Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T05:31:59.602Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2014

Wulfram Gerstner
Affiliation:
École Polytechnique Fédérale de Lausanne
Richard Naud
Affiliation:
University of Ottawa
Liam Paninski
Affiliation:
Columbia University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Neuronal Dynamics
From Single Neurons to Networks and Models of Cognition
, pp. 547 - 572
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, L. (1994) Decoding neuronal firing and modeling neural networks. Quart. Rev. Biophys., 27:291-331.CrossRefGoogle Scholar
Abbott, L. F. (1991) Realistic synaptic inputs for model neural networks. Network, 2:245-258.CrossRefGoogle Scholar
Abbott, L. F. and Kepler, T. B. (1990) Model neurons: from Hodgkin-Huxley to Hopfield. In Garrido, L., ed., Statistical Mechanics of Nímml Networks, pp. 5-18. Springer, Berlin.Google Scholar
Abbott, L. F. and Nelson, S. B. (2000) Synaptic plastictiy – taming the beast. Nature Neu-rosci., 3:1178-1183.Google ScholarPubMed
Abbott, L. F. and van Vreeswijk, C. (1993) Asynchronous states in a network of pulse-coupled oscillators. Phys.Rev. E, 48:1483-1490.CrossRefGoogle Scholar
Abbott, L. F., Fahri, E., and Gutmann, S. (1991) The path integral for dendritic trees. Biol. Cybern., 66:49-60.CrossRefGoogle ScholarPubMed
Abeles, M. (1991) Corticonics.Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Acebron, J., Bonilla, L., Perez Vicente, C., Ritort, F., and Spigler, R. (2005) The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 77:137-185.CrossRefGoogle Scholar
Adrian, E. D. (1926) The impulses produced by sensory nerve endings. J. Physiol. (Lond.), 61:49-72.Google ScholarPubMed
Ahmadian, Y., Packer, A. M., Yuste, R., and Paninski, L. (2011a) Designing optimal stimuli to control neuronal spike timing. J. Neurophys., 106(2):1038-1053.CrossRefGoogle ScholarPubMed
Ahmadian, Y., Pillow, J., and Paninski, L. (2011b) Efficient Markov Chain Monte Carlo methods for decoding population spike trains. Neural Comput., 1(23):46-96.Google Scholar
Ahrens, M., Paninski, L., and Sahani, M. (2008) Inferring input nonlinearities in neural encoding models. Network, 19:35-67.CrossRefGoogle ScholarPubMed
Aizenman, C. and Linden, D. (1999) Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J. Neurophysiol., 82:1697-1709.CrossRefGoogle ScholarPubMed
Albright, T., Desimone, R., and Gross, C. (1984) Columnar organization of directionally selective cells in visual area MT of the macaque. J. Neurophysiol., 51:16-31.CrossRefGoogle ScholarPubMed
Amari, S. (1972) Characteristics of random nets of analog neuron-like elements. IEEE Trans. Syst. Man. Cyber., 2:643-657.Google Scholar
Amari, S. (1974) A method ofstatistical neurodynamics. Kybernetik, 14:201-215.Google Scholar
Amari, S. (1977) A mathematical foundation of statistical neurodynamics. SIAM J. Appl. Math., 33:95-126.CrossRefGoogle Scholar
Amit, D. J. (1989) Modeling Brain Function: The World of Attractor Neural Networks.Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Amit, D. J. and Brunel, N. (1997a) Dynamics of a recurrent network of spiking neurons before and following learning. Network, 8:373-404.CrossRefGoogle Scholar
Amit, D. J. and Brunel, N. (1997b) Amodel of spontaneous activity and local delay activity during delay periods in the cerebral cortex. Cerebral Cortex, 7:237-252.CrossRefGoogle Scholar
Amit, D. J., Gutfreund, H., and Sompolinsky, H. (1985) Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys. Rev. Lett., 55:1530-1533.CrossRefGoogle Scholar
Amit, D. J., Gutfreund, H., and Sompolinsky, H. (1987a) Information storage in neural networks with low levels of activity. Phys. Rev. A, 35:2293-2303.CrossRefGoogle ScholarPubMed
Amit, D. J., Gutfreund, H., and Sompolinsky, H. (1987b) Statistical mechanics of neural networks near saturation. Ann. Phys. (NY), 173:30-67.CrossRefGoogle Scholar
Amit, D. J. and Tsodyks, M. V. (1991) Quantitative study of attractor neural networks retrieving at low spike rates. 1: Substrate — spikes, rates, and neuronal gain. Network, 2:259-273.Google Scholar
Anderson, J. A. (1972) A simple neural network generating an interactive memory. Math. Biosci., 14:197-220.CrossRefGoogle Scholar
Anderson, J. A. and Rosenfeld, E., eds (1988) Neurocomputing: Foundations of Research.MIT Press, Cambridge, MA.
Angelucci, A. and Bressloff, P. (2006) Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate v1 neurons. Prog. Brain Res., 154:93-120.Google ScholarPubMed
Aracri, P., Colombo, E., Mantegazza, M., et al. (2006) Layer-specific properties of the persistent sodium current in sensorimotor cortex. J. Neurophysiol., 95(6):3460-3468.CrossRefGoogle ScholarPubMed
Artola, A. and Singer, W. (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci., 16(11):480-487.CrossRefGoogle ScholarPubMed
Artola, A., Brocher, S., and Singer, W. (1990) Different voltage dependent thresholds for inducing long-term depression and long-term potentiation in slices of ratvisual cortex. Nature, 347:69-72.CrossRefGoogle ScholarPubMed
Atkinson, K. (1997) The Numerical Solution of Integral Equations of the Second Kind, Vol. 4. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Avery, R. B. and Johnston, D. (1996) Multiple channel types contribute to the low-voltage- activated calcium current in hippocampal CA3 pyramidal neurons. J. Neurosci, 16(18):5567-82.CrossRefGoogle ScholarPubMed
Aviel, Y. and Gerstner, W. (2006) From spiking neurons to rate models: a cascade model as an approximation to spiking neuron models with refractoriness. Phys. Rev. E, 73:51908.CrossRefGoogle ScholarPubMed
Badel, L., Lefort, S., Berger, T., Petersen, C., Gerstner, W., and Richardson, M. (2008a) Extracting non-linear integrate-and-fire models from experimental data using dynamic I-V curves. Biol. Cybernetics, 99(4-5):361-370.CrossRefGoogle ScholarPubMed
Badel, L., Lefort, S., Brette, R., Petersen, C., Gerstner, W., and Richardson, M. (2008b) Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J. Neurophysiol, 99:656-666.CrossRefGoogle ScholarPubMed
Bair, W. and Koch, C. (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monekey. Neural Comput., 8:1185-1202.CrossRefGoogle Scholar
Bair, W., Koch, C., Newsome, W., and Britten, K. (1994) Power spectrum analysis of MT neurons in the behaving monkey. J. Neurosci., 14:2870-2892.CrossRefGoogle ScholarPubMed
Balaguer-Ballester, E., Lapish, C., Seamans, J., and Durstewitz, D. (2011) Dynamics of frontal cortex ensembles during memory-guided decision-making. PLOS Comput. Biol., 7:e1002057.CrossRefGoogle ScholarPubMed
Baras, D. and Meir, R. (2007) Reinforcement learning, spike-time-dependent plasticity, and the BCM rule. Neural Comput., 19(8):2245-2279.CrossRefGoogle ScholarPubMed
Barbieri, F. and Brunel, N. (2008) Can attractor network models account for the statistics of firing during persistent activity in prefrontal cortex?Front. Neurosci., 2:114-122.CrossRefGoogle ScholarPubMed
Bauer, H. U. and Pawelzik, K. (1993) Alternating oscillatory and stochastic dynamics in a model for a neuronal assembly. Physica D, 69:380-393.CrossRefGoogle Scholar
Bazhenov, M. and Timofeev, I. (2006) Thalamocortical oscillations. Scholarpedia, 1:1319.CrossRefGoogle Scholar
Bell, C., Han, V., Sugawara, Y., and Grant, K. (1997) Synaptic plasticity in a cerebellumlike structure depends on temporal order. Nature, 387:278-281.CrossRefGoogle Scholar
Ben Arous, G. and Guionnet, A. (1995) Large deviations for Langevin spin glass dynamics. Prob. Theory Rel. Fields, 102:455-509.Google Scholar
Ben-Yishai, R., Bar-Or, R., and Sompolinsky, H. (1995) Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. USA, 92:3844-3848.CrossRefGoogle ScholarPubMed
Benabid, A., Chabardes, S., Mitrofanis, J., and Pollak, P. (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease. Lancet Neurol., 8:67-81.CrossRefGoogle ScholarPubMed
Benabid, A., Pollak, P., et al. (1991) Long-term suppression oftremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet, 337:403-406.CrossRefGoogle ScholarPubMed
Benda, J. and Herz, A. V. M. (2003) A universal model for spike-frequency adaptation. Neural Comput., 15(11):2523-2564.CrossRefGoogle ScholarPubMed
Berger, T. K., Perin, R., Silberberg, G., and Markram, H. (2009) Frequency-dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex. J. Physiol., 587(22):5411-5425.CrossRefGoogle ScholarPubMed
Bernander, O., Douglas, R. J., Martin, K. A. C., and Koch, C. (1991) Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc. Natl. Acad. Sci. USA, 88:11569-11573.CrossRefGoogle ScholarPubMed
Berry, M. and Meister, M. (1998) Refractoriness and neural precision. J. Neurosci., 18:2200-2211.CrossRefGoogle ScholarPubMed
Berry, M. J., Warland, D. K., and Meister, M. (1997) The structure and precision of retinal spike trains. Proc. Natl. Acad. Sci. USA, 94:5411-5416.CrossRefGoogle ScholarPubMed
Bi, G. and Poo, M. (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci., 18:10464-10472.CrossRefGoogle ScholarPubMed
Bi, G. and Poo, M. (1999) Distributed synaptic modification in neural networks induced by patterned stimulation. Nature, 401:792-796.CrossRefGoogle ScholarPubMed
Bi, G. and Poo, M. (2001) Synaptic modification of correlated activity: Hebb's postulate revisited. Ann. Rev. Neurosci., 24:139-166.CrossRefGoogle ScholarPubMed
Bi, G.-Q. (2002) Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms. Biol. Cybernetics, 87(5-6):319-332.CrossRefGoogle ScholarPubMed
Bialek, W., Rieke, F., de Ruyter van Stevenick, R. R., and Warland, D. (1991) Reading a neural code. Science, 252:1854-1857.CrossRefGoogle Scholar
Bienenstock, E., Cooper, L., and Munroe, P. (1982) Theory of the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci., 2:32-48.CrossRefGoogle ScholarPubMed
Binczak, S., Eilbeck, J., and Scott, A. C. (2001) Ephaptic coupling of myelinated nerve fibers. Physica D, 148(1):159-174.CrossRefGoogle Scholar
Bliss, T. V. P. and Collingridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361:31-39.CrossRefGoogle ScholarPubMed
Bogacz, R., Brown, E., Moehlis, J., Holmes, P., and Cohen, J. (2006) The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev., 113:700-765.CrossRefGoogle ScholarPubMed
Bonhoeffer, T. and Grinvald, A. (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature, 353:429-431.CrossRefGoogle ScholarPubMed
Bower, J. M. and Beeman, D. (1995) The Book of Genesis.Springer, New York.CrossRefGoogle Scholar
Brass, M. and Haggard, P. (2007) To do or not to do: the neural signature of self-control. J. Neurosci., 27:9141-9145.CrossRefGoogle Scholar
Bressloff, P. C. and Cowan, J. D. (2002) The visual cortex as a crystal. Physica D: Nonlinear Phenomena, 173(3-4):226-258.CrossRefGoogle Scholar
Bressloff, P. C. and Taylor, J. G. (1994) Dynamics of compartmental model neurons. Neural Networks, 7:1153-1165.CrossRefGoogle Scholar
Brette, R. and Gerstner, W. (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol., 94:3637-3642.CrossRefGoogle ScholarPubMed
Brette, R., Rudolph, M., et al. (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci., 23(3):349-398.CrossRefGoogle ScholarPubMed
Brillinger, D. R. (1988) Maximum likelihood analysis of spike trains of interacting nerve cells. Biol. Cybern., 59:189-200.CrossRefGoogle ScholarPubMed
Brillinger, D. R. (1992) Nerve cell spike train data analysis: a progression of techniques. J. Am. Stat. Assoc., 87:260-271.CrossRefGoogle Scholar
