of cell function. Calcium ions subserve a variety of essential functions in all cell types. For example, changes in intracellular free calcium concentration ([Ca2+]i) underlie fundamental cellular processes such as muscle contraction, cell division, exocytosis, and synaptic plasticity. Most of these processes rely on the steep gradient of calcium ion concentration that is actively maintained across the plasma membrane. Moreover, cells store calcium ions in intracellular organelles, enabling them to release a surge of Ca2+ into the cytosol where and when needed. Calcium ions act through molecular binding to various Ca2+-binding proteins, inducing conformational changes and thereby activating or modulating protein function. The development of optical reporters of calcium concentration has opened great opportunities to read out [Ca2+]i directly as a crucial intracellular messenger signal. A major application of calcium indicators is the quantitative study of a specific calcium-dependent process X, for example, neurotransmitter release, with the goal to reveal the function X = X([Ca2+]i). However, this is not the only type of application. Because neuronal excitation in the form of receptor activation or generation of action potentials typically is linked to calcium influx, calcium indicators are also used to reveal neural activation patterns, either within the dendritic tree of individual cells or within cell populations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allbritton, N. L., Meyer, T. and Stryer, L. (1992). Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science, 258, 1812–1815.CrossRefGoogle ScholarPubMed
Atluri, P. P. and Regehr, W. G. (1996). Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci., 16, 5661–5671.CrossRefGoogle ScholarPubMed
Baird, G. S., Zacharias, D. A. and Tsien, R. Y. (1999). Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. USA, 96 etc., 11241–11246.CrossRefGoogle ScholarPubMed
Berridge, M. J. (2006). Calcium microdomains: organization and function. Cell Calcium, 40 etc., 405–412.CrossRefGoogle ScholarPubMed
Bollmann, J. H., Helmchen, F., Borst, J. G. and Sakmann, B. (1998). Postsynaptic Ca2+ influx mediated by three different pathways during synaptic transmission at a calyx-type synapse. J. Neurosci., 18, 10409–10419.CrossRefGoogle Scholar
Borst, J. G. and Helmchen, F. (1998). Calcium influx during an action potential. Methods Enzymol., 293, 352–371.Google ScholarPubMed
Bower, J. M. and Beeman, D. (1998). The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System (2nd edition). New York: Springer Verlag.CrossRefGoogle Scholar
Brown, J. E., Cohen, L. B., De Weer, P., Pinto, L. H., Ross, W. N. and Salzberg, B. M. (1975). Rapid changes in intracellular free calcium concentration. Detection by metallochromic indicator dyes in squid giant axon. Biophys. J., 15, 1155–1160.CrossRefGoogle ScholarPubMed
Carnevale, N. T. and Hines, M. L. (2009). The NEURON Book. Cambridge: Cambridge University Press.Google Scholar
Chen, T. W., Lin, B. J., Brunner, E. and Schild, D. (2006). In situ background estimation in quantitative fluorescence imaging. Biophys. J., 90, 2534–2547.CrossRefGoogle ScholarPubMed
Cheng, A., Goncalves, J. T., Golshani, P., Arisaka, K. and Portera-Cailliau, C. (2011). Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nature Methods, 8, 139–142.CrossRefGoogle ScholarPubMed
DeSchutter, E. and Smolen, P. (1998). Calcium dynamics in large neuronal models. In: C., Koch and I., Segev (editors), Methods in Neuronal Modeling. Cambridge, MA: MIT Press, pp. 211–250.Google Scholar
