Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T23:21:22.061Z Has data issue: false hasContentIssue false

5 - Synthetic lethality and chemoresistance in cancer

Published online by Cambridge University Press:  05 July 2015

Kimberly Maxfield
Affiliation:
University of North Carolina
Angelique Whitehurst
Affiliation:
University of North Caroline
Florian Markowetz
Affiliation:
Cancer Research UK Cambridge Institute
Michael Boutros
Affiliation:
German Cancer Research Center, Heidelberg
Get access

Summary

Despite great strides in the development of anti-cancer strategies over the last 50 years, treatment regimens continue to cause significant toxicity and fail to fully eradicate disease. Enhancing the current state of therapy will require: (1) the expansion of available tumor selective and therapeutically tractable molecular targets, (2) the development of methods to provide a rational approach to identifying effective combinatorial drug cocktails, and (3) molecular markers that can accurately predict sensitive patient populations. To this end, efforts that reveal the molecular architecture supporting tumorigenic phenotypes are essential. RNA interference (RNAi)-mediated loss of function screens have emerged as a method for wholesale identification of tumor-specific dependencies that modulate chemo responsiveness. Here, we provide a broad overview of how genome-scale RNAi screening is being implemented.

Cancer chemotherapy

Cytotoxic chemotherapy

Goodman and Gilman's 1946 discovery that lymphosarcomas respond to nitrogen mustard demonstrated that tumor cells may have an enhanced sensitivity to chemical poisons as compared to their normal counterparts. This finding revolutionized cancer treatment as it indicated that in addition to radiation and surgery, the only available modalities at the time, drugs could also be administered to reduce tumor burden (Goodman et al. 1946). Following on these initial observations, over the ensuing 50 years, an arsenal of cytotoxic agents were developed to treat a range of cancer types (Chabner & Roberts 2005, Strebhardt & Ullrich 2008).

The majority of these agents, as with the nitrogen mustard, share a common characteristic: they induce genomic damage. For example, agents such as cisplatin cause inter-and intrastrand DNA cross links. This DNA damage can lead to the inhibition of cell division by activating an arrest in the cell cycle to allow for DNA repair through the nucleotide excision repair (NER) pathway. This pathway is coupled to apoptotic programs that are activated if overwhelming damage is detected (Plunkett et al. 1995, Siddik 2003, Wang & Lippard 2005).