Brockwell, A., Rojas, A., and Kass, R. (2004) Recursive Bayesian decoding of motor cortical signals by particle filtering. J. Neurophysiol., 91(4):1899-1907.CrossRefGoogle ScholarPubMed
Brockwell, A., Kass, R. E., and Schwartz, A. (2007) Statistical signal processing and the motor cortex. Proc. IEEE, 95(5):881-898.CrossRefGoogle ScholarPubMed
Brown, E., Barbieri, R., Ventura, V., Kass, R., and Frank, L. (2002) The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput., 14:325-346.CrossRefGoogle ScholarPubMed
Brown, E., Frank, L., Tang, D., Quirk, M., and Wilson, M. (1998) A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J. Neurosci., 18:7411-7425.CrossRefGoogle ScholarPubMed
Brown, T. H., Ganong, A. H., Kairiss, E. W., Keenan, C. L., and Kelso, S. R. (1989) Long-term potentation in two synaptic systems of the hippocampal brain slice. In Byrne, J. and Berry, W., eds, Neural Models of Plasticity, pp. 266-306. Academic Press, San Diego, CA.Google Scholar
Brown, T. H., Zador, A. M., Mainen, Z. F., and Claiborne, B. J. (1991) Hebbian modifications in hippocampal neurons. In Baudry, M. and Davis, J., eds, Long-term Potentiation, pp. 357-389. MIT Press, Cambridge, MA.Google Scholar
Brunel, N. (2000) Dynamics of sparsely connected networks of excitatory and inhibitory neurons. Comput. Neurosci., 8:183-208.CrossRefGoogle Scholar
Brunel, N., Chance, F., Fourcaud, N., and Abbott, L. (2001) Effects of synaptic noise and filtering on the frequency response of spiking neurons. Phys. Rev. Lett., 86:2186-2189.CrossRefGoogle ScholarPubMed
Brunel, N. and Hakim, V. (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput., 11:1621-1671.CrossRefGoogle ScholarPubMed
Bryant, H. L. and Segundo, J. P. (1976) Spike initiation by transmembrane current: a white noise analysis. J. Physiol., 260:279-314.CrossRefGoogle ScholarPubMed
Buck, J. and Buck, E. (1976) Synchronous fireflies. Scientific American, 234:74-85.Google ScholarPubMed
Bugmann, G., Christodoulou, C., and Taylor, J. G. (1997) Role of temporal integration and fluctuation detection in the highly irregular firing of a leaky integrator neuron model with partial reset. Neural Comput., 9:985-1000.CrossRefGoogle Scholar
Burkitt, A. N. and Clark, G. M. (1999) Analysis of integrate-and-fire neurons: synchronization of synaptic input and spike output. Neural Comput., 11:871-901.CrossRefGoogle ScholarPubMed
Bussgang, J. J. (1952) Cross-correlation function of amplitude-distorted Gaussian signals. In Tech. Rep. 216, Research Lab. Electronics,Institute of Technology, Cambridge, MA.Google Scholar
Buzsaki, G. (2011) Hippocampus. Scholarpedia, 6:1468.CrossRefGoogle Scholar
Calvin, W. and Stevens, C. (1968) Synaptic noise and other sources of randomness in motoneuron interspike intervals. J. Neurophysiol., 31:574-587.CrossRefGoogle ScholarPubMed
Canavier, C. (2006) Phase response curve. Scholarpedia, 1:1332.CrossRefGoogle Scholar
Capocelli, R. M. and Ricciardi, L. M. (1971) Diffusion approximation and first passage time problem for a neuron model. Kybernetik, 8:214-223.CrossRefGoogle Scholar
Caporale, N. and Dan, Y. (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Ann. Rev. Neurosci., 31:25-46.CrossRefGoogle ScholarPubMed
Carnevale, N. and Hines, M. (2006) The Neuron Book.Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Cessac, B. (2008) A discrete time neural network model with spiking neurons: rigorous results on the spontaneous dynamics. J. Math. Biol., 56:311-345.Google ScholarPubMed
Cessac, B., Doyon, B., Quoy, M., and Samuleides, M. (1994) Mean-field equations, bifurcation map and route to chaos in discrete time neural networks. Physica D, 74:24-44.CrossRefGoogle Scholar
Chacron, M., Longtin, A., St-Hilaire, M., and Maler, L. (2000) Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors. Phys. Rev. Lett., 85:1576-1579.CrossRefGoogle ScholarPubMed
Chichilnisky, E. J. (2001) A simple white noise analysis of neuronal light responses. Network, 12:199-213.CrossRefGoogle ScholarPubMed
Chornoboy, E., Schramm, L., and Karr, A. (1988) Maximum likelihood identification of neural point process systems. Biol. Cybernetics, 59:265-275.CrossRefGoogle ScholarPubMed
Chow, C. C. (1998) Phase-locking in weakly heterogeneous neuronal networks. Physica D, 118:343-370.CrossRefGoogle Scholar
Chow, C. C. and White, J. (1996) Spontaneous action potential fluctuations due to channel fluctuations. Biophys. J., 71:3013-3021.CrossRefGoogle ScholarPubMed
Churchland, M., Cunningham, J., Kaufman, et al. (2012) Neural population dynamics during reaching. Nature, 487:51-56.CrossRefGoogle ScholarPubMed
Clopath, C., Busing, L., Vasilaki, E., and Gerstner, W. (2010) Connectivity reflects coding: A model of voltage-based spike-timing-dependent-plasticity with homeostasis. Nature Neurosci., 13:344-352.CrossRefGoogle ScholarPubMed
Cohen, M. A. and Grossberg, S. (1983) Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. Sys. Man Cybernetics, 13:815-823.Google Scholar
Collins, J., Chow, C., Capela, A., and Imhoff, T. (1996) Aperiodic stochastic resonance. Phy. Rev. E, 54:5575-5584.CrossRefGoogle ScholarPubMed
Connors, B. W. and Gutnick, M. J. (1990) Intrinsic firing patterns of diverse cortical neurons. Trends Neurosci., 13:99-104.CrossRefGoogle Scholar
Contreras, D., Destexhe, A., and Steriade, M. (1997) Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. J. Neurophysiol., 78(1):335-350.CrossRefGoogle ScholarPubMed
Cover, T. and Thomas, J. (1991) Elements of Information Theory.Wiley, New York.CrossRefGoogle Scholar
Cox, D. R. (1962) Renewal Theory.Methuen, London.Google Scholar
Cox, D. R. and Lewis, P. A. W. (1966) The Statistical Analysis of Series of Events.Methuen, London.CrossRefGoogle Scholar
Crisanti, A. and Sompolinsky, H. (1988) Dynamics of spin systems with randomly asymmetric bonds – Ising spins and Glauber dynamics. Phys. Rev. A, 37:4865-4874.CrossRefGoogle ScholarPubMed
Crochet, S. and Petersen, C. (2006) Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nature Neurosci., 9:608-610.CrossRefGoogle ScholarPubMed
Crochet, S., Poulet, J. F. A., Kremer, Y., and Petersen, C. C. H. (2011) Synaptic mechanisms underlying sparse coding of active touch. Neuron, 69(6):1160-75.CrossRefGoogle ScholarPubMed
Cullheim, S., Fleshman, J. W., Glenn, L. L., and Burke, R. E. (1987) Membrane area and dendritic structure in type-identified triceps surae alpha motoneurons. J. Comp. Neurol., 255(1):68-81.CrossRefGoogle ScholarPubMed
Curti, E., Mongillo, G., La Camera, G., and Amit, D. (2004) Mean field and capacity in realistic networks of spiking neurons storing sparsely coded random memories. Neural Comput., 16:2597-2637.CrossRefGoogle ScholarPubMed
Dayan, P. and Abbott, L. F. (2001) Theoretical Neuroscience.MIT Press, Cambridge, MA.Google Scholar
de Boer, E. and Kuyper, P. (1968) Triggered correlation. IEEE Trans. Biomed. Enging, 15:169-179.Google ScholarPubMed
de Ruyter van Steveninck, R. R. and Bialek, W. (1988) Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences. Proc. R. Soc. Lond. B, 234:379-414.Google Scholar
de Ruyter van Steveninck, R. R., Lowen, G. D., Strong, S. P., Koberle, R., and Bialek, W. (1997) Reproducibility and variability in neural spike trains. Science, 275:1805.CrossRefGoogle ScholarPubMed
Debanne, D., Gähwiler, B., and Thompson, S. (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol., 507:237-247.CrossRefGoogle ScholarPubMed
Debanne, D., Campanac, E., Bialowas, A., Carlier, E., and Alcaraz, G. (2011) Axon physiology. Phys. Rev., 91(2):555-602.Google ScholarPubMed
de Charms, R. and Merzenich, M. (1996) Primary cortical representation of sounds by the coordination ofaction-potential timing. Nature, 381:610-613.Google Scholar
Deco, G., Rolls, E., and Romo, R. (2009) Stochastic dynamics as a principle of brain function. Progr. Neurobiol., 88:1-16.CrossRefGoogle ScholarPubMed
Deco, G., Rolls, E., and Romo, R. (2010) Synaptic dynamics and decision-making. Proc. Natl. Acad. Sci. USA, 107:7545-7549.CrossRefGoogle ScholarPubMed
Deger, M., Schwalger, T., Naud, R., and Gerstner, W. (2013) Dynamics of interacting finite-sized networks of spiking neurons with adaptation. arXiv: 1311.4206.Google Scholar
DeAngelis, G. C., Ohzwaw, I., and Freeman, R. D. (1995) Receptive-field dynamics in the central visual pathways. Trends Neurosci., 18:451-458.CrossRefGoogle ScholarPubMed
Derrida, B., Gardner, E., and Zippelius, A. (1987) An exactly solvable asymmetric neural network model. Europhys. Lett., 4:167-173.CrossRefGoogle Scholar
Destexhe, A., Contreras, D., Sejnowski, T. J., and Steriade, M. (1994a) A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J. Neurophysiol., 72(2):803-818.CrossRefGoogle ScholarPubMed
Destexhe, A., Mainen, Z., and Sejnowski, T. (1994b) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci., 1:195-230.CrossRefGoogle ScholarPubMed
Destexhe, A. and Pare, D. (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol., 81:1531-1547.CrossRefGoogle ScholarPubMed
Destexhe, A., Rudolph, M., and Pare, D. (2003) The high-conductance state of neocortical neurons in vivo. Nature Rev. Neurosci., 4:739-751.Google ScholarPubMed
DiMattina, C. and Zhang, K. (2011) Active data collection for efficient estimation and comparison of nonlinear neural models. Neural Comput., 23(9):2242-88.CrossRefGoogle ScholarPubMed
Dobson, A. and Barnett, A. (2008) Introduction to Generalized Linear Models, 3rd edn. Chapman and Hall, London.Google Scholar
Donoghue, J. (2002) Connecting cortex to machines: recent advances in brain interfaces. Nature Neurosci., 5:1085-1088.CrossRefGoogle ScholarPubMed
Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G., and Gaal, G. (1998) Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. J. Neurophys., 79(1):159-173.CrossRefGoogle ScholarPubMed
Douglass, J., Wilkens, L., Pantazelou, E., and Moss, F. (1993) Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 365:337-340.CrossRefGoogle ScholarPubMed
Druckmann, S., Bannitt, Y., Gidon, A. A., Schuermann, F., and Segev, I. (2007) A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front Neurosci, 1:1.CrossRefGoogle ScholarPubMed
Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., and Reitboeck, H. J. (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex?Biol. Cybern., 60:121-130.CrossRefGoogle ScholarPubMed
Eckhorn, R., Krause, F., and Nelson, J. L. (1993) The RF-cinematogram: a cross-correlation technique for mapping several visual fields at once. Biol. Cybern., 69:37-55.CrossRefGoogle ScholarPubMed
Eden, U., Truccolo, W., Fellows, M., Donoghue, J., and Brown, E. (2004) Reconstruction of hand movement trajectories from a dynamic ensemble of spiking motor cortical neurons. In Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE, Vol. 2, pp. 4017-4020. IEEE.Google Scholar
Edwards, B. and Wakefield, G. H. (1993) The spectral shaping of neural discharges by refractory effects. J. Acoust. Soc. Am., 93:3553-3564.CrossRefGoogle ScholarPubMed
Eggermont, J. J., Aertsen, A. M., and Johannesma, P. I. (1983) Quantitative characterisation procedure for auditory neurons based on the spectro-temporal receptive field. Hearing Res., 10(2):167-90.Google ScholarPubMed
Ermentrout, G. B. (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comput., 8(5):979-1001.CrossRefGoogle ScholarPubMed
Ermentrout, G. B. and Kopell, N. (1984) Frequency plateaus in a chain of weakly coupled oscillators. SIAMJ. Math. Anal., 15:215-237.CrossRefGoogle Scholar
Ermentrout, G. B. and Kopell, N. (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. SIAMJ. Appl. Math., 46:233-253.CrossRefGoogle Scholar