DiGregorio, D. A., Peskoff, A. and Vergara, J. L. (1999). Measurement of action potential-induced presynaptic calcium domains at a cultured neuromuscular junction. J. Neurosci., 19, 7846–7859.CrossRefGoogle Scholar
Egger, V. (2007). Imaging the activity of neuronal populations: when spikes don't flash and flashes don't spike. J. Physiol., 582(1), 7.CrossRefGoogle ScholarPubMed
Gabso, M., Neher, E. and Spira, M. E. (1997). Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron, 18, 473–481.CrossRefGoogle ScholarPubMed
Garaschuk, O., Schneggenburger, R., Schirra, C., Tempia, F. and Konnerth, A. (1996). Fractional Ca2+ currents through somatic and dendritic glutamate receptor channels of rat hippocampal CA1 pyramidal neurones. J. Physiol. (London), 491, 757–772.CrossRefGoogle ScholarPubMed
Garaschuk, O., Milos, R. I., Grienberger, C., Marandi, N., Adelsberger, H. and Konnerth, A. (2006). Optical monitoring of brain function in vivo: from neurons to networks. Pflügers Arch., 453, 385–396.CrossRefGoogle ScholarPubMed
Garaschuk, O., Griesbeck, O. and Konnerth, A. (2007). Troponin C-based biosensors: a new family of genetically encoded indicators for in vivo calcium imaging in the nervous system. Cell Calcium, 42 (4–5), 351–361.CrossRefGoogle Scholar
Ghosh, A. and Greenberg, M. E. (1995). Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science, 268, 239–247.CrossRefGoogle ScholarPubMed
Göbel, W. and Helmchen, F. (2007a). In vivo calcium imaging of neural network function. Physiology (Bethesda), 22, 358–365.Google ScholarPubMed
Göbel, W. and Helmchen, F. (2007b). New angles on neuronal dendrites in vivo. J. Neurophysiol., 98, 3770–3779.CrossRefGoogle ScholarPubMed
Göbel, W., Kampa, B. M. and Helmchen, F. (2007). Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nature Methods, 4, 73–79.CrossRefGoogle ScholarPubMed
Goldberg, J. H., Tamas, G., Aronov, D. and Yuste, R. (2003). Calcium microdomains in aspiny dendrites. Neuron, 40, 807–821.CrossRefGoogle ScholarPubMed
Granstedt, A. E., Szpara, M. L., Kuhn, B., Wang, S. S. and Enquist, L. W. (2009). Fluorescence-based monitoring of in vivo neural activity using a circuit-tracing pseudorabies virus. PLoS One, 4, e6923.CrossRefGoogle ScholarPubMed
Greenberg, D. S., Houweling, A. R. and Kerr, J. N. (2008). Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nature Neurosci., 11 (7), 749–751.CrossRefGoogle ScholarPubMed
Grewe, B. F. and Helmchen, F. (2009). Optical probing of neuronal ensemble activity. Curr. Opinion Neurobiol., 19, 520–529.CrossRefGoogle ScholarPubMed
Grewe, B. F., Langer, D., Kasper, H., Kampa, B. M. and Helmchen, F. (2010). High-speed in vivo calcium imaging reveals spike trains in neuronal networks with near-millisecond precision. Nature Methods, 7, 399–405.Google Scholar
Groden, D. L., Guan, Z. and Stokes, B. T. (1991). Determination of Fura-2 dissociation constants following adjustment of the apparent Ca-EGTA association constant for temperature and ionic strength. Cell Calcium, 12, 279–287.CrossRefGoogle ScholarPubMed
Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem., 260, 3440–3450.Google ScholarPubMed
Harpur, A. G., Wouters, F. S. and Bastiaens, P. I. (2001). Imaging FRET between spectrally similar GFP molecules in single cells. Nature Biotechnol., 19, 167–169.CrossRefGoogle ScholarPubMed
Heim, N. and Griesbeck, O. (2004). Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J. Biol. Chem., 279, 14280–14286.CrossRefGoogle ScholarPubMed
Hell, S. W. (2007). Far-field optical nanoscopy. Science, 316, 1153–1158.CrossRefGoogle ScholarPubMed
Helmchen, F. (2011). Calibration of fluorescent calcium indicators. In: R., Yuste (editor), Imaging: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Helmchen, F. and Denk, W. (2005). Deep tissue two-photon microscopy. Nature Methods, 2, 932–940.CrossRefGoogle ScholarPubMed