Type
Chapter
Information
Systems Genetics
Linking Genotypes and Phenotypes
, pp. 65 - 82
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aas, T., Borresen, A. L., Geisler, S., Smith-Sorensen, B., Johnsen, H. et al. (1996), ‘Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients’, Nature Medicine 2 (7), 811–14.CrossRefGoogle Scholar
Ambudkar, S. V., Kimchi-Sarfaty, C., Sauna, Z. E. & Gottesman, M. M. (2003), ‘P-glycoprotein: from genomics to mechanism’, Oncogene 22 (47), 7468–85.CrossRefGoogle Scholar
Bartz, S. R., Zhang, Z., Burchard, J., Imakura, M., Martin, M. et al. (2006), ‘Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions’, Molecular and Cellular Biology 26 (24), 9377–86.CrossRefGoogle Scholar
Bast, R. C. J., Brewer, M., Zou, C., Hernandez, M. A., Daley, M. et al. (2007), ‘Prevention and early detection of ovarian cancer: mission impossible?’, Recent Results in Cancer Research 174, 91–100.Google Scholar
Bauer, J. A., Ye, F., Marshall, C. B., Lehmann, B. D., Pendleton, C. S. et al. (2010), ‘RNA interference (RNAi) screening approach identifies agents that enhance paclitaxel activity in breast cancer cells’, Breast Cancer Research 12(3), R41.CrossRefGoogle Scholar
Bender, A. & Pringle, J. R. (1991), ‘Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae’, Molecular and Cellular Biology 11(3), 1295–305.CrossRefGoogle Scholar
Berns, K., Horlings, H. M., Hennessy, B. T., Madiredjo, M., Hijmans, E. M. et al. (2007), ‘A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer’, Cancer Cell 12(4), 395–402.CrossRefGoogle Scholar
Birmingham, A., Selfors, L., Forster, T., Wrobel, D., Kennedy, C. et al. (2009), ‘Statistical methods for analysis of high-throughput RNA interference screens’, Nature Methods 6(8), 569–75.CrossRefGoogle Scholar
Boone, C., Bussey, H. & Andrews, B. J. (2007), ‘Exploring genetic interactions and networks with yeast’, Nature Reviews Genetics 8(6), 437–49.CrossRefGoogle Scholar
Brito, D. A. & Rieder, C. L. (2009), ‘The ability to survive mitosis in the presence of microtubule poisons differs significantly between human nontransformed (RPE-1) and cancer (U2OS, HeLa) cells’, Cell Motility and the Cytoskeleton 66(8), 437–47.CrossRefGoogle Scholar
Brummelkamp, T. R., Bernards, R. & Agami, R. (2002), ‘A system for stable expression of short interfering RNAs in mammalian cells’, Science 296(5567), 550–3.CrossRefGoogle Scholar
Chabner, B. A. & Roberts, T. G. J.(2005), ‘Timeline: chemotherapy and the war on cancer’, Nature Reviews Cancer 5(1), 65–72.CrossRefGoogle Scholar
Chang, K., Elledge, S. J. & Hannon, G. J. (2006), ‘Lessons from Nature: microRNA-based shRNA libraries’, Nature Methods 3(9), 707–14.CrossRefGoogle Scholar
Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P. et al. (2011), ‘Improved survival with vemurafenib in melanoma with BRAF V600E mutation’, New England Journal of Medicine 364 (26), 2507–16.CrossRefGoogle Scholar
Cox, A. D. & Der, C. J. (2010), ‘Ras history: the saga continues’, Small GTPases 1(1), 2–27.CrossRefGoogle Scholar
Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S. et al. (2002), ‘Mutations of the BRAF gene in human cancer’, Nature 417 (6892), 949–54.CrossRefGoogle Scholar
Dexter, D. L. & Leith, J. T. (1986), ‘Tumor heterogeneity and drug resistance’, Journal of Clinical Oncology 4(2), 244–57.CrossRefGoogle Scholar
Draviam, V. M., Stegmeier, F., Nalepa, G., Sowa, M. E., Chen, J. et al. (2007), ‘A functional genomic screen identifies a role for TAO1 kinase in spindle-checkpoint signalling’, Nature Cell Biology 9 (5), 556–64.CrossRefGoogle Scholar
Druker, B. J. (2008), ‘Translation of the philadelphia chromosome into therapy for CML’, Blood 112 (13), 4808–17.CrossRefGoogle Scholar