Erneux, T. and Nicolis, G. (1993) Propagating waves in discrete bistable reaction-diffusion systems. Physica D, 67(1):237-244.CrossRefGoogle Scholar
Ernst, U., Pawelzik, K., and Geisel, T. (1995) Synchronization induced by temporal delays in pulse-coupled oscillators. Phys. Rev. Lett., 74:1570-1573.CrossRefGoogle ScholarPubMed
Erwin, E., Obermayer, K., and Schulten, K. (1995) Models of orientation and ocular dominance columns in the visual cortex: a critcal comparison. Neural Comput., 7:425-468.CrossRefGoogle Scholar
Faisal, A., Selen, L., and Wolpert, D. (2008) Noise in the nervous system. Nat. Rev. Neu-rosci., 9:202.Google Scholar
Faugeras, O., Touboul, J., and Cessac, B. (2009) A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. Front. Comput. Neurosci., 3:1.CrossRefGoogle ScholarPubMed
Feldman, J. L. and Cowan, J. D. (1975) Large-scale activity in neural nets I: Theory with application to motoneuron pool responses. Biol. Cybern., 17:29-38.CrossRefGoogle ScholarPubMed
Feng, J. (2001) Is the integrate-and-fire model good enough? – a review. Neural Networks, 14:955-975.CrossRefGoogle ScholarPubMed
Feynman, R. P., Hibbs, A. R., and Styer, D. F. (2010) Quantum Mechanics and Path Integrals, 2nd edn. Dover, New York.Google Scholar
Fisher, R., van Emde Boas, W., Blume, W., et al. (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46:470-472.Google Scholar
Fishman, H. M., Poussart, D. J. M., Moore, L. E., and Siebenga, E. (1977) Conduction description from the low frequency impedance and admittance of squid axon. J. Membrane Biol., 32:255-290.CrossRefGoogle ScholarPubMed
FitzHugh, R. (1961) Impulses and physiological states in models of nerve membrane. Bio-phys. J., 1:445-466.Google ScholarPubMed
Fleidervish, I. A., Friedman, A. and Gutnick, M. J. (1996) Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J. Physiol., 493:83-97.CrossRefGoogle ScholarPubMed
Florian, R. V. (2007) Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural Comput., 19:1468-1502.CrossRefGoogle ScholarPubMed
Fourcaud, N. and Brunel, N. (2002) Dynamics of the firing probability of noisy integrate-and-fire neurons. Neural Comput., 14:2057-2110.CrossRefGoogle ScholarPubMed
Fourcaud, N. and Brunel, N. (2005) Dynamics of the instantaneous firing rate in response to changes in input statistics. J. Comput. Neurosci., 18:311-321.Google Scholar
Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., and Brunel, N. (2003) How spike generation mechanisms determine the neuronal response to fluctuating input. J. Neurosci., 23:11628-11640.CrossRefGoogle Scholar
Fremaux, N., Sprekeler, H., and Gerstner, W. (2010) Functional requirements for reward-modulated spike-timing-dependent plasticity. J. Neurosci., 40:13326-13337.Google Scholar
French, A. and Stein, R. (1970) A flexible neural analog using integrated circuits. IEEE Trans. Biomed. Enging., 17(3):248-253.Google ScholarPubMed
Froemke, R. and Dan, Y. (2002) Spike-timing dependent plasticity induced by natural spike trains. Nature, 416:433-438.CrossRefGoogle ScholarPubMed
Froemke, R. C., Merzenich, M. M., and Schreiner, C. E. (2007) A synaptic memory trace for cortical receptive field plasticity. Nature, 450:425-429.CrossRefGoogle ScholarPubMed
Froemke, R. C., Tsay, I., Raad, M., Long, J., and Dan, Y. (2006) Contribution of individual spikes in burst-induced long-term synaptic modification. J. Neurophysiol., 95:1620-1629.CrossRefGoogle ScholarPubMed
Fuortes, M. and Mantegazzini, F. (1962) Interpretation of the repetitive firing of nerve cells. J. Gen. Physiol., 45:1163-1179.CrossRefGoogle ScholarPubMed
Fusi, S. and Mattia, M. (1999) Collective behavior of networks with linear (VLSI) integrate and fire neurons. Neural Comput., 11:633-652.CrossRefGoogle ScholarPubMed
Fuster, J. and Jervey, J. (1982) Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. J. Neurosci., 2:361-375.CrossRefGoogle Scholar
Gabbiani, F. and Koch, C. (1998) Principles of spike train analysis. In Koch, C. and Segev, I., eds, Methods in Neuronal Modeling, 2nd edn, pp. 312-360. MIT Press, Cambridge, MA.Google Scholar
Gabbiani, F., Midtgaard, J., and Knopfel, T. (1994) Synaptic integration in a model of cerebellar granule cells. J. Neurophys., 72(2):999-1009.CrossRefGoogle Scholar
Gammaitoni, L., Hanggi, P., Jung, P., and Marchesoni, F. (1998) Stochastic resonance. Rev. Mod. Phys., 70:223-287.CrossRefGoogle Scholar
Ganguli, S., Huch, D., and Sompolinsky, H. (2008) Memory traces in dynamics systems. Proc. Natl. Acad. Sci. USA, 105:18970-18975.CrossRefGoogle Scholar
Gawne, T. J., Richmond, B. J., and Optican, L. M. (1991) Interactive effects among several stimulus parameters on the response of striate cortical complex cells. J. Neurophys., 66(2):379-389.CrossRefGoogle ScholarPubMed
Geisler, C. and Goldberg, J. (1966) A stochastic model of repetitive activity of neurons. Biophys. J., 6:53-69.CrossRefGoogle ScholarPubMed
Georgopoulos, A. P., Schwartz, A., and Kettner, R. E. (1986) Neuronal population coding ofmovement direction. Science, 233:1416-1419.CrossRefGoogle ScholarPubMed
Georgopoulos, A., Kettner, R., and Schwartz, A. (1988) Primate motorcortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J. Neurosci., 8:2928-2937.CrossRefGoogle Scholar
Gerhard, F., Haslinger, R., and Pipa, G. (2011) Applying the multivariate time-rescaling theorem to neural population models. Neural Comput., 23:1452-1483.CrossRefGoogle ScholarPubMed
Gerstein, G. L. and Perkel, D. H. (1972) Mutual temporal relations among neuronal spike trains. Biophys. J., 12:453-473.CrossRefGoogle ScholarPubMed
Gerstner, W. (1991) Associative memory in a network of ‘biological’ neurons. In Lippmann, R. P., Moody, J. E., and Touretzky, D. S., eds, Advances in Neural Information Processing Systems 3, pp. 84-90. Morgan Kaufmann, San Mates, CA. Conference in Denver 1990.Google Scholar
Gerstner, W. (1995) Time structure of the activity in neural network models. Phys. Rev. E, 51(1):738-758.CrossRefGoogle ScholarPubMed
Gerstner, W. (2000) Population dynamics ofspiking neurons: fast transients, asynchronous states and locking. Neural Comput., 12:43-89.CrossRefGoogle ScholarPubMed
Gerstner, W. (2008) Spike-response model. Scholarpedia, 3(12):1343.CrossRefGoogle Scholar
Gerstner, W. and Brette, R. (2009) Adaptive exponential integrate-and-fire model. Scholarpedia, 4:8427.CrossRefGoogle Scholar
Gerstner, W. and Kistler, W. K. (2002) Spiking Neuron Models: Single Neurons, Populations, Plasticity.Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Gerstner, W. and van Hemmen, J. L. (1992) Associative memory in a network of ‘spiking’ neurons. Network, 3:139-164.CrossRefGoogle Scholar
Gerstner, W. and van Hemmen, J. L. (1993) Coherence and incoherence in a globally coupled ensemble ofpulse emitting units. Phys. Rev. Lett., 71(3):312-315.CrossRefGoogle Scholar
Gerstner, W., Ritz, R., and van Hemmen, J. L. (1993) Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol. Cybern., 69:503-515.CrossRefGoogle ScholarPubMed
Gerstner, W., Kempter, R., van Hemmen, J., and Wagner, H. (1996a) A neuronal learning rule for sub-millisecond temporal coding. Nature, 383(6595):76-78.CrossRefGoogle ScholarPubMed
Gerstner, W., van Hemmen, J. L., and Cowan, J. D. (1996b) What matters in neuronal locking. Neural Comput., 8:1653-1676.CrossRefGoogle ScholarPubMed
Gigante, G., Mattia, M., and Del Giudice, P. (2007) Diverse population-bursting modes of adapting spiking neurons. Phys. Rev. Lett., 98:148101.CrossRefGoogle ScholarPubMed
Gilson, M., Burkitt, A., Grayden, D., Thomas, D., and van Hemmen, J. L. (2009) Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: Structuring synaptic pathways among recurrent connections. Biol. Cybern., 27:427-444.Google Scholar
Giorno, V., Nobile, A. G., and Ricciardi, L. M. (1992) Instantaneous return processes and neuronal firings. In Trappl, R., ed., Cybernetics and Systems Research, Vol. 1, pp. 829-236. World Scientific Press, Hackensack, NJ.Google Scholar
Glimcher, P., Fehr, E., Camerer, C., and Poldrack, R. (2008) Neuroeconomics.Academic Press, Salt Lake City, UT.Google Scholar
Gluss, B. (1967) A model of neuron firing with exponential decay of potential resulting in diffusion equations for the probability density. Bull. Math. Biophys., 29:233-243.CrossRefGoogle ScholarPubMed
Gold, J. and Shadlen, M. (2007) The neural basis ofdecision making. Ann. Rev. Neurosci., 30:535-547.CrossRefGoogle Scholar
Goldberg, J., Adrian, H., and Smith, F. (1964) Response of neurons of the superior olivary complex of the cat to acoustic stimuli of long duration. J. Neurophys., 27:706-749.CrossRefGoogle ScholarPubMed
Golding, N., Mickus, T. J., Katz, Y., Kath, W. L., and Spruston, N. (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J. Physiol., 568:69-82.CrossRefGoogle ScholarPubMed
Gollisch, T. and Meister, M. (2008) Rapid neural coding in the retina with relative spike latencies. Science, 319:1108-1111.CrossRefGoogle ScholarPubMed
Golomb, D., Hansel, D., Shraiman, B., and Sompolinsky, H. (1992) Clustering in globally coupled phase oscillators. Phys. Rev. A, 45:3516-3530.CrossRefGoogle ScholarPubMed
Golomb, D. and Rinzel, J. (1994) Clustering in globally coupled inhibitory neurons. Physica D, 72:259-282.CrossRefGoogle Scholar
Gray, C. M. and Singer, W. (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA, 86:1698-1702.CrossRefGoogle ScholarPubMed
Grossberg, S. (1969) On learning, information, lateral inhibition, and transmitters. Math. Biosci., 4:255-310.CrossRefGoogle Scholar
Grossberg, S. (1973) Contour enhancement, short term memory and constancies in reverberating neural networks. Stud. Appl. Math., 52:217-257.CrossRefGoogle Scholar
Grossberg, S. (1976) Adaptive pattern classification and universal recoding I: Parallel development and coding of neuronal feature detectors. Biol. Cybern., 23:121-134.CrossRefGoogle Scholar
Gütig, R., Aharonov, S., Rotter, S., and Sompolinsky, H. (2003) Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. J. Neurosci., 23(9):3697-3714.CrossRefGoogle ScholarPubMed
Gutkin, B. S., Ermentrout, G. B., and Reyes, A. D. (2005) Phase-response curves give the responses of neurons to transient inputs. J. Neurophysiol., 94:1623-1635.CrossRefGoogle ScholarPubMed
Haggard, P. (2008) Human volition: towards a neuroscience of will. Nat. Rev. Neurosci., 9:934-946.CrossRefGoogle ScholarPubMed
Hale, J. K. and Kocac, H. (1991) Dynamics and Bifurcations. Text in Applied Mathematics 3. Springer, Berlin.CrossRefGoogle Scholar
Hamill, O. P., Huguenard, J. R., and Prince, D. A. (1991) Patch-clamp studies of voltage-gated currents in identified neurons of the rat cerebral cortex. Cerebral Cortex, 1(1):48-61.CrossRefGoogle ScholarPubMed
Hansel, D. and Mato, G. (2001) Existenceand stability of persistent states in largeneuronal networks. Phys. Rev. Lett., 86:4175-4178.CrossRefGoogle ScholarPubMed
Hansel, D. and Sompolinsky, H. (1998) Modeling feature selectivity in local cortical circuits. In Koch, C. and Segev, I., eds, Methods in Neuronal Modeling.MIT Press, Cambridge, MA.Google Scholar
Hay, E., Hill, S., Schürmann, F., Markram, H., and Segev, I. (2011) Models of neocortical layer 5b pyramidal cells capturing awide range of dendritic and perisomatic active properties. PLoSComput. Biol., 7(7):e1002107.Google Scholar
Haykin, S. (1994) Neural Networks.Prentice Hall, Upper Saddle River, NJ.Google Scholar
Hebb, D. O. (1949) The Organization of Behavior.Wiley, New York.Google Scholar