Helmchen, F. and Tank, D. W. (2011). A single-compartment model of calcium dynamics in nerve terminals and dendrites. In: F., Helmchen and A., Konnerth (editors), Imaging in Neuroscience: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Helmchen, F., Imoto, K. and Sakmann, B. (1996). Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J., 70, 1069–1081.CrossRefGoogle ScholarPubMed
Helmchen, F., Borst, J. G. and Sakmann, B. (1997). Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys. J., 72, 1458–1471.CrossRefGoogle Scholar
Hernandez-Cruz, A., Sala, F. and Adams, P. R. (1990). Subcellular calcium transients visualized by confocal microscopy in a voltage-clamped vertebrate neuron. Science, 247, 858–862.CrossRefGoogle Scholar
Hirase, H., Qian, L., Bartho, P. and Buzsaki, G. (2004). Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol., 2, E96.CrossRefGoogle ScholarPubMed
Holekamp, T. F., Turaga, D. and Holy, T. E. (2008). Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron, 57, 661–672.CrossRefGoogle ScholarPubMed
Hoogland, T. M., Kuhn, B., Göbel, W., Huang, W., Nakai, J., Helmchen, F., Flint, J. and Wang, S. S. (2009). Radially expanding transglial calcium waves in the intact cerebellum. Proc. Natl. Acad. Sci. USA, 106, 3496–3501.CrossRefGoogle ScholarPubMed
Irving, M., Maylie, J., Sizto, N. L. and Chandler, W. K. (1990). Intracellular diffusion in the presence of mobile buffers. Application to proton movement in muscle. Biophys. J., 57, 717–721.CrossRefGoogle ScholarPubMed
Kasai, H. and Petersen, O. H. (1994). Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trends Neurosci., 17, 95–101.CrossRefGoogle Scholar
Kerr, J. N. and Denk, W. (2008). Imaging in vivo: watching the brain in action. Nature Rev. Neurosci., 9, 195–205.CrossRefGoogle ScholarPubMed
Kerr, J. N. D., Greenberg, D. and Helmchen, F. (2005). Imaging input and output of neocortical networks in vivo. Proc. Natl. Acad. Sci. USA, 102, 14063–14068.CrossRefGoogle ScholarPubMed
Kerr, J. N., de Kock, C. P., Greenberg, D. S., Bruno, R. M., Sakmann, B. and Helmchen, F. (2007). Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex. J. Neurosci., 27, 13316–13328.CrossRefGoogle ScholarPubMed
Koch, C. (1998). Biophysics of Computation. Oxford: Oxford University Press.Google Scholar
Lakowicz, J. R., Szmacinski, H., Nowaczyk, K. and Johnson, M. L. (1992). Fluorescence lifetime imaging of calcium using Quin-2. Cell Calcium, 13, 131–147.CrossRefGoogle ScholarPubMed
Lev-Ram, V., Miyakawa, H., Lasser-Ross, N. and Ross, W. N. (1992). Calcium transients in cerebellar Purkinje neurons evoked by intracellular stimulation. J. Neurophysiol., 68, 1167–1177.CrossRefGoogle ScholarPubMed
Lin, B. J., Chen, T. W. and Schild, D. (2007). Cell type-specific relationships between spiking and [Ca2+]i in neurons of the Xenopus tadpole olfactory bulb. J. Physiol., 582 (1), 163–175.CrossRefGoogle Scholar
Lipp, P. and Niggli, E. (1993). Ratiometric confocal Ca2+-measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium, 14, 359–372.CrossRefGoogle ScholarPubMed
Llinas, R., Sugimori, M. and Silver, R. B. (1992). Microdomains of high calcium concentration in a presynaptic terminal. Science, 256, 677–679.CrossRefGoogle Scholar
Lütcke, H., Murayama, M., Hahn, T., Margolis, D. J., Astori, S., Meyer zum Alten Borgloh, S., Göbel, W., Yang, Y., Tang, W., Kügler, S., Sprengel, R., Nagai, T., Miyawaki, A., Larkum, M. E., Helmchen, F. and Hasan, M.T. (2010). Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front. Neural Circ., 4, 9.Google ScholarPubMed