Early Breast Cancer Trialists Collaborative Group (EBCTCG) (2005), ‘Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials’,Lancet 365 (9472), 1687–717.
Einhorn, L. H. (2002), ‘Curing metastatic testicular cancer’, Proceedings ofthe National Academy ofSciences ofthe United States of America 99 (7), 4592–5.Google Scholar
Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. et al. (2001), ‘Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells’, Nature 411(6836), 494–8.CrossRefGoogle Scholar
Farber, S. & Diamond, L. K. (1948), ‘Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid’, New England Journal of Medicine 238(23), 787–93.CrossRefGoogle Scholar
Fedorov, O., Muller, S. & Knapp, S. (2010), ‘The (un)targeted cancer kinome’, Nature Chemical Biology 6(3), 166–169.CrossRefGoogle Scholar
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. et al. (1998), ‘Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans’, Nature 391(6669), 806–11.CrossRefGoogle Scholar
Fotheringham, S., Epping, M. T., Stimson, L., Khan, O., Wood, V. et al. (2009), ‘Genome-wide loss-of-function screen reveals an important role for the proteasome in HDAC inhibitor-induced apoptosis’, Cancer Cell 15(1), 57–66.CrossRefGoogle Scholar
Frei, E., Holland, J., Schneiderman, M., Pinkel, D., Selkirk, G. et al. (1958), ‘A comparative study of two regimens of combination chemotherapy in acute leukemia’, Blood 13, 1126–48.Google Scholar
Gascoigne, K. E. & Taylor, S. S. (2008), ‘Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs’, Cancer Cell 14 (2), 111–22.CrossRefGoogle Scholar
Gascoigne, K. E. & Taylor, S. S. (2009), ‘How do anti-mitotic drugs kill cancer cells?’, Journal of Cell Science 122(15), 2579–85.CrossRefGoogle Scholar
Giaever, G., Shoemaker, D. D., Jones, T. W., Liang, H., Winzeler, E. A. et al. (1999), ‘Genomic profiling of drug sensitivities via induced haploinsufficiency’, Nature Genetics 21(3), 278–83.CrossRefGoogle Scholar
Goodman, L., Wintrobe, M. M., Dameshek, W., Goodman, M. & Gilman, A. (1946), ‘Nitrogen mustard therapy’, Journal of the American Medical Association 132 (3), 126–32.Google Scholar
Guarente, L. (1993), ‘Synthetic enhancement in gene interaction: a genetic tool come of age’, Trends in Genetics 9(10), 362–6.CrossRefGoogle Scholar
Hartman, J. L. t., Garvik, B. & Hartwell, L. (2001), ‘Principles for the buffering of genetic variation’, Science 291(5506), 1001–4.CrossRefGoogle Scholar
Hartwell, L. H., Szankasi, P., Roberts, C. J., Murray, A. W. & Friend, S. H. (1997), ‘Integrating genetic approaches into the discovery of anticancer drugs’, Science 278(5340), 1064–8.CrossRefGoogle Scholar
Horwitz, S. B., Cohen, D., Rao, S., Ringel, I., Shen, H. J. et al. (1993), ‘Taxol: mechanisms of action and resistance’, Journal of the National Cancer Institute Monographs 15(15), 55–61.Google Scholar
Hu, G., Kim, J., Xu, Q., Leng, Y., Orkin, S. H. et al. (2009), ‘A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal’, Genes & Development 23(7), 837–48.CrossRefGoogle Scholar
Isakoff, S. J. (2010), ‘Triple-negative breast cancer: role of specific chemotherapy agents’, Cancer Journal 16(1), 53–61.CrossRefGoogle Scholar
Jatoi, A., Dakhil, S. R., Foster, N. R., Ma, C., Rowland, K. M., et al. (2008), ‘Bortezomib, pacli-taxel, and carboplatin as a first-line regimen for patients with metastatic esophageal, gastric, and gastroesophageal cancer: phase ii results from the North Central Cancer Treatment Group (N044B)’, Journal of Thoracic Oncology 3(5), 516–20.CrossRefGoogle Scholar
Ji, D., Deeds, S. L. & Weinstein, E. J. (2007), ‘A screen of shRNAs targeting tumor suppressor genes to identify factors involved in A549 paclitaxel sensitivity’, Oncology Reports 18(6), 1499–505.Google Scholar