Helmchen, F., Konnerth, A., and Yuste, R. (2011) Imaging in Neuroscience: A Laboratory Manual.Cold Spring Harbor Laboratory Press.Google Scholar
Hennequin, G. (2013) Amplification and stability in cortical circuits. Thesis, Ecole Polytechnique Federale de Lausanne.Google Scholar
Hennequin, G., Vogels, T., and Gerstner, W. (2014) Optimal control oftransient dynamics in balanced networks supports generation of complex movements. Neuron, to appear.CrossRefGoogle Scholar
Herrmann, A. and Gerstner, W. (2001) Noise and the PSTH response to current transients: I. General theory and application to the integrate-and-fire neuron. J. Comput. Neurosci., 11:135-151.CrossRefGoogle ScholarPubMed
Hertz, J., Krogh, A., and Palmer, R. G. (1991) Introduction to the Theory of Neural Computation.Addison-Wesley, Redwood City, CA.Google Scholar
Herz, A. V. M., Sulzer, B., Kühn, R., and van Hemmen, J. L. (1988) The Hebb rule: Representation of static and dynamic objects in neural nets. Europhys. Lett., 7:663-669.CrossRefGoogle Scholar
Herz, A. V. M., Sulzer, B., Kühn, R., and van Hemmen, J. L. (1989) Hebbian learning reconsidered: Representation of static and dynamic objects in associativeneural nets. Biol. Cybern., 60:457-467.CrossRefGoogle ScholarPubMed
Hessler, N. A., Shirke, A. M., and Malinow, R. (1993) The probability of transmitter release at a mammalian central synapse. Nature, 366:569-572.CrossRefGoogle Scholar
Hill, A. (1936) Excitation and accommodation in nerve. Proc. R. Soc. Lond. B, 119:305-355.CrossRefGoogle Scholar
Hille, B. (1992) Ionic Channels of Excitable Membranes.Sinauer, Sunderland.Google Scholar
Hille, B. (2001) Ion Channels of Excitable Membranes, 3rd edn. Sinauer, Sunderland.Google Scholar
Hodgkin, A. L. (1948) The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol. (Lond.), 107:165-181.CrossRefGoogle Scholar
Hodgkin, A. L. and Huxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol, 117(4):500-544.CrossRefGoogle ScholarPubMed
Hoehn, K., Watson, T. W., and MacVicar, B. A. (1993) A novel tetrodotoxin-insensitive, slow sodium current in striatal and hippocampal beurons. Neuron, 10(3):543-552.CrossRefGoogle Scholar
Hoerzer, G., Legenstein, R., and Maass, W. (2012) Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning. Cerebral Cortex, xx:doi:10.1093/cercor/bhs348.Google ScholarPubMed
Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA, 79:2554-2558.CrossRefGoogle ScholarPubMed
Hopfield, J. J. (1984) Neurons with graded response have computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA, 81:3088-3092.CrossRefGoogle ScholarPubMed
Hoppensteadt, F. C. and Izhikevich, E. M. (1997) Weakly Connected Neural Networks.Springer, Berlin.CrossRefGoogle Scholar
Horn, R. A. and Johnson, C. R. (1985) Matrix Analysis.Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Hubel, D. H. (1988) Eye, Brain, and Vision.W. H. Freeman, New York.Google Scholar
Hubel, D. and Wiesel, T. (1968) Receptive fields and functional architecture of monkey striate cortex. J. Physiol., 195:215-243.CrossRefGoogle ScholarPubMed
Hubel, D. H. and Wiesel, T. N. (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.), 160:106-154.CrossRefGoogle ScholarPubMed
Huguenard, J. R., Hamill, O. P., and Prince, D. A. (1988) Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. J. Neurophysiol., 59(3):778-795.CrossRefGoogle Scholar
Hunter, J. D. and Milton, J. G. (2003) Amplitude and frequency dependence of spike timing: implications for dynamic regulation. J. Neurophysiol., 90(1):387-94.CrossRefGoogle ScholarPubMed
Huys, Q. J. M., Ahrens, M. B., and Paninski, L. (2006) Efficient estimation of detailed single-neuron models. J. Neurophysiol., 96(2):872-890.CrossRefGoogle ScholarPubMed
Itti, L., Koch, C., and Niebur, E. (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Patt. Anal. Mach. Intell., 20:1254-1259.CrossRefGoogle Scholar
Izhikevich, E. M. (2003) Simple model of spiking neurons. IEEE Trans. Neural Networks, 14(6):1569-1572.CrossRefGoogle ScholarPubMed
Izhikevich, E. (2007a) Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral Cortex, 17:2443-2452.CrossRefGoogle ScholarPubMed
Izhikevich, E. M. (2007b) Dynamical Systemsin Neuroscience: The Geometry of Excitability and Bursting.MIT Press, Cambridge, MA.Google Scholar
Jackson, J. (1962) Classical Electro dynamics.Wiley, New York.Google Scholar
Jaeger, H. and Haas, H. (2004) Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304:78-80.CrossRefGoogle ScholarPubMed
James, W. (1890) Psychology (Briefer Course), Ch. 16. Holt, New York.Google Scholar
Johannesma, P. I. M. (1968) Diffusion models for the stochastic acticity of neurons. In Caianiello, E. R., ed., Neural Networks, pp. 116-144. Springer, Berlin.Google Scholar
Johansson, R. and Birznieks, I. (2004) First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nature Neurosci., 7:170-177.CrossRefGoogle ScholarPubMed
Jolivet, R., Lewis, T., and Gerstner, W. (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J. Neurophysiol., 92:959-976.CrossRefGoogle ScholarPubMed
Jolivet, R., Rauch, A., Lüscher, H.-R., and Gerstner, W. (2006) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J. Comput. Neurosci., 21:35-49.CrossRefGoogle ScholarPubMed
Jolivet, R., Kobayashi, R., Rauch, A., Shinomoto, S., and Gerstner, W. (2008a) A benchmark test for a quantitative assessment of simple neuron models. J. Neurosci. Methods, 169:417-424.CrossRefGoogle ScholarPubMed
Jolivet, R., Schurmann, F., Berger, T., Naud, R., Gerstner, W., and Roth, A. (2008b) The quantitative single-neuron modeling competition. Biol. Cybern., 99:417-426.Google ScholarPubMed
Kandel, E. C., Schwartz, J. H., and Jessell, T. (2000) Principles of Neural Science, 4th edn. Elsevier, New York.Google Scholar
Kaschube, M., Schnabel, M., Lowel, S., Coppola, D., White, L., and Wolf, F. (2010) Universality in the evolution of orientation columns in the visual cortex. Science, 330:1113-1116.CrossRefGoogle ScholarPubMed
Kass, R. and Raftery, A. (1995) Bayes factors. J. Am. Stat. Assoc., 90:773-795.CrossRefGoogle Scholar
Kass, R. E. and Ventura, V. (2001) A spike-train probability model. Neural Comput., 13:1713-1720.CrossRefGoogle ScholarPubMed
Keat, J., Reinagel, P., Reid, R., and Meister, M. (2001) Predicting every spike: A model for the responses ofvisual neurons. Neuron, 30:803-817.CrossRefGoogle Scholar
Kempter, R., Gerstner, W., van Hemmen, J. L., and Wagner, H. (1998) Extracting oscillations: Neuronal coincidence detection with noisy periodic spike input. Neural Comput., 10:1987-2017.CrossRefGoogle ScholarPubMed
Kempter, R., Gerstner, W., and van Hemmen, J. L. (1999a) Hebbian learning and spiking neurons. Phys. Rev. E, 59:4498-4514.CrossRefGoogle Scholar
Kempter, R., Gerstner, W., van Hemmen, J. L., and Wagner, H. (1999b) The quality of coincidence detection and ITD-tuning: a theoretical framework. In Dau, T., Hohmann, V., and Kollmeier, B., eds, Psychophysics, Physiology and Models of Hearing, pp. 185-192. World Scientific, Singapore.Google Scholar
Kempter, R., Gerstner, W., and van Hemmen, J. L. (2001) Intrinsic stabilization of output rates by spike-based Hebbian learning. Neural Comput., 13:2709-2741.CrossRefGoogle ScholarPubMed
Kepler, T. B., Abbott, L. F., and Marder, E. (1992) Reduction of conductance-based neuron models. Biol. Cybern., 66:381-387.CrossRefGoogle ScholarPubMed
Kistler, W. M. and De Zeeuw, C. I. (2002) Dynamical working memory and timed responses: The role of reverbe rating loops in theolivo-cerebellar system. Neural Comput., 14(11):2597-2626.CrossRefGoogle Scholar
Kistler, W. M. and van Hemmen, J. L. (2000) Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic potentials. Neural Comput., 12:385-405.CrossRefGoogle Scholar
Kistler, W. M., Gerstner, W., and van Hemmen, J. L. (1997) Reduction of Hodgkin-Huxley equations to a single-variable threshold model. Neural Comput., 9:1015-1045.CrossRefGoogle Scholar
Klausberger, T. and Somogyi, P. (2008) Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science, 321:53-57.CrossRefGoogle ScholarPubMed
Knight, B. W. (1972) Dynamics of encoding in a population of neurons. J. Gen. Physiol., 59:734-766.CrossRefGoogle Scholar
Knight, B. W. (2000) Dynamics of encoding in neuron populations: some general mathematical features. Neural Comput., 12:473-518.CrossRefGoogle ScholarPubMed
Kobayashi, R. and Shinomoto, S. (2007) State space method for predicting the spike times of a neuron. Phys. Rev. E, 75(1):011925.CrossRefGoogle ScholarPubMed
Kobayashi, R., Tsubo, Y., and Shinomoto, S. (2009) Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front. Comput. Neurosci., 3:9.CrossRefGoogle ScholarPubMed
Koch, C. (1999) Biophysics of Computation.Oxford University Press, Oxford.Google Scholar
Koch, C., Bernander, O., and Douglas, R. (1995) Do neurons have a voltage or a current threshold for action potential initiation?J. Comput. Neurosci., 2:63-82.CrossRefGoogle ScholarPubMed
Kohonen, T. (1972) Correlation matrix memories. IEEE Trans. Comp., C-21:353-359.CrossRefGoogle Scholar
Kohonen, T. (1984) Self-Organization and Associative Memory.Springer-Verlag, Berlin.Google Scholar
Kole, M. H. P., Hallermann, S., and Stuart, G. J. (2006) Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. J. Neurosci., 26(6):1677-1687.CrossRefGoogle ScholarPubMed
König, P., Engel, A. K., and Singer, W. (1996) Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci., 19(4):130-137.CrossRefGoogle ScholarPubMed
Konishi, M. (1993) Listening with two ears. Scientific American, 268:34-41.CrossRefGoogle ScholarPubMed
Kopell, N. (1986) Symmetry and phase locking in chains of weakly coupled oscillators. Comm. Pure Appl. Math., 39:623-660.CrossRefGoogle Scholar
Korngreen, A. and Sakmann, B. (2000) Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J. Physiol., 525(3):621-639.CrossRefGoogle ScholarPubMed
Koyama, S., Castellanos Pérez-Bolde, L., Shalizi, C. R., and Kass, R. E. (2010) Approximate methods for state-space models. J. Am. Stat. Assoc., 105(489):170-180.CrossRefGoogle ScholarPubMed
Kree, R. and Zippelius, A. (1991) Asymmetrically diluted neural networks. In Domany, E., van Hemmen, J., and Schulten, K., eds, Models of Neural Networks, pp. 193-212. Springer, Berlin.Google Scholar
Kreuz, T., Haas, J., Morelli, A., Abarbanel, H., and Politi, A. (2007) Measuring spike train synchrony. J. Neurosci. Methods, 165(1):151-161.CrossRefGoogle ScholarPubMed
Kreuz, T., Chicharro, D., Andrzejak, R. G., Haas, J. S., and Abarbanel, H. D. I. (2009) Measuring multiple spike train synchrony. J. Neurosci. Methods, 183(2):287-99.CrossRefGoogle ScholarPubMed
Kulkarni, J. E. and Paninski, L. (2007) Common-input models for multiple neural spiketrain data. Network: Comp. in Neural Sys., 18(4):375-407.CrossRefGoogle Scholar
Kuramoto, Y. (1984) Chemical Oscillations, Waves, and Turbulence.Springer, Berlin.CrossRefGoogle Scholar
Laing, C. R. and Chow, C. C. (2001) Stationary bumps in a network of spiking neurons. Neural Comput., 13:1473-1494.CrossRefGoogle Scholar
Lansky, P. (1984) On approximations of Stein's neuronal model. J. Theor. Biol., 107:631-647.CrossRefGoogle ScholarPubMed
Lansky, P. (1997) Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics. Phys. Rev. E, 55:2040-2043.CrossRefGoogle Scholar
Lansky, P. and Lanska, V. (1987) Diffusion approximation of the neuronal model with synaptic reversal potentials. Biol. Cybern., 56:19-26.CrossRefGoogle ScholarPubMed