Mank, M. and Griesbeck, O. (2008). Genetically encoded calcium indicators. Chem. Rev., 108, 1550–1564.CrossRefGoogle ScholarPubMed
Mank, M., Santos, A. F., Direnberger, S., Mrsic-Flogel, T. D., Hofer, S. B., Stein, V., Hendel, T., Reiff, D. F., Levelt, C., Borst, A. et al. (2008). A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nature Methods, 5, 805–811.CrossRefGoogle ScholarPubMed
Maravall, M., Mainen, Z. F., Sabatini, B. L. and Svoboda, K. (2000). Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys. J., 78, 2655–2667.CrossRefGoogle ScholarPubMed
Markram, H., Roth, A. and Helmchen, F. (1998). Competitive calcium binding: implications for dendritic calcium signaling. J. Comput. Neurosci., 5, 331–348.CrossRefGoogle ScholarPubMed
Miyawaki, A. (2003). Fluorescence imaging of physiological activity in complex systems using GFP-based probes. Curr. Opinion Neurobiol., 13, 591–596.CrossRefGoogle ScholarPubMed
Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M. and Tsien, R. Y. (1997). Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature, 388, 882–887.CrossRefGoogle ScholarPubMed
Moreaux, L. and Laurent, G. (2007). Estimating firing rates from calcium signals in locust projection neurons in vivo. Front. Neural Circ., 1, 2.Google ScholarPubMed
Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M. and Miyawaki, A. (2004). Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc. Natl. Acad. Sci. USA, 101, 10554–10559.CrossRefGoogle Scholar
Nakai, J., Ohkura, M. and Imoto, K. (2001). A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nature Biotechnol., 19, 137–141.CrossRefGoogle ScholarPubMed
Naraghi, M. and Neher, E. (1997). Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci., 17, 6961–6973.CrossRefGoogle Scholar
Neher, E. (1986). Concentration profiles of intracellular calcium in the presence of a diffusible chelator. In: U. Heinemann, M.Klee E., Neher and W., Singer (editors), Series 14, Calcium Electrogenesis and Neuronal Functioning. Berlin: Springer, pp. 80–96.Google Scholar
Neher, E. (1995). The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology, 34, 1423–1442.CrossRefGoogle ScholarPubMed
Neher, E. (1998a). Usefulness and limitations of linear approximations to the understanding of Ca2+ signals. Cell Calcium, 24, 345–357.CrossRefGoogle Scholar
Neher, E. (1998b). Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron, 20, 389–399.CrossRefGoogle ScholarPubMed
Neher, E. (2005). Some quantitative aspects of calcium fluorimetry. In: R., Yuste and A., Konnerth (editors), Imaging in Neuroscience and Development: A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, pp. 245–252.Google Scholar
Neher, E. and Augustine, G. J. (1992). Calcium gradients and buffers in bovine chromaffin cells. J. Physiol. (London), 450, 273–301.CrossRefGoogle ScholarPubMed
Neher, E. and Sakaba, T. (2008). Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron, 59, 861–872.CrossRefGoogle ScholarPubMed
Neher, E. and Zucker, R. S. (1993). Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron, 10, 21–30.CrossRefGoogle ScholarPubMed
Nimmerjahn, A., Kirchhoff, F., Kerr, J. N. and Helmchen, F. (2004). Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nature Methods, 1, 31–37.CrossRefGoogle ScholarPubMed
Nimmerjahn, A., Mukamel, E. A. and Schnitzer, M. J. (2009). Motor behavior activates Bergmann glial networks. Neuron, 62, 400–412.CrossRefGoogle ScholarPubMed
Oheim, M., Naraghi, M., Muller, T. H. and Neher, E. (1998). Two dye two wavelength excitation calcium imaging: results from bovine adrenal chromaffin cells. Cell Calcium, 24, 71–84.CrossRefGoogle ScholarPubMed