Jordan, M. A. & Kamath, K. (2007), ‘How do microtubule-targeted drugs work? An overview’, Current Cancer Drug Targets 7(8), 730–42.CrossRefGoogle Scholar
Lehner, B., Crombie, C., Tischler, J., Fortunato, A. & Fraser, A. G. (2006), ‘Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways’, Nature Genetics 38(8), 896–903.CrossRefGoogle Scholar
Lum, P. Y., Armour, C. D., Stepaniants, S. B., Cavet, G., Wolf, M. K. et al. (2004), ‘Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes’, Cell 116(1), 121–37.CrossRefGoogle Scholar
Luo, B., Cheung, H. W., Subramanian, A., Sharifnia, T., Okamoto, M. et al. (2008), ‘Highly parallel identification of essential genes in cancer cells’, Proceedings of the National Academy of Sciences of the United States of America 105(51), 20 380–5.CrossRefGoogle Scholar
Ma, C., Mandrekar, S. J., Alberts, S. R., Croghan, G. A., Jatoi, A. et al. (2007), ‘A phase I and pharmacologic study of sequences of the proteasome inhibitor, bortezomib (PS-341, Velcade), in combination with paclitaxel and carboplatin in patients with advanced malignancies’, Cancer Chemotherapy and Pharmacology 59 (2), 207–15.Google Scholar
Mehnert, J. M., Tan, A. R., Moss, R., Poplin, E., Stein, M. N. et al. (2011), ‘Rationally designed treatment for solid tumors with MAPK pathway activation: a phase I study of paclitaxel and bortezomib using an adaptive dose-finding approach’, Molecular Cancer Therapeutics 10(8), 1509–19.CrossRefGoogle Scholar
Moasser, M. M. (2007), ‘Targeting the function of the HER2 oncogene in human cancer therapeutics’, Oncogene 26(46), 6577–92.Google Scholar
Mullenders, J. & Bernards, R. (2009), ‘Loss-of-function genetic screens as a tool to improve the diagnosis and treatment of cancer’, Oncogene 28(50), 4409–20.CrossRefGoogle Scholar
Neumann, B., Walter, T., Heriche, J. K., Bulkescher, J., Erfle, H. et al. (2010), ‘Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes’, Nature 464 (7289), 721–7.CrossRefGoogle Scholar
Novick, P., Osmond, B. C. & Botstein, D. (1989), ‘Suppressors of yeast actin mutations’, Genetics 121(4), 659–74.Google Scholar
Plunkett, W., Huang, P., Xu, Y. Z., Heinemann, V., Grunewald, R. et al. (1995), ‘Gemcitabine: metabolism, mechanisms of action, and self-potentiation’, Seminars in Oncology 22 (4 Suppl 11), 3–10.Google Scholar
Prahallad, A., Sun, C., Huang, S., Di Nicolantonio, F., Salazar, R. et al. (2012), ‘Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR’, Nature 483 (7387), 100–3.CrossRefGoogle Scholar
Ramaswamy, B., Bekaii-Saab, T., Schaaf, L. J., Lesinski, G. B., Lucas, D. M. et al. (2010), ‘A dose-finding and pharmacodynamic study of bortezomib in combination with weekly paclitaxel in patients with advanced solid tumors’, Cancer Chemotherapy and Pharmacology 66(1), 151–8.CrossRefGoogle Scholar
Rowinsky, E. K. & Donehower, R. C. (1995), ‘Paclitaxel (taxol)’, New England Journal of Medicine 332 (15), 1004–14.CrossRefGoogle Scholar
Sachse, C. & Echeverri, C. J. (2004), ‘Oncology studies using siRNA libraries: the dawn of RNAi based genomics’, Oncogene 23 (51), 8384–91.CrossRefGoogle Scholar
Schiller, J. H., Harrington, D., Belani, C. P., Langer, C., Sandler, A. et al. (2002), ‘Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer’, New England Journal of Medicine 346(2), 92–8.CrossRefGoogle Scholar
Sharma, S. V., Lee, D. Y., Li, B., Quinlan, M. P., Takahashi, F. et al. (2010a), ‘A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations’, Cell 141(1), 69–80.CrossRefGoogle Scholar
Sharma, S. V., Haber, D. A. & Settleman, J. (2010b), ‘Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents’, Nature Reviews Cancer 10(4), 241–53.CrossRefGoogle Scholar