Lapicque, L. (1907) Recherches quantitatives sur l'excitation electrique des nerfs traitée comme une polarization. J. Physiol. Pathol. Gen., 9:620-635. Cited in H. C. Tuckwell, Introduction to Theoretic Neurobiology (Cambridge University Press, Cambridge, 1988).Google Scholar
Larkum, M. and Nevian, T. (2008) Synaptic clustering by dendritic signalling mechanisms. Curr. Opinion Neurobiol., 18:321-331.CrossRefGoogle ScholarPubMed
Larkum, M., Zhu, J., and Sakmann, B. (2001) Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J. Physiol. (Lond.), 533:447-466.CrossRefGoogle ScholarPubMed
Latham, P. E., Richmond, B., Nelson, P., and Nirenberg, S. (2000) Intrinsic dynamics in neuronal networks. I. Theory. J. Neurophysiol., 83:808-827.Google ScholarPubMed
Laurent, G. (1996) Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci., 19:489-496.CrossRefGoogle ScholarPubMed
Lefort, S., Tomm, C., Sarria, J., and Petersen, C. (2009) The excitatory neuronal networkof the C2 barrel column in mouse primary somatosensory cortex. Neuron, 61:301-316.CrossRefGoogle Scholar
Legenstein, R., Pecevski, D., and Maass, W. (2008) A learning theory for reward-modulated spike-timing-dependent plasticity with application to bio feedback. PLOS Comput. Biol., 4:e1000180.CrossRefGoogle Scholar
Levy, W. B. and Stewart, D. (1983) Temporal contiguity requirements for long-term associative potentiation/depression in hippocampus. Neurosci., 8:791-797.CrossRefGoogle ScholarPubMed
Lewi, J., Butera, R., and Paninski, L. (2009) Sequential optimal design of neurophysiology experiments. Neural Comput., 21:619-687.CrossRefGoogle ScholarPubMed
Libet, B. (1985) Unconscious cerebral initiative and the role of conscious will in voluntary action. Behav. Brain Sci., 8:529-566.CrossRefGoogle Scholar
Lindner, B. and Schimansky-Geier, L. (2001) Transmission of noise coded versus additive signals through a neuronal ensemble. Phys. Rev. Lett., 86:2934-2937.CrossRefGoogle ScholarPubMed
Lindner, B., Doiron, B., and Longtin, A. (2005) Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback. Phys. Rev. E, 72(6):061919.CrossRefGoogle ScholarPubMed
Linsker, R. (1986) From basic network principles to neural architecture: emergence of spatial-opponent cells. Proc. Natl. Acad. Sci. USA, 83:7508-7512.Google ScholarPubMed
Linz, P. (1985) Analytical and Numerical Methods for Volterra Equations, Vol.7. SIAM, Philadelphia, PA.Google Scholar
Lisman, J. (2003) Long-term potentiation: outstanding questions and attempted synthesis. Phil. Trans. R. Soc. Lond. B, 358:829-842.CrossRefGoogle ScholarPubMed
Lisman, J., Schulman, H., and Cline, H. (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci., 3:175-190.CrossRefGoogle ScholarPubMed
Little, W. A. (1974) The existence of persistent states in the brain. Math. Biosc., 19:101-120.CrossRefGoogle Scholar
Liu, Y.-H. and Wang, X.-J. (2001) Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. J. Comput. Neurosci., 10:2545.CrossRefGoogle ScholarPubMed
Loewenstein, Y. (2008) Robustness oflearning that is based on covariance-driven synaptic plasticity. PLOS Comput. Biol., 4:e1000007.CrossRefGoogle Scholar
Loewenstein, Y. and Seung, H. (2006) Operant matching is a generic outcome of synaptic plasticity based on the covariance between reward and neural activity. Proc. Natl. Acad. Sci. USA, 103:15224-15229.CrossRefGoogle ScholarPubMed
Longtin, A. (1993) Stochastic resonance in neuron models. J. Stat. Phys., 70:309-327.CrossRefGoogle Scholar
Lubenov, E. and Siapas, A. G. (2008) Decoupling through synchrony in neuronal circuits with propagation delays. Neuron, 58:118-131.CrossRefGoogle ScholarPubMed
Lund, J., Angelucci, A., and Bressloff, P. (2003) Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cerebral Cortex, 12:15-24.Google Scholar
Lundstrom, B., Higgs, M., Spain, W., and Fairhall, A. (2008) Fractional differentiation by neocortical pyramidal neurons. Nature Neurosci., 11:1335-1342.CrossRefGoogle ScholarPubMed
Maass, W., Joshi, P., and Sontag, E. (2007) Computational aspects of feedback in neural circuits. PLOS Comput. Biol., 3:e165.CrossRefGoogle ScholarPubMed
Maass, W., Natschlager, T., and Markram, H. (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput., 14:2531-2560.CrossRefGoogle ScholarPubMed
Mach, E. (1865) Über die Wirkung der räumlichen Verteilung des Lichtreizes auf die Netzhaut. Sitz. -Ber. Akad. Wiss. Wien, 52:303-322.Google Scholar
Mach, E. (1906) Die Analyse der Empfindungen, 5th edn, Chapter X. Gustav Fischer, Jena, www.uni-leipzig.de/psycho/wundt/opera/mach/empfndng/AlysEmIn.htm.Google Scholar
Machens, C. (2002) Adaptive sampling by information maximization. Phys. Rev. Lett., 88:228104-228107.CrossRefGoogle ScholarPubMed
Machens, C., Romo, R., and Brody, C. (2005) Flexible control of mutual inhibition: a neuron model of two-interval discrimination. Science, 307:1121-1124.CrossRefGoogle ScholarPubMed
Mackay, D. (1992) Information-based objective functions for active data selection. Neural Comput., 4:589-603.CrossRefGoogle Scholar
MacKay, D. J. C. and Miller, K. D. (1990) Analysis of Linsker's application of Hebbian rules to linear networks. Network, 1:257-297.CrossRefGoogle Scholar
MacPherson, J. M. and Aldridge, J. W. (1979) A quantitative method of computer analysis of spike train data collected from behaving animals. Brain Res., 175(1):183-7.CrossRefGoogle ScholarPubMed
MacLeod, C. M. (1991) Half a century of research on the Stroop effect: An integrative review. Psych. Bull., 109:163-203.CrossRefGoogle Scholar
Magee, J. C. (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci., 18(19):7613-7624.CrossRefGoogle ScholarPubMed
Mainen, Z. F., Joerges, J., Huguenard, J. R., and Sejnowski, T. J. (1995) A model of spike initiation in neocortical pyramidal neurons. Neuron, 15(6):1427-1439.CrossRefGoogle ScholarPubMed
Mainen, Z. F. and Sejnowski, T. J. (1995) Reliability of spiketiming in neocortical neurons. Science, 268:1503-1506.CrossRefGoogle ScholarPubMed
Mainen, Z. F. and Sejnowski, T. J. (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382:363-366.CrossRefGoogle ScholarPubMed
Makram, H., Sjostrom, J., and Gerstner, W. (2011) A history of spike-timing dependent plasticity. Front. Syn. Neurosci., 3:4.Google Scholar
Manwani, A. and Koch, C. (1999) Detecting and estimating signals in noisy cable structures, I: Neuronal noise sources. Neural Comput., 11:1797-1829.Google Scholar
Markram, H. and Tsodyks, M. (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature, 382:807-810.CrossRefGoogle ScholarPubMed
Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997) Regulation of synaptic efficacy by coincidence of postysnaptic AP and EPSP. Science, 275:213-215.CrossRefGoogle Scholar
Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., and Wu, C. (2004) Interneurons of the neocortical inhibitory system. Nature Rev. Neurosci., 5:793-807.CrossRefGoogle ScholarPubMed
Marsalek, P., Koch, C., and Maunsell, J. (1997) On the relationship between synaptic input and spike output jitter in individual neurons. Proc. Natl. Acad. Sci. USA, 94:735-740.CrossRefGoogle ScholarPubMed
Mascaro, M. and Amit, D. J. (1999) Effective neural response function for collective population states. Network, 10:351-373.CrossRefGoogle ScholarPubMed
Mauro, A., Conti, F., Dodge, F., and Schor, R. (1970) Subthreshold behavior and phe-nomenological impedance of the squid giant axon. J. Gen. Physiol., 55(4):497-523.CrossRefGoogle ScholarPubMed
McCormick, D. A., Wang, Z., and Huguenard, J. (1993) Neurotransmitter control of neo-cortical neuronal activity and excitability. Cereb. Cortex, 3(5):387-398.CrossRefGoogle Scholar
McCulloch, W. S. and Pitts, W. (1943) A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys., 5:115-133.CrossRefGoogle Scholar
McNamara, B. and Wiesenfeld, K. (1989) Theory of stochastic resonance. Phys. Rev. A, 39:4854-4869.CrossRefGoogle ScholarPubMed
Mel, B. W. (1994) Information processing in dendritic trees. Neural Comput., 6:1031-1085.CrossRefGoogle Scholar
Mensi, S., Naud, R., and Gerstner, W. (2011) From stochastic nonlinear integrate-and-fire to generalized linear models. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K., eds, Advances in Neural Information Processing System24, p. 0794.Google Scholar
Mensi, S., Naud, R., Avermann, M., Petersen, C. C. H., and Gerstner, W. (2012) Parameter extraction and classification of three neuron types reveals two different adaptation mechanisms. J. Neurophys., 107:1756-1775.CrossRefGoogle Scholar
Mensi, S., Pozzorini, C., Hagens, O., and Gerstner, W. (2013) Evidence for a nonlinear coupling between firing threshold and subthreshold membrane potential. Cosyne Abstracts,Salt Lake City, UT.Google Scholar
Meyer, C. and van Vreeswijk, C. (2002) Temporal correlations in stochastic networks of spiking neurons. Neural Comput., 14:369-404.CrossRefGoogle ScholarPubMed
Miller, E. and Cohen, J. (2001) An integrative theory of prefrontal cortex function. Ann. Rev. Neurosci., 24:167-202.CrossRefGoogle ScholarPubMed
Miller, K. and Fumarola, F. (2012) Mathematical equivalence of two common forms of firing rate models of neural networks. Neural Comput., 24:25-31.CrossRefGoogle ScholarPubMed
Miller, K., Keller, J. B., and Stryker, M. P. (1989) Ocular dominance column development: analysis and simulation. Science, 245:605-615.CrossRefGoogle ScholarPubMed
Miller, K. D. (1994) A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity dependent competition between ON- and OFF-center inputs. J. Neurosci., 14:409-441.CrossRefGoogle ScholarPubMed
Miller, K. D. and MacKay, D. J. C. (1994) The role of constraints in Hebbian learning. Neural Comput., 6:100-126.CrossRefGoogle Scholar
Miller, M. I. and Mark, K. (1992) A statistical study of cochlear nerve discharge patterns in reponse to complex speech stimuli. J. Acoust. Soc. Am., 92:202-209.CrossRefGoogle Scholar
Mirollo, R. E. and Strogatz, S. H. (1990) Synchronization of pulse coupled biological oscillators. SIAMJ. Appl. Math., 50:1645-1662.CrossRefGoogle Scholar
Miyashita, Y. (1988a) Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature, 335:817-820.CrossRefGoogle ScholarPubMed
Miyashita, Y. (1988b) Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature, 335(6193):817-820.CrossRefGoogle ScholarPubMed
Mongillo, G., Barak, O., and Tsodyks, M. (2008) Synaptic theory of working memory. Science, 319:1543-1546.CrossRefGoogle ScholarPubMed
Moreno-Bote, R. and Parga, N. (2004) Role of synaptic filtering on the firing response of simple model neurons. Phys. Rev. Lett., 92:28102.CrossRefGoogle ScholarPubMed
Morris, C. and Lecar, H. (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 35:193-213.CrossRefGoogle ScholarPubMed
Morrison, A., Diesmann, M., and Gerstner, W. (2008) Phenomenological models of synaptic plasticity based on spike timing. Biol. Cybern., 98:459-478.CrossRefGoogle ScholarPubMed
Mountcastle, V. B. (1957) Modality and topographic properties of single neurons of cat's somatosensory cortex. J. Neurophysiol., 20:408-434.CrossRefGoogle Scholar
Murray, J. D. (1993) Mathematical Biology, 2nd edn. Biomathematics Texts 19. Springer Verlag, Berlin.Google Scholar
Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962) An active pulse transmission line simulating nerve axon. Proc. IRE, 50:2061-2070.CrossRefGoogle Scholar
Naud, R. and Gerstner, W. (2012a) Coding and decoding in adapting neurons: A population approach to the peri-stimulus time histogram. PLoS Comput. Biol., 8:e1002711.CrossRefGoogle ScholarPubMed