Palmer, A. E. and Tsien, R. Y. (2006). Measuring calcium signaling using genetically targetable fluorescent indicators. Nature Protocols, 1, 1057–1065.CrossRefGoogle ScholarPubMed
Palmer, A. E., Giacomello, M., Kortemme, T., Hires, S. A., Lev-Ram, V., Baker, D. and Tsien, R. Y. (2006). Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem. Biol., 13, 521–530.CrossRefGoogle ScholarPubMed
Pologruto, T. A., Yasuda, R. and Svoboda, K. (2004). Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J. Neurosci., 24, 9572–9579.CrossRefGoogle ScholarPubMed
Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1988). Numerical Recipes in C. Cambridge: Cambridge University Press.Google Scholar
Ramdya, P., Reiter, B. and Engert, F. (2006). Reverse correlation of rapid calcium signals in the zebrafish optic tectum in vivo. J. Neurosci. Methods, 157, 230–237.CrossRefGoogle ScholarPubMed
Regehr, W. G., Delaney, K. R. and Tank, D. W. (1994). The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse. J. Neurosci., 14, 523–537.CrossRefGoogle ScholarPubMed
Ridgway, E. B., and Ashley, C. C. (1967). Calcium transients in single muscle fibers. Biochem. Biophys. Res. Commun., 29, 229–234.CrossRefGoogle ScholarPubMed
Roberts, W. M. (1994). Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J. Neurosci., 14, 3246–3262.CrossRefGoogle ScholarPubMed
Rochefort, N. L., Garaschuk, O., Milos, R. I., Narushima, M., Marandi, N., Pichler, B., Kovalchuk, Y. and Konnerth, A. (2009). Sparsification of neuronal activity in the visual cortex at eye-opening. Proc. Natl. Acad. Sci. USA, 106, 15049–15054.CrossRefGoogle ScholarPubMed
Rothschild, G., Nelken, I. and Mizrahi, A. (2010). Functional organization and population dynamics in the mouse primary auditory cortex. Nature Neurosci., 13, 353–360.CrossRefGoogle ScholarPubMed
Sabatini, B. L. and Regehr, W. G. (1995). Detecting changes in calcium influx which contribute to synaptic modulation in mammalian brain slice. Neuropharmacology, 34, 1453–1467.CrossRefGoogle ScholarPubMed
Sabatini, B. L., Oertner, T. G. and Svoboda, K. (2002). The life-cycle of Ca2+ ions in dendritic spines. Neuron, 33, 439–452.CrossRefGoogle Scholar
Sasaki, T., Takahashi, N., Matsuki, N. and Ikegaya, Y. (2008). Fast and accurate detection of action potentials from somatic calcium fluctuations. J. Neurophysiol., 100, 1668–1676.CrossRefGoogle ScholarPubMed
Schneggenburger, R. and Neher, E. (2005). Presynaptic calcium and control of vesicle fusion. Curr. Opinion Neurobiol., 15, 266–274.CrossRefGoogle ScholarPubMed
Schneggenburger, R., Zhou, Z., Konnerth, A. and Neher, E. (1993). Fractional contribution of calcium to the cation current through glutamate receptor channels. Neuron, 11, 133–143.CrossRefGoogle ScholarPubMed
Schwaller, B. (2009). The continuing disappearance of "pure" Ca2+ buffers. Cell Mol. Life Sci., 66, 275–300.CrossRefGoogle ScholarPubMed
Smetters, D., Majewska, A. and Yuste, R. (1999). Detecting action potentials in neuronal populations with calcium imaging. Methods, 18, 215–221.CrossRefGoogle ScholarPubMed
Stosiek, C., Garaschuk, O., Holthoff, K. and Konnerth, A. (2003). In vivo two-photon calcium imaging of neuronal networks. Proc. Acad. Sci. USA, 100, 7319–7324.CrossRefGoogle ScholarPubMed
Stryer, L. (1978). Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem., 47, 819–846.CrossRefGoogle ScholarPubMed
Tank, D. W., Regehr, W. G. and Delaney, K. R. (1995). A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement. J. Neurosci., 15, 7940–7952.CrossRefGoogle ScholarPubMed
Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M. E., Chalasani, S. H., Petreanu, L., Akerboom, J., McKinney, S. A., Schreiter, E. R. et al. (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods, 6, 875–881.CrossRefGoogle ScholarPubMed