Siddik, Z. H. (2003), ‘Cisplatin: mode of cytotoxic action and molecular basis of resistance’, Oncogene 22 (47), 7265–79.CrossRefGoogle Scholar
Silva, J. M., Marran, K., Parker, J. S., Silva, J., Golding, M. et al. (2008), ‘Profiling essential genes in human mammary cells by multiplex RNAi screening’, Science 319(5863), 617–20.CrossRefGoogle Scholar
Sims, D., Mendes-Pereira, A. M., Frankum, J., Burgess, D., Cerone, M. A. et al. (2011), ‘High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing’, Genome Biology 12(10), R104.CrossRefGoogle Scholar
Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V. et al. (2001), ‘Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2’, New England Journal of Medicine 344(11), 783–92.CrossRefGoogle Scholar
Smith, M. A., Seibel, N. L., Altekruse, S. F., Ries, L. A. G., Melbert, D. L. et al. (2010), ‘Outcomes for children and adolescents with cancer: challenges for the twenty-first century’, Journal of Clinical Oncology 28(15), 2625–34.CrossRefGoogle Scholar
Strebhardt, K. & Ullrich, A. (2008), ‘Paul Ehrlich's magic bullet concept: 100 years of progress’, Nature Reviews Cancer 8(6), 473–80.CrossRefGoogle Scholar
Sullivan, A., Syed, N., Gasco, M., Bergamaschi, D., Trigiante, G. et al. (2004), ‘Polymorphism in wild-type p53 modulates response to chemotherapy in vitro and in vivo’, Oncogene 23(19), 3328–37.CrossRefGoogle Scholar
Swanton, C., Marani, M., Pardo, O., Warne, P. H., Kelly, G. et al. (2007), ‘Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs’, Cancer Cell 11(6), 498–512.CrossRefGoogle Scholar
Tammela, J., Uenaka, A., Ono, T., Noguchi, Y., Jungbluth, A. A. et al. (2006), ‘OY-TES-1 expression and serum immunoreactivity in epithelial ovarian cancer’, International Journal of Oncology 29(4), 903–10.Google Scholar
Turner, N. C., Lord, C. J., Iorns, E., Brough, R., Swift, S. et al. (2008), ‘A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor’, EMBO Journal 27(9), 1368–77.CrossRefGoogle Scholar
Vogelstein, B., Lane, D. & Levine, A. J. (2000), ‘Surfing the p53 network’, Nature 408(6810), 307–10.CrossRefGoogle Scholar
Wan, P. T., Garnett, M. J., Roe, S. M., Lee, S., Niculescu-Duvaz, D. et al. (2004), ‘Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF’, Cell 116(6), 855–67.CrossRefGoogle Scholar
Wang, D. & Lippard, S. J. (2005), ‘Cellular processing of platinum anticancer drugs’, Nature Reviews Drug Discovery 4(4), 307–20.CrossRefGoogle Scholar
Westbrook, T. F., Stegmeier, F. & Elledge, S. J. (2005), ‘Dissecting cancer pathways and vulnerabilities with RNAi’, Cold Spring Harbor Symposia on Quantitative Biology 70, 435–44.CrossRefGoogle Scholar
Whitehurst, A. W. & White, M. A. (2006), ‘Harnessing RNAi for analyses of Ras signaling and transformation’, Methods in Enzymology 407, 259–68.Google Scholar
Whitehurst, A. W., Bodemann, B. O., Cardenas, J., Ferguson, D., Girard, L. et al. (2007), ‘Synthetic lethal screen identification of chemosensitizer loci in cancer cells’, Nature 446(7137), 815–19.CrossRefGoogle Scholar
Whitehurst, A. W., Xie, Y., Purinton, S. C., Cappell, K. M., Swanik, J. T. et al. (2010), ‘Tumor antigen acrosin binding protein normalizes mitotic spindle function to promote cancer cell proliferation’, Cancer Research 70(19), 7652–61.CrossRefGoogle Scholar
Yang, H., Higgins, B., Kolinsky, K., Packman, K., Bradley, W. D. et al. (2012), ‘Antitumor activity of BRAF inhibitor vemurafenib in preclinical models of BRAF-mutant colorectal cancer ’, Cancer Research 72(3), 779–89.Google Scholar
Yang, X., Boehm, J. S., Salehi-Ashtiani, K., Hao, T., Shen, Y. etal. (2011), ‘A public genome-scale lentiviral expression library of human ORFs’, Nature Methods 8(8), 659–61.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×