Naud, R. and Gerstner, W. (2012b) The performance (and limits) of simple neuron models: Generalizations of the leaky integrate-and-fire model. In Le Novere, N. L., ed., Computational Systems Neurobiology.Springer, Berlin.Google Scholar
Naud, R., Marcille, N., Clopath, C., and Gerstner, W. (2008) Firing patterns in the adaptive exponential integrate-and-fire model. Biol. Cybernetics, 99:335-347.CrossRefGoogle ScholarPubMed
Naud, R., Gerhard, F., Mensi, S., and Gerstner, W. (2011) Improved similarity measures for small sets of spike trains. Neural Comput., 23:3016-3069.CrossRefGoogle ScholarPubMed
Nelder, J. and Wederburn, R. (1972) Generalized linear models. J. R. Stat. Soc. A, 135:370-384.Google Scholar
Nelken, I., Prut, Y., Vaadia, E., and Abeles, M. (1994) In search of the best stimulus: an optimization procedure for finding efficient stimuli in the cat auditory cortex. Hearing Res., 72:237-253.CrossRefGoogle ScholarPubMed
Nelson, M. and Rinzel, J. (1995) The Hodgkin-Huxley model. In Bower, J. M. and Beeman, D., ed, The Book of Genesis, Chapter 4, pp. 27-51. Springer, New York.Google Scholar
Newsome, W., Britten, K., and Movshon, J. (1989) Neuronal correlates of a perceptual decision. Nature, 341:52-54.CrossRefGoogle ScholarPubMed
Ngezahayo, A., Schachner, M., and Artola, A. (2000) Synaptic activation modulates the induction of bidirectional synaptic changes in adult mouse hippocampus. J. Neurosci., 20:2451-2458.CrossRefGoogle Scholar
Nini, A., Feingold, A., Slovin, H., and Bergman, H. (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J. Neurophysiol., 74:1800-1805.CrossRefGoogle Scholar
Nützel, K. (1991) The length of attractors in asymmetric random neural networks with deterministic dynamics. J. Phys. A., 24:L151-L157.CrossRefGoogle Scholar
Nykamp, D. and Tranchina, D. (2000) A population density approach that facilitates large-scale modeling of neural networks: Analysis and application to orientation tuning. J. Comput. Neurosci., 8:19-50.CrossRefGoogle ScholarPubMed
Oja, E. (1982) A simplified neuron model as a principal component analyzer. J. Math. Biol., 15:267-273.CrossRefGoogle ScholarPubMed
O'Keefe, J. and Recce, M. (1993) Phase relationship between hippocampal place units and the hippocampal theta rhythm. Hippocampus, 3:317-330.CrossRefGoogle Scholar
Okun, M. andLampl, I. (2008) Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat. Neurosci., 11:535-537.CrossRefGoogle ScholarPubMed
Omurtag, A., Knight, B., and Sirovich, L. (2000) On the simulation of a large population of neurons. J. Comput. Neurosci., 8:51-63.CrossRefGoogle Scholar
Optican, L. M. and Richmond, B. J. (1987) Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. 3. Information theoretic analysis. J. Neurophysiol., 57:162-178.CrossRefGoogle Scholar
Ostojic, S. and Brunel, N. (2011) From spiking neuron models to linear-nonlinear models. PLOS Comput. Biol., 7:e1001056.CrossRefGoogle ScholarPubMed
Ozeki, H., Finn, I., Schaffer, E., Miller, K., and Ferstner, D. (2009) Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron, 62:587-592.CrossRefGoogle ScholarPubMed
Paiva, A. R. C., Park, I., and Príncipe, J. (2009a) A comparison of binless spike train measures. Neural Comp. Appl., 19(3):1-15.Google Scholar
Paiva, A. R. C., Park, I., and Príncipe, J. (2009b) A reproducing kernel hilbert space framework for spike train signal processing. Neural Comput., 21(2):424-449.CrossRefGoogle ScholarPubMed
Paiva, A. R. C., Park, I., and Príncipe, J. (2010) Inner products for representation and learning in the spike train domain. In Oweiss, K. G., ed., Statistical Signal Processing for Neuroscience and Neurotechnology.Academic Press, New York.Google Scholar
Paninski, L. (2003) Convergence properties of three spike-triggered analysis techniques. Network, 14:437-464.CrossRefGoogle ScholarPubMed
Paninski, L. (2004) Maximum likelihood estimation of cascade point-process neural encoding models. Network, 15:243-262.CrossRefGoogle ScholarPubMed
Paninski, L. (2005) Asymptotic theory of information-the oretic experimental design. Neural Comput., 17:1480-1507.CrossRefGoogle Scholar
Paninski, L., Fellows, M., Shoham, S., Hatsopoulos, N., and Donoghue, J. (2004) Superlinear population encoding of dynamic hand trajectory in primary motor cortex. J. Neurosci., 24:8551-8561.CrossRefGoogle ScholarPubMed
Paninski, L., Pillow, J., and Lewi, J. (2007) Statistical models for neural encoding, decoding, and optimal stimulus design. In Cisek, P., Drew, T., and Kalaska, J., eds, Computational Neuroscience: Theoretical Insights into Brain Function, Progress in Brain Research, 165, pp. 493-508. Elsevier Science, Amsterdam.Google Scholar
Paninski, L., Ahmadian, Y., Ferreira, D. G., Koyama, S., Rad, K. R., Vidne, M., Vogelstein, J., and Wu, W. (2010) A new look at state-space models for neural data. J. Comput. Neurosci., 29(1-2):107-126.CrossRefGoogle Scholar
Paninski, L., Pillow, J., and Simoncelli, E. (2005) Comparing integrate-and-fire-like models estimated using intracellular and extracellular data. Neurocomputing, 65:379-385.Google Scholar
Papoulis, A. (1991) Probability, Random Variables, and Stochastic Processes. McGraw- Hill, New York.Google Scholar
Pare, D., Curro'Dossi, R., and Steriade, M. (1990) Neuronal basis of the parkinsonian resting tremor: A hypothesis and its implications for treatment. Neurosci., 35:217-226.CrossRefGoogle ScholarPubMed
Park, I., Seth, S., Rao, M., and Principe, J. (2012) Strictly positive-definite spike train kernels for point-process divergences. Neural Comput., 24(8):2223-2250.CrossRefGoogle ScholarPubMed
Patlak, J. and Ortiz, M. (1985) Slow currents through single sodium channels of the adult rat heart. J. Gen. Phys., 86(1):89-104.CrossRefGoogle ScholarPubMed
Pawlak, V. and Kerr, J. (2008) Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J. Neurosci., 28:2435-2446.CrossRefGoogle ScholarPubMed
Pawlak, V., Wickens, J., Kirkwood, A., and Kerr, J. (2010) Timing is not everything: neuromodulation opens the STDP gate. Front. Synaptic Neurosci., 2:146.CrossRefGoogle Scholar
Perkel, D. H., Gerstein, G. L., and Moore, G. P. (1967a) Neuronal spike trains and stochastic point processes I. The single spike train. Biophys. J., 7:391-418.CrossRefGoogle ScholarPubMed
Perkel, D. H., Gerstein, G. L., and Moore, G. P. (1967b) Neuronal spike trains and stochastic point processes II. Simultaneous spike trains. Biophys. J., 7:419-440.CrossRefGoogle ScholarPubMed
Pfister, J.-P. and Gerstner, W. (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J. Neurosci., 26:9673-9682.CrossRefGoogle Scholar
Pfister, J.-P. and Tass, P. (2010) STDP in oscillatory recurrent networks: Theoretical conditions for desynchronization and applications to deep brain stimulation. Front. Comput. Neurosci., 4:22.Google ScholarPubMed
Pfister, J.-P., Toyoizumi, T., Barber, D., and Gerstner, W. (2006) Optimal spike-timing dependent plasticity for precise action potential firing in supervised learning. Neural Comput., 18:1318-1348.CrossRefGoogle ScholarPubMed
Pikovsky, A. and Rosenblum, M. (2007) Synchronization. Scholarpedia, 2:1459.CrossRefGoogle Scholar
Pillow, J., Paninski, L., Uzzell, V., Simoncelli, E., and E. J., Chichilnisky (2005) Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J. Neurosci., 25:11003-11023.CrossRefGoogle ScholarPubMed
Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., and Simoncelli, E. (2008) Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454:995-999.CrossRefGoogle Scholar
Pillow, J. W., Ahmadian, Y., and Paninski, L. (2011) Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains. Neural Comput., 23(1):1-45.CrossRefGoogle ScholarPubMed
Platt, M. and Huettel, S. (2008) Risky business: the neuroeconomics of decision making under uncertainty. Nat. Neurosci., 11:398-403.CrossRefGoogle ScholarPubMed
Plesser, H. (1999) Aspects of Signal Processing in Noisy Neurons. PhD thesis, Georg-August-Universität, Göttingen.Google Scholar
Plesser, H. E. (2000) The ModUhl software collection. Technical report, MPI für Stromungs for schung, Gottingen. www.chaos.gwgd.de/plesser/ModUhl.htm.Google Scholar
Plesser, H. E. and Gerstner, W. (2000) Noise in integrate-and-fire models: from stochastic input to escape rates. Neural Comput., 12:367-384.CrossRefGoogle ScholarPubMed
Plesser, H. E. and Tanaka, S. (1997) Stochastic resonance in a model neuron with reset. Phys. Lett. A, 225:228-234.CrossRefGoogle Scholar
Pozzorini, C., Naud, R., Mensi, S., and Gerstner, W. (2013) Temporal whitening by power- law adaptation in neocortical neurons. Nature Neurosci., 16:942-948.CrossRefGoogle ScholarPubMed
Prinz, W. (2004) Der Mensch ist nicht frei. Ein Gespräch. In Geyer, C., ed., Hirnforschung und Willensfreiheit.Suhrkamp, Frankfurt.Google Scholar
Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S., and White, L. E. (2008) Neuroscience, 4th edn. Sinauer, Sunderland, MA.Google Scholar
Quiroga, R. Q., Kreuz, T., and Grassberger, P. (2002) Event synchronization: A simple and fast method to measure synchronicity and time delay patterns. Phys. Rev, 66(4):041904.Google Scholar
Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., and Fried, I. (2005) Invariant visual representation by single neurons in the human brain. Nature, 435:1102-1107.CrossRefGoogle ScholarPubMed
Rainer, G. and Miller, E. (2002) Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. Europ. J. Neurosci., 15:1244-1254.CrossRefGoogle ScholarPubMed
Rajan, K. and Abbott, L. (2006) Eigenvalue spectra of random matrices for neural networks. Phys. Rev. Lett., 97:188104.CrossRefGoogle ScholarPubMed
Rall, W. (1989) Cable theory for dendritic neurons. In Koch, C. and Segev, I., eds., Methods in Neuronal Modeling, pp. 9-62. MIT Press, Cambridge, MA.Google Scholar
Ramirez, A. D., Ahmadian, Y., Schumacher, J., Schneider, D., Woolley, S. M. N., and Paninski, L. (2011) Incorporating naturalistic correlation structure improves spectrogram reconstruction from neuronal activity in the songbird auditory midbrain. J. Neurosci., 31(10):3828-3842.CrossRefGoogle ScholarPubMed
Ramony Cajal, S. (1909) Histologie du système nerveux de l'homme et des vertebre. A.Maloine, Paris.Google Scholar
Randall, A. D. and Tsien, R. W. (1997) Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels. Neuropharmacology, 36(7):879-93.CrossRefGoogle ScholarPubMed
Rangel, A., Camerer, C., and Montague, P. (2008) A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci., 9:545-556.CrossRefGoogle ScholarPubMed
Ranjan, R., Khazen, G., Gambazzi, L., Ramaswamy, S., Hill, S. L., Schürmann, F., and Markram, H. (2011) Channelpedia: an integrative and interactive database for ion channels. Front. Neuroinform., 5:36.CrossRefGoogle ScholarPubMed
Rapp, M., Yarom, Y., and Segev, I. (1994) Physiology, morphology and detailed passive models ofguinea-pig cerebellar Purkinje cells. J. Physiol., 474:101-118.CrossRefGoogle ScholarPubMed
Ratcliff, R. and McKoon, G. (2008) The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput., 20:873-922.CrossRefGoogle ScholarPubMed
Ratcliff, R. and Rouder, J. (1998) Modeling response times for two-choice decisions. Psychol. Sci., 9:347-356.CrossRefGoogle Scholar
Ratnam, R. and Nelson, M. (2000) Nonrenewal statistics of electrosensory afferent spike trains: Implications for the detection of weak sensory signals. J. Neurosci, 10:6672-6683.Google Scholar
Redish, A., Elga, A., and Touretzky, D. (1996) A coupled attractor model of the rodent head direction system. Network, 7:671-685.CrossRefGoogle Scholar