Tsien, R. Y. (1980). New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry, 19, 2396–2404.CrossRefGoogle ScholarPubMed
Tsien, R. Y. (1981). A non-disruptive technique for loading calcium buffers and indicators into cells. Nature, 290, 527–528.CrossRefGoogle ScholarPubMed
Tsien, R. Y. (1989). Fluorescent probes of cell signaling. Annu. Rev. Neurosci., 12, 227–253.CrossRefGoogle ScholarPubMed
Tsien, R. and Pozzan, T. (1989). Measurement of cytosolic free Ca2+ with quin2. Methods Enzymol., 172, 230–262.Google ScholarPubMed
Vogelstein, J. T., Watson, B. O., Packer, A. M., Yuste, R., Jedynak, B. and Paninski, L. (2009). Spike inference from calcium imaging using sequential Monte Carlo methods. Biophys. J., 97, 636–655.CrossRefGoogle ScholarPubMed
Vogelstein, J. T., Packer, A. M., Machado, T. A., Sippy, T., Babadi, B., Yuste, R. and Paninski, L. (2010). Fast nonnegative deconvolution for spike train inference from population calcium imaging. J. Neurophysiol., 6, 3691–3704.Google Scholar
Vranesic, I. and Knöpfel, T. (1991). Calculation of calcium dynamics from single wavelength fura-2 fluorescence recordings. Pflugers Arch., 418, 184–189.CrossRefGoogle ScholarPubMed
Wagner, J., and Keizer, J. (1994). Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys. J., 67, 447–456.CrossRefGoogle ScholarPubMed
Wallace, D. J., Zum Alten Borgloh, S. M., Astori, S., Yang, Y., Bausen, M., Kugler, S., Palmer, A. E., Tsien, R. Y., Sprengel, R., Kerr, J. N. et al. (2008). Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nature Methods, 5, 797–804.CrossRefGoogle ScholarPubMed
Wang, S. S., Alousi, A. A. and Thompson, S. H. (1995). The lifetime of inositol 1,4,5-trisphosphate in single cells. J. Gen. Physiol., 105, 149–171.CrossRefGoogle ScholarPubMed
Wang, X., Lou, N., Xu, Q., Tian, G. F., Peng, W. G., Han, X., Kang, J., Takano, T. and Nedergaard, M. (2006). Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nature Neurosci., 9, 816–823.CrossRefGoogle ScholarPubMed
Wilms, C. D., Schmidt, H. and Eilers, J. (2006). Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis. Cell Calcium, 40, 73–79.CrossRefGoogle ScholarPubMed
Woolf, T. B. and Greer, C. A. (1994). Local communication within dendritic spines: models of second messenger diffusion in granule cell spines of the mammalian olfactory bulb. Synapse, 17, 247–267.CrossRefGoogle ScholarPubMed
Yaksi, E. and Friedrich, R. W. (2006). Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging. Nature Methods, 3, 377–383.CrossRefGoogle ScholarPubMed
Zador, A. and Koch, C. (1994). Linearized models of calcium dynamics: formal equivalence to the cable equation. J. Neurosci., 14, 4705–4715.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Calcium imaging
  • Edited by Romain Brette, Ecole Normale Supérieure, Paris, Alain Destexhe, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Handbook of Neural Activity Measurement
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979958.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Calcium imaging
  • Edited by Romain Brette, Ecole Normale Supérieure, Paris, Alain Destexhe, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Handbook of Neural Activity Measurement
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979958.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Calcium imaging
  • Edited by Romain Brette, Ecole Normale Supérieure, Paris, Alain Destexhe, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Handbook of Neural Activity Measurement
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979958.010
Available formats
×