Reich, D., Victor, J., and Knight, B. (1998) The power ratio and the interval map: spiking models and extracellular recordings. J. Neurosci., 18(23):10090-10104.CrossRefGoogle ScholarPubMed
Renart, A., de la Rocha, J., Hollender, L., Parta, N., Reyes, A., and Harris, K. (2010) The asynchronous state in cortical circuits. Science, 327:587-590.CrossRefGoogle Scholar
Rettig, J., Wunder, F., Stocker, M., et al. (1992) Characterization of a shaw-related potassium channel family in rat brain. EMBO J, 11(7):2473-86.Google ScholarPubMed
Reuveni, I., Friedman, A., Amitai, Y., and Gutnick, M. (1993) Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites. J. Neurosci., 13(11):4609-4621.CrossRefGoogle ScholarPubMed
Reynolds, J. and Wickens, J. (2002) Dopamine-dependent plasticity of corticostriatal synapses. Neural Networks, 15:507-521.CrossRefGoogle ScholarPubMed
Ricciardi, L. (1976) Diffusion approximation for a multi-input neuron model. Biol. Cybern., 24:237-240.CrossRefGoogle Scholar
Richardson, M. (2004) The effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons. Phys. Rev. E, 69:51918.CrossRefGoogle ScholarPubMed
Richardson, M. (2007) Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive. Phys. Rev. E, 76:021919.CrossRefGoogle ScholarPubMed
Richardson, M. (2009) Dynamics of populations and networks of neurons with voltage-activated and calcium-activated currents. Phys. Rev. E, 80:021928.CrossRefGoogle ScholarPubMed
Richardson, M. and Gerstner, W. (2005) Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural Comput., 17:923-947.CrossRefGoogle ScholarPubMed
Richardson, M., Brunel, N., and Hakim, V. (2003) From subthreshold to firing-rate resonance. J. Neurophysiol., 89(5):2538-2554.CrossRefGoogle ScholarPubMed
Rieke, F., Warland, D., deRuytervan Steveninck, R., and Bialek, W. (1997) Spikes: Exploring the Neural Code.MIT Press, Cambridge, MA.Google Scholar
Rinzel, J. (1985) Excitation dynamics: insights from simplified membrane models. Theor. Trends Neurosci, 44(15):2944-2946.Google ScholarPubMed
Rinzel, J. and Ermentrout, G. B. (1998) Analysis of neural excitability and oscillations. In Koch, C. and Segev, I., eds, Methods in Neuronal Modeling, 2nd edn, pp. 251-291. MIT Press, Cambridge, MA.Google Scholar
Risken, H. (1984) The Fokker Planck Equation: Methods of Solution and Applications.Springer-Verlag, Berlin.CrossRefGoogle Scholar
Ritz, R. and Sejnowski, T. (1997) Synchronous oscillatory activityin sensory systems: new vistas on mechanisms. Current Opinion Neurobiol., 7:536-546.CrossRefGoogle Scholar
Roberts, P. and Bell, C. (2000) Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation. Comput. Neurosci., 9:67-83.CrossRefGoogle ScholarPubMed
Roitman, J. and Shadlen, M. (2002) Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci., 22:9475-9489.CrossRefGoogle ScholarPubMed
Romo, R. and Salinas, E. (2003) Flutter discrimination: neural codes, perception, memory and decision making. Nat. Rev. Neurosci., 4:203-218.CrossRefGoogle ScholarPubMed
Rosin, B., Slovik, M., Mitelman, R., et al. (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron, 72:370-384.CrossRefGoogle ScholarPubMed
Rospars, J. P. and Lansky, P. (1993) Stochastic model neuron without resetting of dendritic potential: application to the olfactory system. Biol. Cybern., 69:283-294.CrossRefGoogle ScholarPubMed
Roxin, A. and Ledberg, A. (2008) Neurobiological models of two-choice decision making can be reduced to a one-dimensional nonlinear diffusion equation. PLOS Comput. Biol., 4:e1000046.CrossRefGoogle ScholarPubMed
Rubin, J., Lee, D. D., and Sompolinsky, H. (2001) Equilibrium properties of temporally asymmetric Hebbian plasticity. Phys. Rev. Lett., 86:364-367.CrossRefGoogle ScholarPubMed
Rubin, J. and Terman, D. (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J. Comput. Neurosci., 16:211-235.CrossRefGoogle Scholar
Rust, N., Mante, V., Simoncelli, E., and Movshon, J. (2006) How MT cells analyze the motion of visual patterns. Nature Neurosci., 11:1421-1431.Google Scholar
Sabah, N. H. and Leibovic, K. N. (1969) Subthreshold oscillatory responses of the Hodgkin-Huxley cable model for the squid giant axon. Biophys. J., 9(10):1206-1222.CrossRefGoogle ScholarPubMed
Sahani, M. and Linden, J. (2003) Evidence optimization techniques for estimating stimulus-response functions. In Advances in Neural Information Processing Systems 15, pp. 301-308. MIT Press, Cambridge, MA.Google Scholar
Sakata, S. and Harris, K. (2009) Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron, 64:298-300.CrossRefGoogle ScholarPubMed
Salzman, C., Britten, K., and Newsome, W. (1990) Cortical microstimulation influences perceptual judgements of motion directions. Nature, 346:174-177.Google Scholar
Sanfey, A. and Chang, L. (2008) Multiple systems in decision making. Ann. NY. Acad. Sci, 1128:53-62.CrossRefGoogle ScholarPubMed
Schneidman, E., Freedman, B., and Segev, I. (1998) Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput., 10:1679-1703.CrossRefGoogle ScholarPubMed
Schrauwen, B. and Campenhout, J. (2007) Linking non-binned spike train kernels to several existing spike train metrics. Neurocomputing, 70(7-9):1247-1253.CrossRefGoogle Scholar
Schreiber, S., Fellous, J., Whitmer, D., Tiesinga, P., and Sejnowski, T. J. (2003) A new correlation-based measure of spike timing reliability. Neurocomputing, 52(54):925-931.Google ScholarPubMed
Schrodinger, E. (1915) Zur Theorie der Fall- und Steigversuche and Teilchen mit Brownscher Bewegung. Phys. Zeitschrift, 16:289-295.Google Scholar
Schultz, W. (2007) Behavioral dopamine signals. Trends Neurosci., 30(5):203-210.CrossRefGoogle ScholarPubMed
Schultz, W. (2010) Dopamine signals for reward value and risk: basic and recent data. Behav. Brain Funct., 6:24.CrossRefGoogle ScholarPubMed
Schultz, W., Dayan, P., and Montague, R. (1997) A neural substrate for prediction and reward. Science, 275:1593-1599.CrossRefGoogle ScholarPubMed
Schwalger, T., Fisch, K., Benda, J., and Lindner, B. (2010) How noisy adaptation in neurons shapes interspike interval histograms and correlations. PLOS Comput. Biol., 6:e1001026.CrossRefGoogle ScholarPubMed
Segev, I., Rinzel, J., and Shepherd, G. M. (1994) The Theoretical Foundation of Dendritic Function.MIT Press, Cambridge, MA.Google Scholar
Sejnowski, T. (1977) Storing covariance with nonlinearly interacting neurons. J. Math. Biol., 4:303-321.CrossRefGoogle ScholarPubMed
Sejnowski, T. J. (1999) The book of Hebb. Neuron, 24:773-776.CrossRefGoogle ScholarPubMed
Sejnowski, T. J. and Tesauro, G. (1989) The Hebb rule for synaptic plasticity: algorithms and implementations. In Byrne, J. H. and Berry, W. O., eds., Neural Models of Plasticity, Ch. 6, pp. 94-103. Academic Press, Salt Lake City, UT.Google Scholar
Senn, W. (2002) Beyond spike timing: the role of non-linear plasticity and unreliable synapses. Biol. Cyber., 87:344-355.CrossRefGoogle Scholar
Senn, W., Tsodyks, M., and Markram, H. (2001) An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing. Neural Comput., 13:35-67.CrossRefGoogle ScholarPubMed
Shadlen, M. N. and Newsome, W. T. (1994) Noise, neural codes and cortical organization. Current Opinion Neurobiol., 4:569-579.CrossRefGoogle ScholarPubMed
Shatz, C. (1992) The developing brain. Sci. Am., 267:60-67.CrossRefGoogle ScholarPubMed
Shenoy, K., Kaufman, M., Sahani, M., and Churchland, M. (2011) A dynamical systems view of motor preparation: implications for neural prosthetic system design. Progr. Brain Res., 192:33-58.Google ScholarPubMed
Shoham, S. (2001) Advances towards an implantable motor cortical interface. PhD thesis, University of Utah.Google Scholar
Shriki, O., Hansel, D., and Sompolinsky, H. (2003) Rate models for conductance-based cortical neuronal networks. Neural Comput., 15:1809-1841.CrossRefGoogle ScholarPubMed
Siebert, W. M. and Gray, P. R. (1963) Random process model for the firing pattern of single auditory nerve fibers. Quarterly Progress Report No. 71, Research Laboratory of Electronics, MIT, pp. 241-245.Google Scholar
Siegert, A. (1951) On the first passage time probability problem. Phys. Rev., 81:617-623.CrossRefGoogle Scholar
Silberberg, G., Bethge, M., Markram, H., Pawelzik, K., and Tsodyks, M. (2004) Dynamics of population rate codes in ensembles of neocortical neurons. J. Neurophysiol., 91:704-709.CrossRefGoogle ScholarPubMed
Simoncelli, E., Paninski, L., Pillow, J., and Schwarz, O. (2004) Characterization of neural responses with stochastic stimuli. In Gazzaninga, M., ed., The Cognitive Neurosciences, 3rd edn. MIT Press, Cambridge, MA.Google Scholar
Singer, W. (1993) Synchronization of cortical activity and its putative role in information processing and learning. Ann. Rev. Physiol., 55:349-374.CrossRefGoogle Scholar
Singer, W. (2007) Binding by synchrony. Scholarpedia, 2:1657.CrossRefGoogle Scholar
Sirovich, L. and Knight, B. W. (1977) On subthreshold solutions of the Hodgkin-Huxley equations. Proc. Nat. Acad. Sci., 74(12):5199-5202.CrossRefGoogle ScholarPubMed
Sjostrom, J. and Gerstner, W. (2010) Spike-timing dependent plasticity. Scholarpedia, 5:1362.CrossRefGoogle Scholar
Sjostrom, P., Turrigiano, G., and Nelson, S. (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron, 32:1149-1164.CrossRefGoogle ScholarPubMed
Smith, A. and Brown, E. (2003) Estimating a state-space model from point process observations. Neural Comput., 15:965-991.CrossRefGoogle ScholarPubMed
Smyth, D., Willmore, B., Baker, G. E., Thompson, I. D., and Tolhurst, D. J. (2003) The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. J. Neurosci., 23(11):4746-4759.CrossRefGoogle ScholarPubMed
Softky, W. R. (1995) Simple codes versus efficient codes. Current Opinion Neurobiol., 5:239-247.CrossRefGoogle ScholarPubMed
Softky, W. R. and Koch, C. (1993) The highly irregular firing pattern of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci., 13:334-350.CrossRefGoogle ScholarPubMed
Sompolinsky, H. and Kanter, I. (1986) Temporal association in asymmetric neural networks. Phys. Rev. Lett., 57:2861-2864.CrossRefGoogle ScholarPubMed
Sompolinksy, H., Crisanti, A., and Sommers, H. (1988) Chaos in random neural networks. Phys. Rev. Lett., 61:259-262.Google Scholar
Song, S., Miller, K., and Abbott, L. (2000) Competitive Hebbian learning through spike-time-dependent synaptic plasticity. Nature Neurosci., 3:919-926.CrossRefGoogle Scholar
Soon, C., Brass, M., Heinze, H., and Haynes, J. (2008) Unconscious determinants of free decisions in the human brain. Nat. Neurosci., 11:543-545.CrossRefGoogle ScholarPubMed
Spiridon, M. and Gerstner, W. (2001) Effect of lateral connections on the accuracy of the population code for a network of spiking neurons. Network, 12(4):409-421.CrossRefGoogle ScholarPubMed
Spiridon, M., Chow, C., and Gerstner, W. (1998) Frequency spectrum of coupled stochastic neurons with refractoriness. In Niklasson, L., Bodeín, M., and Ziemke, T., eds, ICANN 98, pp. 337-342. Springer, Berlin.Google Scholar
Srinivasan, L. and Brown, E. N. (2007) A state-space framework for movement control to dynamic goals through brain-driven interfaces. IEEE Trans. Biomed. Engng., 54(3):526-535.CrossRefGoogle ScholarPubMed
Stein, R. B. (1965) A theoretical analysis ofneuronal variability. Biophys. J., 5:173-194.CrossRefGoogle Scholar
Stein, R. B. (1967a) The information capacity of nerve cells using a frequency code. Biophys. J., 7:797-826.CrossRefGoogle ScholarPubMed
Stein, R. B. (1967b) Some models of neuronal variability. Biophys. J., 7:37-68.CrossRefGoogle ScholarPubMed
Steinmetz, P. N., Roy, A., Fitzgerald, P. J., Hsiao, S. S., Johnson, K., and Niebur, E. (2000) Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature, 404:187-190.CrossRefGoogle ScholarPubMed
Stevens, C. F. and Zador, A. M. (1998) Novel integrate-and-fire like model of repetitive firing in cortical neurons. In Proceedings of the 5th Joint Symposium on Neural Computation. Available at: http://cnl.salk.edu/zador/PDF/increpfire.pdf.Google Scholar
Strogatz, S. H. (1994) Nonlinear Dynamical Systems and Chaos.Addison Wesley, Reading, MA.Google Scholar
Stroop, J. (1935) Studies of interferencein serial verbal reactions. J. Exp. Psychol., 18:643-662.CrossRefGoogle Scholar
Stuart, G., Spruston, N., and Hausser, M. (2007) Dendrites, 2nd edn. Oxford University Press, Oxford.CrossRefGoogle Scholar
Sussillo, D. and Abbott, L. (2009) Generating coherent patterns of activity from chaotic neural networks. Neuron, 63:544-447.CrossRefGoogle ScholarPubMed
Sussillo, D. and Barak, O. (2013) Opening the black box: Low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput., 25:626-649.CrossRefGoogle ScholarPubMed
Tass, P. (2003) A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset ofneural subpopulations. Biol. Cybern., 89:81-88.CrossRefGoogle Scholar
Tass, P., Adamchic, I., Freund, H.-J., von Stackelberg, T., and Hauptmann, C. (2012a) Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor. Neurol. Neurosci 30:137-159.Google ScholarPubMed
Tass, P., Qin, L., et al. (2012b) Coordinated reset has sustained aftereffects in parkinsonian monkeys. Ann. Neurol., 72:816-820.CrossRefGoogle ScholarPubMed
Tass, P., Smirnov, D., et al. (2010) The causal relationship between subcortical local field potential oscillations and parkinsonian resting tremor. J. Neur. Eng., 7:016009.Google ScholarPubMed
Taube, J. S. and Muller, R. U. (1998) Comparisons of head direction cell activity in the postsubiculum and anterior thalamus offreely moving rats. Hippocampus, 8:87-108.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Tchumatchenko, T., Malyshev, A., Wolf, F., and Volgushev, M. (2011) Ultra fast population encoding by cortical neurons. J. Neurosci., 31:12171-12179.CrossRefGoogle Scholar
Theunissen, F. and Miller, J. (1995) Temporal encoding in nervous systems: a rigorous definition. J. Comput. Neurosci 2:149-162.CrossRefGoogle ScholarPubMed
Thompson, R. F. (1993) The Brain, 2nd edn. W. H. Freeman, New York.Google Scholar
Thorpe, S., Fize, D., and Marlot, C. (1996) Speed of processing in the human visual system. Nature, 381:520-522.CrossRefGoogle ScholarPubMed
Tiesinga, P. H. E. (2004) Chaos-induced modulation of reliability boosts output firing rate in downstream cortical areas. Phys. Rev. E, 69(3 Pt 1):031912.CrossRefGoogle ScholarPubMed
Toledo-Rodriguez, M., Blumenfeld, B., Wu, C., Luo, J., Attali, B., Goodman, P., and Markram, H. (2004) Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cerebral Cortex, 14:1310-1327.CrossRefGoogle ScholarPubMed
Touboul, J. (2009) Importance of the cutoff value in the quadratic adaptive integrate-and-fire model. Neural Comput., 21:2114-2122.CrossRefGoogle ScholarPubMed
Touboul, J. and Brette, R. (2008) Dynamics and bifurcations of the adaptive exponential integrate-and-fire model. Biol. Cybernetics, 99:319-334.CrossRefGoogle ScholarPubMed
Tovee, M. J. and Rolls, E. T. (1995) Information encoding in short firing rate epochs by single neurons in the primate temporal visual cortex. Visual Cogn., 2(1):35-58.CrossRefGoogle Scholar
Traub, R. (2006) Fast oscillations. Scholarpedia, 1:1764.CrossRefGoogle Scholar
Treves, A. (1993) Mean-field analysis of neuronal spike dynamics. Network, 4:259-284.CrossRefGoogle Scholar
Troyer, T. W. and Miller, K. (1997) Physiological gain leads to high ISI variability in a simple model ofa cortical regular spiking cell. Neural Comput., 9:971-983.CrossRefGoogle Scholar
Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., and Brown, E. N. (2005) A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J. Neurophysiol., 93(2):1074-1089.CrossRefGoogle ScholarPubMed
Tsodyks, M. and Feigelman, M. (1986) The enhanced storage capacity in neural networks with low activity level. Europhys. Lett., 6:101-105.Google Scholar
Tsodyks, M., Mitkov, I., and Sompolinsky, H. (1993) Patterns of synchrony in inhomoge-neous networks of oscillators with pulse interaction. Phys. Rev. Lett., 71:1281-1283.CrossRefGoogle Scholar
Tsodyks, M., Skaggs, W., Sejnowski, T., and McNaughton, B. (1997) Paradoxical effects of external modulation of inhibitory interneurons. J. Neurosci., 17:4382-4388.CrossRefGoogle ScholarPubMed
Tuckwell, H. C. (1988) Introduction to Theoretic Neurobiology.Cambridge University Press, Cambridge.Google Scholar
Tuckwell, H. C. (1989) Stochastic Processes in the Neurosciences.SIAM, Philadelphia, PA.CrossRefGoogle Scholar
Uhlenbeck, G. E. and Ornstein, L. S. (1930) On the theory of the Brownian motion. Phys. Rev, 36:823-841.CrossRefGoogle Scholar
Uzzell, V. and Chichilnisky, E. (2004) Precision of spike trains in primate retinal ganglion cells. J. Neurophysiol., 92:780-789.CrossRefGoogle ScholarPubMed
van Kampen, N. G. (1992) Stochastic Processes in Physics and Chemistry, 2nd edn. North-Holland, Amsterdam.Google Scholar
van Rossum, M. C. W. (2001) A novel spike distance. Neural Comput., 13:751-763.Google ScholarPubMed
van Rossum, M. C. W., Bi, G. Q., and Turrigiano, G. G. (2000) Stable Hebbian learning from spike timing-dependent plasticity. J. Neurosci., 20:8812-8821.CrossRefGoogle ScholarPubMed
van Vreeswijk, C. and Sompolinsky, H. (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274:1724-1726.Google ScholarPubMed
van Vreeswijk, C. and Sompolinsky, H. (1998) Chaotic balanced state in a model of cortical circuits. Neural Comput., 10:1321-1371.Google Scholar
Victor, J. D. and Purpura, K. (1996) Nature and precision of temporal coding in visual cortex: a metric-space analysis. J. Neurophysiol., 76(2):1310-1326.CrossRefGoogle ScholarPubMed
Victor, J. and Purpura, K. (1997) Metric-space analysis of spike trains: theory, algorithms and application. Network, 8:127-164.CrossRefGoogle Scholar
Vidne, M., Ahmadian, Y., Shlens, J.et al. (2012) Modeling the impact of common noise inputs on the network activity of retinal ganglion cells. J. Comput. Neurosci., 33(1):97-121.CrossRefGoogle Scholar
Vogels, T. P. and Abbott, L. (2005) Signal propagation and logic gating in networks of integrate-and-fire neurons. J. Neurosci., 25:10786-10795.CrossRefGoogle ScholarPubMed
Vogels, T. P. and Abbott, L. (2009) Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nature Neurosci., 12:438-491.CrossRefGoogle ScholarPubMed
Vogels, T., Sprekeler, H., Zenke, F., Clopath, C., and Gerstner, W. (2011) Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science, 334:1569-1573.CrossRefGoogle ScholarPubMed
von der Malsburg, C. (1973) Self-organization of orientation selective cells in the striate cortex. Kybernetik, 14:85-100.Google Scholar
von der Malsburg, C. (1981) The correlation theory of brain function. Internal Report 81-2, MPI für Biophysikalische Chemie, Gottingen. Reprinted in Models of Neural Networks II, Domany et al. (eds.), Springer, Berlin, 1994, pp. 95-119.Google Scholar
Wang, H.-X., Gerkin, R., Nauen, D., and Wang, G.-Q. (2005) Coactivation and timing-dependent integration of synaptic potentiation and depression. Nature Neurosci., 8:187-193.CrossRefGoogle ScholarPubMed
Wang, X.-J. (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36:955-968.CrossRefGoogle ScholarPubMed
Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C., and Markram, H. (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cerebral Cortex, 12:395-410.CrossRefGoogle ScholarPubMed
Waxman, S. G. (1980) Determinants of conduction velocity in myelinated nerve fibers. Musc. Nerve, 3(2):141-150.CrossRefGoogle ScholarPubMed
Wehmeier, U., Dong, D., Koch, C., and van Essen, D. (1989) Modeling the mammalian visual system. In Segev, I., ed., Methods in Neuronal Modeling, pp. 335-359. MIT Press, Cambridge, MA.Google Scholar
Weiss, T. (1966) A model of the peripheral auditory system. Kybernetik, 3:153-175.CrossRefGoogle ScholarPubMed
Welsh, J., Lang, E., and Llinas, I. S. (1995) Dynamic organization of motor control within the olivocerebellar system. Nature, 374:453-457.CrossRefGoogle ScholarPubMed
Willshaw, D. J., Bunemann, O. P., and Longuet-Higgins, H. C. (1969) Non-holographic associative memory. Nature, 222:960-962.CrossRefGoogle ScholarPubMed
Willshaw, D. J. and von der Malsburg, C. (1976) How patterned neuronal connections can be set up by self-organization. Proc. R. Soc. Lond. B, 194:431-445.CrossRefGoogle Scholar
Wilson, C., Beverlin, B., and Netoff, T. (2011) Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Front. Syst. Neurosci., 5:50.CrossRefGoogle ScholarPubMed
Wilson, H. R. and Cowan, J. D. (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J., 12:1-24.CrossRefGoogle ScholarPubMed
Wilson, H. R. and Cowan, J. D. (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13:55-80.CrossRefGoogle ScholarPubMed
Wilson, M. A. and McNaughton, B. L. (1993) Dynamics of the hippocampal ensemble code for space. Science, 261:1055-1058.CrossRefGoogle ScholarPubMed
Winfree, A. T. (1980) The Geometry of Biological Time.Springer-Verlag, Berlin.CrossRefGoogle Scholar
Wiskott, L. and Sejnowski, T. (1998) Constraint optimization for neural map formation: a unifying framework for weight growth and normalization. Neural Comput., 10:671-716.CrossRefGoogle Scholar
Wolff, L. and Lindner, B. (2011) Mean, variance, and autocorrelation of subthreshold potential fluctuations driven by filtered conductance shot noise. Neural Comput., 22:94-120.Google Scholar
Wong, K. and Wang, X. (2006) A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci., 26:1314-1328.CrossRefGoogle ScholarPubMed
Woosley, T. A. and Van der Loos, H. (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex: The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res., 17:205-242.Google Scholar
Wu, M., David, S., and Gallant, J. (2006) Complete functional characterization of sensory neurons by system identification. Ann. Rev. Neurosci., 29(1):477-505.CrossRefGoogle ScholarPubMed
Wu, W. and Srivastava, A. (2012) Estimating summary statistics in the spike-train space. J. Comput. Neurosci., 34(3):391-410.Google ScholarPubMed
Yamada, W. M., Koch, C., and Adams, P. R. (1989) Multiplechannels and calciumdynamics. In Koch, C. and Segev, I., eds, Methods in Neuronal Modeling.MIT Press, Cambridge, MA.Google Scholar
Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., and Sahani, M. (2009) Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol., 102:614-635.CrossRefGoogle ScholarPubMed
Zeldovich, Y. B. and Frank-Kamenetskii, D. (1938) Thermal theory of flame propagation. Zh. Fiz. Khim, 12(1):100-105.Google Scholar
Zhang, J.-C., Lau, P.-M., and Bi, G.-Q. (2009) Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses. Proc. Natl. Acad. Sci. USA, 106:13-28-13033.Google ScholarPubMed
Zhang, K. (1996) Representaton of spatial orientation by the intrinsic dynamics of the head-direction ensemble: a theory. J. Neurosci., 16:2112-2126.CrossRefGoogle ScholarPubMed
Zhang, L., Tao, H., Holt, C., W. A., Harris, and Poo, M.-M. (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature, 395:37-44.CrossRefGoogle ScholarPubMed
Zugaro, M., Arleo, A., Berthoz, A., and Wiener, S. I. (2003) Rapid spatial reorientation and head direction cells. J. Neurosci., 23(8):3478-3482.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×